Установка турбины на бензиновый двигатель: как установить турбину на бензиновый двигатель? ТУРБО-ТЕХ Москва

Содержание

как установить турбину на бензиновый двигатель? ТУРБО-ТЕХ Москва

Для начала, потребуется обзавестись некоторыми деталями, без которых не установить турбокомпрессор на авто. В этот список входят: турбина, интеркулер, коллектор, патрубки, труба к ведущая к глушителю и система, предназначенная для контроля подачи топлива.

Установить турбину можно не на все виды машин. Бывают даже ситуации, когда проще приобрести новое авто с изначально установленной турбиной, чем поставить ее в бензиновый двигатель. Правильно поставить турбину сможет не каждый и поэтому ставить ее рекомендуется мастеру с солидными навыками и опытом. Если ставить турбину в стиле “как получится”, то ее эксплуатационный срок будет крайне мал.

На первом этапе потребуется снять элементы, которые отвечают за вход и выход потока воздуха в системе. Новый коллектор турбины соединяют с входом турбокомпрессора. Турбину надо установить так, чтобы можно было осуществить работы по установке патрубков. Далее, охлаждающий канал скрепляют с смазочной системой мотора, при помощи масляной трубки.

Для более простого подключения, предназначается датчик, который отвечает за давление масла. Система охлаждения присоединяется к водяной помпе.
Чтобы формировалось достаточное количество воздушно-топливной смеси, необходимо установить форсунки с высоким уровнем производительности, которые будут подавать нужный объем топлива для смеси. Чтобы эта система работала, потребуется также заменить старый топливный насос, по причине того, что старый наверняка не сможет предоставить тот объём топлива для новых форсунок, которые требуется.

Все датчики, которые следят за температурой воздуха и охлаждающей жидкости, будут под контролем электронных систем. Чтобы системы работали как “часы”, следует произвести калибровку всех элементов контроля, чтобы ,например топливо впрыскивалось именно в тот момент, когда подается воздух в цилиндры. Такая переделка двигателя является достаточно сложной задачей, и чтобы ее качественно осуществить, необходимы немалые силы и средства, а также умелые руки.

Если со временем, ваша турбина вышла из строя, то сервис компании ТУРБО-ТЕХ Москва проведет диагностику турбины бензинового двигателя. В нашей компании вам восстановят турбину за 4 часа, с гарантией на 3 года! Сервис располагает собственный складом оригинальных запчастей, европейским оборудованием высокого класса и мастерами опыт работы которых, более 12 лет!

НУЖЕН РЕМОНТ ТУРБИНЫ В МОСКВЕ?

ЗВОНИТЕ В ТУРБО-ТЕХ!

8 (495) 648-65-95

Ремонт за 4 часа, гарантия 3 года, экономия до 70%!

Установка турбины на двигатель дизельный, бензиновый, принцип работы турбонаддува, эксплуатация

Автопромышленность развивается семимильными шагами, и для современных автовладельцев знания о различных новых автомобильных технологиях оказываются весьма полезными. Двигатели с турбинами, роботизированные коробки передач и вариаторы, системы защиты автомобиля, навигация и многое другое — становятся новой реальностью.

В блоке полезной информации контакты ресурса https://sinkai.ru/brand/cummins/, где можно найти все необходимые запчасти для двигателя CUMMINS. Гильзы двигателя, коленвалы, блоки цилиндров, масляные насосы, турбины, шатуны и вообще все что необходимо для ремонта мотора.

А в данной статье поговорим о том, что дает установка турбины на бензиновый и дизельный двигатель, каковы отзывы и неисправности, особенности эксплуатации и ремонта турбин, разберем плюсы и минусы, принципы работы турбонаддува.

Действительно, едва ли можно встретить человека, которой ни разу в своей жизни не заметил бы машину, по крайней мере внешне ничем не отличающуюся от обычных, с небольшим шильдиком «turbo». И только посвященному в возможности турбонаддува известно, сколько интересного и захватывающего скрыто под этой скромной надписью.

Принцип работы турбонаддува

Немного физики. Перед автомобильными конструкторами стоит извечная проблема повышения мощности двигателя. Еще со школьной скамьи мы помним, что мощность мотора находится в прямой зависимости от объема сжигаемого за рабочий цикл топлива. Иначе говоря, чем больше горючего сжигается, тем большую мощность получают. Но не все так просто на пути увеличения количества лошадиных сил под капотом – как правило, здесь конструкторов-мотористов поджидает немало проблем.

Как известно, процесс горения топлива проходит в присутствии кислорода, поэтому
в цилиндрах фактически сгорает не топливо, а смешанные в определенном соотношении топливо и воздух. Особенности процесса топливного горения зависят, например, от состава горючего или режима работы мотора, и некоторых других факторов. К примеру, в случае бензиновых двигателей топливо и воздух находятся в соотношении один к 14–15, то есть воздуха требуется довольно много. Увеличить подачу топлива – не проблема, чего не скажешь о столь значительном увеличения подачи воздуха.

В основе работы обычного ДВС лежит разница между давлением непосредственно в цилиндрах и атмосферным столбом, благодаря чему необходимый воздух попадает в двигатель самостоятельно. В этом случае получается прямая зависимость между объемом цилиндра и кислородом, который попадает в него на каждом цикле. По этому пути пошли американцы – выпущенные ими огромные двигатели имеют умопомрачительный расход горючего.

Как загнать в цилиндр больше воздуха? Первый способ увеличить в определенном объеме количество воздуха придумал немецкий инженер-конструктор Готлиб Вильгельм Даймлер. Это та самая светлая голова, чье имя стало частью названия знаменитой автомобильной марки Daimler Benz AG. 1885 год был ознаменован рождением нового мотора, который при своем незначительном весе и небольших размерах обеспечивал большую мощность. Воздух в него закачивался посредством специального нагнетателя, представляющего собой вентилятор (компрессор). Получив вращение напрямую от вала двигателя, он загонял сжатый воздух в цилиндры.

В начале XX века швейцарскому инженеру-изобретателю Альфреду Бюхи удалось пойти еще дальше. Под его руководством в производственной фирме Sulzer Brothers проходили работы по разработке дизельных двигателей. С одной стороны ему категорически не нравились большие и тяжелые, к тому же маломощные моторы, с другой – не хотелось использовать и идею вращения приводного компрессора за счет энергии движка. Это и привело к поискам нового решения нагнетания воздуха. Так, в 1905 году впервые в мире было запатентовано новое устройство нагнетания, основанное на использовании энергии выхлопных газов в качестве движителя.

Идея турбонаддува – проста, как, впрочем, и все гениальное. Аналогично работе ветра по вращению крыльев мельницы, колесо с лопатками здесь крутят отработавшие газы. Ротор турбины, как называют маленькое колесо с большим количеством лопаток, и колесо компрессора посажены на один вал. Полученную конструкцию, турбонагнетатель или турбокомпрессор (лат. turbo – вихрь, compressio – сжатие) можно условно разделить на:

  • ротор – вращается под действием выхлопных газов
  • и компрессор – будучи соединенным с ротором, он выступает в роли вентилятора, нагнетающего дополнительный воздух в цилиндры.

Воздух, попадающий в цилиндры турбомотора, часто нуждается в дополнительном охлаждении. В этом случае, загнав туда больше кислорода, можно будет повысить его давление, поскольку уже в цилиндре ДВС сжать холодный воздух гораздо легче, чем горячий. При прохождении через турбину воздух за счет сжатия и разогретых выхлопными газами деталей турбонаддува нагревается. Его охлаждают с помощью промежуточного охладителя, интеркулера. Это радиатор, который установлен по ходу движения воздуха межу компрессором и цилиндрами мотора. При прохождении через интеркулер воздух отдает тепло атмосфере и охлаждается. А уже холодный, более плотный воздух можно загонять в цилиндр в большем объеме.

Получается определенная цепочка – большее количество выхлопных газов, попавших в турбину, заставляет ее быстрее вращаться, а больший объем дополнительного воздуха, поступающего в цилиндры, повышает мощность.
Решение это – довольно эффективное, поскольку по сравнению, допустим, с приводным нагнетателем требуется значительно меньше затрат энергии двигателя (порядка 1,5%) на самообслуживание наддува. Это легко объясняется тем, что источником энергии ротора турбины является не замедление выхлопных газов, а их охлаждение – выхлопные газы после турбины идут так же быстро, но они более холодные.
Более того, на сжатие воздуха затрачивается даровая энергия, что способствует повышению КПД двигателя. К тому же, возможность получить большую мощность с рабочего объема поменьше приводит к меньшим потерям на трении, меньшей массе мотора (следственно и машины в целом).

Плюсы и минусы турбонаддува

Таким образом, автомобиль с турбонаддувом оказался значительно экономичнее своих атмосферных собратьев равной мощности. Тем не менее, оптимальным такое решение не назовешь по нескольким причинам. Начнем, к примеру, со скорости вращения турбины, которая может достигать порядка 200 тысяч оборот/мин или температуры раскаленных газов, достигающей, трудно даже представить, 1000°C. Очевидно, что создание и установка турбонаддува, способного в течение длительного времени выдерживать столь сильные нагрузки — это довольно дорого и непросто.

Именно поэтому установка турбины на двигатель первоначально получила достаточно широкое распространение исключительно в годы Второй мировой войны, причем только в авиации. В последующем, в 50-е годы ХХ века, турбонаддув стали использовать в тракторах американской компании Caterpillar и первых турбодизелях для грузовиков компании Cummins. И только в 1962 году они появились на серийных легковых автомобилях, причем почти одновременно на Chevrolet Corvair Monza (Шевроле Корвэйр Монца) и Oldsmobile Jetfire (Олдсмобиле Джетфайер).

Однако сложность конструкции и ее дороговизна оказались не единственными недостатками турбонаддува. Насколько эффективно будет проходить эксплуатация двигателя с турбиной во многом определяется оборотами движка. Действительно, на малых оборотах и, соответственно, небольшом объеме выхлопных газов ротор раскручивается слабо, и компрессор, в свою очередь, почти не задувает дополнительный воздух в цилиндры. Порой даже до 3000 оборот/мин мотор вообще не тянет, и «выстреливает» только где-то после четырёх-пяти тысяч. Подобная ситуация называется турбоямой.

Еще один момент — сложный и дорогой ремонт турбины в случае возникновения неисправностей турбированного двигателя, поскольку обслуживание таких агрегатов остается прерогативой сертифицированных станций фирменного техосблуживания.

Эксплуатация двигателя с турбиной

Поскольку для большей турбины необходимо больше времени на раскрутку, то турбоямы, как правило, грозят в первую очередь моторам, имеющим очень высокую удельную мощность и турбины высокого давления. Что же касается турбин с низким давлением, то у них провалов тяги, можно сказать, нет, однако мощность они способны поднять не очень сильно.

От турбоямы удается почти избавиться при использовании схемы с последовательным наддувом, суть которой в следующем: на малых оборотах мотора работает малоинерционный небольшой турбокомпрессор, который на низах увеличивает тягу, а на высоких оборотах по мере роста давления на выпуске включается второй, побольше.
В прошлом веке этот принцип был использован на суперкаре Порше 959. Сегодня же эта схема используется, к примеру, на турбодизелях фирм Land Rover и BMW. В бензиновых двигателях с турбинами Volkswagen в качестве маленького турбокомпрессора выступает приводной нагнетатель.
В случае рядных двигателей чаще используют одиночный турбокомпрессор типа twin-scroll с двойным рабочим аппаратом. Каждую из «улиток» наполняют выхлопные газы от различных групп цилиндров, но они обе подают газы при этом на одну турбину, достаточно эффективно раскручивая ее и на малых оборотах, и на больших.
Но чаще всего можно встретить пару одинаковых турбокомпрессоров, обслуживающих параллельно различные группы цилиндров. Типичной схемой для V-образных турбомоторов является следующая: каждому блоку – свой нагнетатель, хотя и не без исключений. Например, двигатель V8 от Motorsport Gmbh (дочерняя компания BMW AG), который впервые был использован на автомобилях BMW серии X5 M и X6 M, имеет перекрестный выпускной коллектор, позволяющий получать компрессору twin-scroll выхлопные газы из работающих в противофазе цилиндров различных блоков.

Эффективность двигателя с турбиной

Еще один вариант повышения эффективности работы турбокомпрессора с охватом всего диапазона оборотов – это изменение геометрии рабочей части. Специальные лопатки, поворачиваясь внутри «улитки», в зависимости от оборотов, варьируют форму сопла. В итоге получается «супертурбина», которая хорошо работает при любых оборотах. Хотя идея эта – не из новых, но реализовать ее удалось не так уж давно. Установка подобных турбин началась с дизельных двигателей, а из бензиновых первым примерил турбину с изменяемой геометрией Porsche 911 Turbo.

В последнее время популярность турбомоторов резко возросла, поскольку помимо форсирования силовых агрегатов они повышают экономичность и чистоту выхлопа. Это особенно важно для дизельных двигателей. Сегодня редко какой дизель обходится без приставки «турбо», а по отзывам, если поставить турбину на бензиновый двигатель обычного автомобиля, это превратит его в настоящую «зажигалку». Да и просто заурядные, но современные седаны, универсалы и хэтчбеки скрывают под капотом бензиновые и дизельные двигатели, оснащаемые турбинами, позволяющими уменьшить количество цилиндров, рабочий объем мотора, а соответственно не только массу, но и расход постоянно увеличивающегося в цене топлива.

Установка турбины – как правильно установить турбину


Установка турбины требует снятия с неё всех транспортных заглушек. Внимательно нужно осмотреть места присоединения на двигателе, убедиться в отсутствии посторонних предметов в газовых, воздушных и масляных каналах.

По рекомендациям специалистов, замена турбины должна производиться на специализированных ремонтных предприятиях, имеющих лицензию на данный вид выполняемых работ. Самостоятельная установка турбокомпрессора требует выполнения определённых действий и операций.

Рекомендации по установке, после ремонта турбины:

1. турбокомпрессор подсоединяется к выпускному коллектору двигателя входным фланцем корпуса турбины. Установка турбокомпрессора должна проходить таким образом, чтобы было вертикальное положение оси фланцев подвода и слива масла. Не пытайтесь изменять конструкцию маслопроводов.

ВНИМАНИЕ! Не пользуйтесь уплотнительными замазками!

2. В маслоподводящее отверстие турбины (входной фланец корпуса подшипников) залить 20-30 грамм чистого моторного масла той же марки, которая используется в двигателе и несколько раз провернуть ротор турбины рукой (для более равномерного распределения смазки). Ротор должен вращаться легко, без заеданий.

 

 

 

3. перед установкой турбины на двигатель проверьте, все ли трубопроводы (подача/слив масла, впуск/выпуск компрессора и турбины) чистые и в них нет никаких посторонних предметов.

4. после установки на двигатель проверить герметичность соединений воздушного тракта перед турбокомпрессором и за ним.

5. по окончании установки турбины несколько раз прокрутить двигатель стартером не запуская его (пока не погаснет индикатор давления масла) для подачи масла в турбокомпрессор.

6. после установки восстановленной (новой) турбины, запустить двигатель и дать поработать на холостом ходу 10-15 минут. Давление масла должно быть не менее 0,8 кг/см2. Проверить отсутствие подтеканий масла в соединениях. После этого эксплуатировать двигатель в соответствии с инструкцией.

Установка турбины на атмосферный двигатель

Мотор – это главный механизм в любом транспортном средстве. Все двигатели условно разделяются на 2 группы: турбированные и атмосферные. Атмосферные ДВС бывают газовыми, дизельными и бензиновыми, в зависимости от конструкционных особенностей и типа топлива, которое необходимо для их функционирования. У каждого начинающего автовладельца рано или поздно возникает вопрос: «Можно ли поставить турбину на атмосферный двигатель?». Ответ на этот вопрос можно дать только один – положительный. В этой статье мы расскажем вам, как обычный атмосферный мотор можно сделать турбированным.

Зачем устанавливать турбину

Чтобы разобраться в этом, сначала необходимо обратить внимание на принцип работы атмосферного мотора. Он функционирует таким образом: воздух попадает в него естественным путем, затем смешивается с топливом, переходит в цилиндр и воспламеняется от искры, в результате выделяется энергия, которая приводит в движение автомобиль. Установка турбины делает двигатель более мощным и износостойким, увеличивает крутящий момент и снижает уровень вредности выхлопных газов.

Благодаря турбине топливная смесь становится более насыщенной воздухом, интенсивнее горит. Мощность двигателя увеличивается на 10%, а то и более. Кроме того, он экономичнее расходует топливо.

Работает эта деталь так: в ее корпус попадают выхлопные газы, которые вращают крыльчатку. На одном валу располагается рабочее колесо компрессора. На вход устройства поступает отработавший в двигателе атмосферный воздух, а на выходе получается «надувочный». Поэтому эта процедура известна под названием «турбонаддув». Таким образом, КПД двигателя объемом 1.4 литра, оснащенного системой турбонаддува, вполне сравним с мощностью агрегатов с полезным объемом 1.8 литра. При этом, разумеется, что менее объемный двигатель расходует значительно меньше топлива. Особой популярностью данная технология пользуется у производителей японских и немецких автомобилей. Тем не менее, нередко турбину устанавливают и в постсоветских странах, даже на старые машины.

Элементы, необходимые для установки

Чтобы установить турбину на атмосферный двигатель, вам понадобится подготовить следующие детали:

  1. Саму турбину.
  2. Электронику, которая будет обеспечивать контроль подачи топлива.
  3. Выпускной коллектор.
  4. Высокопроизводительные форсунки.
  5. Интеркуллер для охлаждения воздуха.
  6. Трубу, соединяющую турбину с глушителем (даун-пайп).
  7. Магистраль подачи воздуха, выполненная из нержавейки и алюминиевых трубок.
  8. Трубки, обеспечивающие подачу масла и охлаждающей жидкости.
  9. Силиконовые патрубки, предназначенные для соединения трубок.

Учтите, что вместо обыкновенного коллектора вам понадобится турбоколлектор. Через него выхлопные газы будут выходить, а затем перенаправляться в турбину. Коллектор должен обладать толстыми стенками и большим запасом прочности. Поэтому лучше заказывать его изготовление в автомастерской, а не покупать дешевые готовые детали в Интернет-магазине. Профессиональный сварщик выполнит деталь так, что на ней не будет трещин, а окалина не попадет внутрь турбины.

Чтобы не допускать перегрева турбины, дополнительно устанавливают охлаждающую систему. В даун-пайп встраивается кислородный датчик. Крыльчатка турбины выполняет очень высокие обороты. Чтобы исключить риск ее преждевременного выхода из строя, к ней подводят масло, которое будет подаваться из двигателя. Лишнее давление будет сбрасываться при помощи клапана, который называется блоу-офф.

Как устанавливается турбина

Вы и сами можете переделать мотор, если умеете выполнять следующие операции:

  • увеличение объемов цилиндров;
  • замена клапана и кулачкового вала;
  • снижение сопротивления ГРС;
  • установка улучшенных воздухофильтров;
  • использование патрубков и увеличение насосной мощности.

В результате мощность силового агрегата увеличится минимум на 30%. Однако вряд ли вы сумеете провести чип-тюнинг, то есть прошивку мотора при помощи специальных компьютерных программ. Это позволяет повысить мощность устройства приблизительно на 15%. Стоит отметить, что стоит это довольно дорого. У экспертов нет однозначного мнения по поводу степени полезности этой процедуры. Одни из них утверждают, что после нее двигатель изнашивается быстрее, а другие убеждены, что перепрошивка наоборот расширяет эксплуатационный ресурс деталей.

После операций по повышению мощности ДВС можно столкнуться с тем, что агрегат начал перегреваться, особенно при жаркой погоде. Чтобы избежать этого, нужно будет установить интеркулер. Это устройство охлаждает надувочный воздух. Стоит отметить, что его можно установить и обычный атмосферный двигатель. Интеркулер сделает так, что в поступающем холодном воздухе будет содержаться больше кислорода. Это обеспечит лучшее сгорание топлива, за счет чего возрастет и КПД двигателя. Поскольку данное устройство является достаточно компактным, его можно устанавливать практически куда угодно.

Большинство автовладельцев отмечает приятные изменения в первые же минуты вождения машины, в которую был вмонтирован интеркулер. Температура воздуха снижается на 15%, что увеличивает мощность ДВС в среднем на 4%. При этом сокращается расход топлива. В отдельных случаях при помощи данного механизма мощность мотора можно повысить даже на 25%.

Может ли быть установлена турбина на атмосферный двигатель вашей машины? Это определяется моделью авто. Иногда проще купить новый автомобиль, чем подбирать необходимые запасные части для старого. Если вы все-таки хотите турбировать мотор, то лучше не пытайтесь делать это самостоятельно, а обратитесь за помощью к профессионалу.

Переоборудование начинается с демонтажа всех деталей, связанных с впуском и выпуском воздуха. Затем коллектор соединяют с турбиной, развернутой таким образом, чтобы работа с присоединением патрубков выполнялась максимально легко.

Турбина вращается очень быстро, поэтому ее подшипники должны постоянно смазываться. Трубку для подачи смазки необходимо подсоединить к тому месту в моторе, в котором масло идет под давлением. Для подключения также может использоваться тройник датчика давления. Второй конец трубки подключают к верхнему сегменту картриджа турбины. Сливаться масло будет под низким давлением, через предназначенный для этого сосок. Система охлаждения подключается с обратной стороны от водяной помпы.

Двигатель будет получать больше воздуха, а значит, ему понадобится большее количество топлива. Для увеличения его подачи устанавливаются форсунки, обладающие высокой производительностью. Также в некоторых случаях имеет смысл установить новый топливный насос. Электроника будет контролировать уровень давления воздуха, не допуская избыточных показателей. К ней подсоединяют датчики температуры. Контроллер нужно откалибровать так, чтобы топливная смесь впрыскивалась точно в нужный момент.

Не забывайте, что прошивкой двигателя обязательно должен заниматься очень опытный специалист. Здесь есть риск сбить заводские настройки, что выведет мотор из строя. Тогда придется тратить дополнительные средства на его ремонт. Установка турбокомпрессора на атмосферный двигатель в значительной степени упрощает его настройку. Тогда двигатель сможет эффективно работать и на высоких, и на низких оборотах.

Можно ли поставить турбину на карбюраторный двигатель

Подавляющее большинство автовладельцев стремятся к максимальному повышению мощности своей машины различными доступными способами. Одним из вопросов, который часто задают обладатели карбюраторных авто, является то, как поставить турбину на карбюраторный двигатель. Если владелец карбюраторного ДВС решил заняться таким усовершенствованием и тюнингом, тогда необходимо отдельно учесть целый ряд особенностей.

Содержание статьи

Немного теории

Наиболее эффективно проводить подобные усовершенствования получается у того, кто имеет четкое представление о своих действиях. Для этого необходимо разбираться в теоретической части.

Итак, мощность автомобиля и расход топлива зависят от качества и степени обогащения топливно-воздушной смеси, поступающей в цилиндры, а также от ее объема.

Разумеется, объем сжигаемой смеси можно увеличить путем увеличения камеры сгорания, а также наращивания количества цилиндров. Однако оптимальных результатов это не принесет, так как двигатель становится большим и тяжелым, сильно увеличивается расход топлива. Турбонаддув решает эту проблему.

Дело в том, что обычный двигатель при работе сам себе нагнетает воздух за счет разрежения, которое создается поршнем. В турбированном силовом агрегате эту работу выполняет турбокомпрессор. При этом воздух предварительно сжимается, что позволяет закачать больший его объем. То есть, можно сжигать больший объем горючего. В результате получается возрастание мощности двигателя по отношению к объему двигателя и потребленного горючего.

Один важный момент: воздух, как известно, при сильном сжатии нагревается. Вторично он будет нагреваться при сжатии в камере сгорания. При этом возможно возникновение детонации. А, кроме того, вследствие нагрева плотность воздуха в цилиндре будет уменьшаться, из-за чего закономерно уменьшиться эффективность всей системы. Чтобы убрать эти негативные явления, применяются интеркулеры – охладители воздуха из турбины. Они представляют собой радиатор.

Обычно турбокомпрессоры устанавливались на двигатели с электронным впрыском топлива (бензин или дизель), а механические компрессоры на карбюраторные ДВС. При этом турбина на карбюраторный мотор тоже может быть установлена, однако возникают дополнительные сложности, о которых будет рассказано немного позже.

Как уже было сказано, существует два типа компрессоров:

  • Турбокомпрессор, работающий за счет использования энергии выхлопных газов. Отработанные газы попадают на крыльчатку и вращают ее, благодаря чему и происходит нагнетание воздуха;
  • Компрессор с механическим приводом. Он работает от привода двигателя. При этом снижается КПД и возрастает расход топлива по сравнению с первым вариантом компрессора, так как механический нагнетатель отбирает часть мощности у ДВС.

Вся система, кроме самой турбины, включает в себя еще несколько важных узлов, о которых необходимо помнить при установке:

  • регулировочный клапан, который поддерживает заданное давление;
  • перепускной клапан, который обеспечивает возврат сжатого воздуха назад, во впускные патрубки компрессора, если дроссельная заслонка двигателя закрыта;
  • стравливающий клапан, который сбрасывает сжатый воздух в атмосферу при закрытой дроссельной заслонке;
  • воздушные патрубки;
  • масляные патрубки (служат для смазывания и охлаждения турбины).

Сложности установки турбины на карбюраторный двигатель

  1. Сам процесс установки турбины во многом напоминает процедуру на инжекторном ДВС (установка интеркулера, турбокомпрессора, элементов управления турбиной и т.д.). Главные трудности связаны с карбюратором.
  2. Из-за того, что в цилиндры топливная смесь подается через жиклеры, когда устанавливается турбина на карбюраторный двигатель, приходится менять их на другие, большего диаметра, чтобы смесь не переобеднялась. А подобрать неродные жиклеры на карбюратор и обеспечить нормальную его работу во всех режимах очень непросто.

    Большинство карбюраторов не предназначены для работы в паре с турбиной. Хотя, некоторые заводы выпускали в небольшом количестве карбюраторные двигатели, изначально оборудованные турбокомпрессорами.

  3. За счет того, что у турбодвигателей другая степень сжатия, чем у атмосферных, необходимо помнить о детонации и способах ее устранения. Как правило, проверенным способом является решение увеличить объем камеры сгорания. Это достигается путем установки дополнительных прокладок под головку блока цилиндров.
  4. Также придется отрегулировать работу системы так, что при разных оборотах двигателя давление воздуха из турбины тоже было соответствующим. В противном случае проявятся излишки или нехватка воздуха во впускном коллекторе по отношению к объему подаваемого топлива.

Это основные проблемы, с которыми придется столкнуться, устанавливая компрессор на карбюраторный мотор. Но кроме этого возможны дополнительные трудности, которые будут зависеть от модели авто,  а также от режимов его эксплуатации.

Из самых главных преимуществ такой установки стоит выделить следующие:

  1. Уменьшение расхода топлива при грамотной эксплуатации ТС при повседневной езде. Речь идет о возможности поднять крутящий момент, что, в свою очередь, существенно снизит частоту переключения передач на пониженные в условиях городских загруженных дорог в плотном потоке. Опять-таки, это приведет к снижению расхода топлива.
  2. Снижение шума во время работы двигателя, так как нет необходимости крутить агрегат до высоких оборотов. Также при комплексном тюнинге имеется возможность дополнительно и весьма значительно улучшить отдачу от мотора;

Выводы

Как видно, карбюраторный двигатель с турбиной имеет право на существование и может даже оказаться более выгодным по сравнению с обычным атмосферным, хотя такое переоборудование доставит хлопот и потребует серьезных переделок и денежных затрат. По понятным причинам на практике турбированные карбюраторные ДВС встречается очень редко, тем более на гражданских авто.

Также перед установкой компрессора стоит предварительно определиться с тем, в каких режимах планируется эксплуатация автомобиля: скоростная езда по трассе или обычные повседневные поездки по городу.

Еще важно подобрать и правильно настроить турбину в соответствии с рабочим объемом самого силового агрегата. Как правило, процесс настройки является не менее трудоемким, чем монтаж.

Что касается ресурса двигателя, в большинстве случаев установка наддува на атмосферный агрегат так или иначе уменьшает срок службы мотора и КПП, особенно если двигатель и трансмиссия не были для этого специально подготовлены и доработаны.

Читайте также

Недорогая установка турбины на двигатель авто

Вас интересует профессиональная установка турбины на двигатель вашего авто? Тогда вы обратились точно по адресу, ведь каждый специалист нашего сервисного центра отлично знает, как установить турбину и имеет огромный опыт в выполнении подобных монтажных работ, поэтому вы можете быть полностью уверенны в финальном результате. Наш сервисный центр выполняет такие работы как недорогая установка турбины на двигатель авто в самые кратчайшие сроки, предлагаемые нашей компанией цены являются, в самом деле, очень доступными.

Как известно каждому опытному автомобилисту, главной задачей турбинного устройства выступает увеличение мощности мотора автомобиля. На данный момент имеется большое количество способов повысить мощность автомобильного движка: чип тюнинг, монтаж фильтров нулевого сопротивления, растачивание цилиндров, полирование впускных каналов, применение закиси азота, однако самым доступным и простым вариантом по-прежнему считается установка турбокомпрессора на автотранспорт.

Установка турбины на авто – очень ответственная задача!

Как вы уже поняли, установка такого оборудования представляет собой довольно ответственную задачу, поэтому доверять ее выполнение следует исключительно высококвалифицированным специалистам, которые зарекомендовали себя как надежные мастера. Авто с турбокомпрессором нуждается в особом уходе, поскольку несоблюдение определенных эксплуатационных правил способно стать причиной деформации такой оснастки.

Чтобы увеличить производительность мотора автотранспортного средства, следует использовать агрегаты повышенного давления, немаловажной характеристикой которых выступает наличие клапана, который отвечает за стравливание избыточного давления при повышенных оборотах. Чтобы охладить воздух, который нагревается в процессе функционирования турбинного агрегата на высоких оборотах, многие украинские автолюбители производят монтаж интеркулера.

Таким образом, если вас интересует установка турбины на двигатель, звоните нам по указанным телефонным номерам. 

Турбина на бензиновый двигатель своими руками – АвтоТоп

Советы по постройке турбо и установка турбины в домашних условиях.

Итак, как в домашних условиях соорудить турбохонду, какой у неё будет ресурс и сколько это денег потребует. изначально это будет не High Perfomance, а скорее просто поделка домашняя. т.е. это будет не дико быстрая машина, но она будет бытсрее таких же, и очень интересная под капотом. а если учесть, что это сделаете вы сами, то вы всегда сможете открыть капот своей машины и сказать «Я это сделал сам!».
alt

Это будет только обзорная статья.
Что вам понадобиться для того, чтобы поднять мощность вашей машинки на процентов 25-50 (это тот действительно безопасный уровень, при котором не надо менять внутренности двигателя. и регулярно меняя масло, вы будете ездить на этой машине ещё очень долго).
1) собственно сама турбина
2) турбо-коллектор
3) вестгейт
4) перепускной клапан (blowoff valve)
5) изменение системы, дабы подавать больше топлива.
6) выпуск
7) масляные линии
8) интеркуллер
9) воздуховоды
10) ещё что-то по мелочи

Итак, по-порядку:
1) Турбина. в нашем случае я буду исходить из того, что система должны быть дешёвой, поэтому турбину надо взять бу шную, на рынке/по обьявам. Идеальная турба для большиснтва моторов будет T3 .42/.48 с сааба 9000 до 91года выпуска 2х литрового.
За бу шную турбу отдавать от 60-ти до 120 баков. больше — это уже не дешево.

При покупки бу шной турбины обратите внимание на:
— следы масла в компрессионной части и выхлопной. если имеются — плохо.
— попробуйте покрутить крылчатку — если касается стенок — плохо.
— попробуйте крыльчатку погшатать в разные стороны. если она шатается на столько, что в некоторых случаях касается стенок — плохо.
— попробуйте крыльчатку потянуть на себя и отсебя — если есть хоть какойнить люфт, лучше избегать такой турбы.
— посомтрите на сами крыльчатки — если они деформированны — лучше избегать.
— часто турбы от саабов продают вместе коллектором и пластинкой, котороя идёт к вылопной части. под ней находиться отверстие вестгейта. вокруг него наверняка будут трещины в улитках. сильно страшного в этом ничего нету (ну если конечно, улитка не разваливается из-за них), но повод скинуть цену — хороший. т.е. надо раскрутить и если есть, тыкнуть пальцем продавцу и попросить скидки за баг.

В случае турбин не от саабов, стоит обращать приблизительно на теже нюансы при выборе. стоит избегать дизельных турбин, так как они вопервых будут не эффективны на бензиновых моторах, а во вторых рассчитанны на меньшую скорость вращения и меньшую температуру выхлопных газов.
Если у вас турбина с возможностью водяного охлаждения… то не стоит её подключать к водяной вашей системе. оставьте просто эти отверстия открытыми.

2) Турбо-коллектор. Тут вариантов два — делать самому или заказывать из-за бугра красивый и блестящий. Делать самому можно.
Так что тот кто дружит с болгаркой и сваркой — но проблем. единственное чо, надо заказывать у знакомых, чтобы на заводе вытачивали фланец к двигателю и турбе. толщина фланца 10-15 мм желательно. 15 — предпочтительней. если будете варить сами, то очень рекомендую прикрутить флянец к двигателю, так как из-за перегрева, его поведёт и потом его надо будет отдавать на шлифовку. в лсучае покупки за бугром — ничего сложного, главное правильно указать точно свой двиг и подобрать максимально подходящий флянец, по трубины все разные. у саабовских турбин до 91ого года флянец — Т3, после — Т25. Для владельцев двигателей D серии есть более дешевый и простой вариант — коллектор от сивика 96ого года с втек-эконом. к нему сделать переходник на флянец вашей турбы и вуаля.

На первом фото сам переходник и на втором фото «грамотный» коллектор за много денег и очень эффективный…
alt

3) Большинство турбин с машин конвеерных идут с внутренними (internal) вестгейтами. варианты с внешним вестгейтом пропускаем, так как у нас бюджет не тот. большинтсво вестгейтов настроено приблизительно на 8 пси (14.7 пси = 1 бар). но можно изменять это давление удлинением или укорачиванием стержня, который идёт из вестгейта внутреннего. но при уменьшении давления лучше использовать другой способ (если инетресно, потом расскажу)
В нащем случае вестгейт настройте на что нибудь в раёне 6-7 пси. проверять — с помощью компрессора какого нить (хоть насоса с индикаторм давления)

4) перепускной клапан. нужен для того, чтобы когда вы отпускаете газ, дросельная заслонка закрывается, а турбина по инерции продолжает сжимать воздух и между турбиной и дросельной заслонкой ссоздаётся высокое давление, которое резко останавливает крыльчатку турбины, тем самым повышая износ онной и лаг онной. перепуускной клапанже открывается как только в коллекторе впускном появляется ваакум, и тем самым спускает весь воздух наружу. перепускной клапан можно снять с сааба или вольвы.
Пастиковые такие. потом их приклеить на трубу эпоксидкой.

Вариант с перепускным клапанном от МХ-6
alt

5) Fuel Management. повышая кол-во воздуха задуваемого в цилиндры, надо повышать кол-во топлива в цилиндрах. иначе обеднённая смесь и буум. двиглухана. поэтому надо ставить более производительные форсунки. для вариантов до 170-180 коней пойдут от прелюда. далее надо както уменьшить кол-во топлива при малых оборотах. для этого например можно заюзать Apexi AFC.
Компьютер чик, как стоит у концерты, для уменьшения или увеличения кол-ва топлива подаваемого в зависимости от оборотов.
alt

Если вы целитесь на что то более 180 коней, то лучше купить где нить инжектора от первого или второго поколения турбо-эклипсов с механической коробкой. эти инжектора дадут вам возможность держать до 280 коней где-то.
Тут отдельно стоит двигатели с моновпрыском и карбюраторами. там возможен лишь один вариант. продаються такие устройства FMU (Fuel Management Unit), они повышают давление в топливной линии в зависимости от давления. стоят в раёне 70 баков бу шные в штатах. т.е. тут будут стоить окло 100ки. но это самый плохой вариант. лучше всего поменять на полный впрыск.

(вот как оно выглядит)
6) Выпуск. Для турбы действует правило — чем свободнее выхлоп — тем лучше. в идеале после турбы сразу в окружающую среду.
На практике лучше сделать выхлоп из трубы диаметром 58-78 мм, без резонаторов и в конце типаспортивную банку. вообещем, ничего особенного.
Выпуск к турбе можно приваить и вот так (хотя это конечно и не очень хорошо, зато быстро и дёшево)
alt

7) Масленые линии. Для турбины надо масло. На хондах самое оптимальное место забора масла — от датчика давления масла сзади блока. так как в продаже нету никаких трубок с подходящей резьбой, я придумал единтсвенный выход, сделать переходник на заводе с той резббой как в блоке, на такую резббу как на патрубках тормозных вазовских. дёшево и сердито. Подвод к турбе, если она саабовская — такой же как и забор от блока, т.е. тоже через переходник. Отвод масла от турбины: ввариваете кусок трубки в маслянный поддон, максимально высоко к верхней его части. идея в том, чтобы из него ри нормальном уровне масла, масло не вытекало и наче будут проблемы…

Ввод масла должен быть максимально в верхней части, равно как вывод — максимально в низкой. т.е. чтобы масло спокойно вытекало из турбины. это очень критично. по поводу подвода масла.
Очень хорошо установить где нибудь в подводе масла так называемый restrictor — грубо говоря заглушка с отверстием по-середине диаметром 1 мм. дабы ограничить кол-во масла проходящее через турбину.
8) при таких давлениях интеркуллер не обязателен, но в любом лсучае очень желателен. тут вприцнипе надо изходить из удобства установки. имхо в для такого варинат лучше всего покатит интеркуллер от ауди 200. стоит он на малине около 25 баков. как закрепить интеркуллер под бампером — это уже надо выдумывать
9) воздуховоды, это собственно по чему будет идти воздух от турбы к интекуллеру и от интеркуллера к дроссельной заслонке. Можно сделать металлические. я вот хочу попробывать заюзать пластиковые трубы со строительного рынка такие серые. Их можно нагрев изогнуть по разному. тут особо стоит отметить чем их соединять между собой. в идеале — нужны силиконывые coupliers. такие куски силиконовых труб, которыми и соеденяються трубы. но конечно можно соединять с помощью кусков резиновых труб от радиаторов. вообещем тут тоже надо пофантозировать. хомуты лучше покупать стальные, те что подороже, т.к. алюминивые сломаються при первой же закрутке.

10) из мелочей, которые хорошо бы иметь. но не обязательно:
— инидкатор давления. на малине у полечудесников можно найти разные страшненькие или за много денег купить тюнинговые за много денег.
— разные трубки резиновые для соединения вестгейта с источником вакуума. проаються везде. главное подобрать правильные размер и повесить на хомута.
— и ещё всё, что я забыл написать
Цены:
1) Турба — 80
2) коллектор — 100
3) вестгейт — встроен в турбу — 0
4) перепускной клапан — 20
5) 100ку на инжектора. прочипую бесплатно
6) выпуск 40 уе
7) масляные линии — 20 уе
8) интеркуллер — 25
9) воздуховоды со всякими соеденителями и хомутами — 50 уе
10) ещё мелочей и работ разных на 100 баков максимум.

итого: 535 уе. естественно я привёл очень приближённые суммы, но есть от чего отталкиваться.

По поводу ресурса двигателя — если вы будете накачивать не более 7-8 пси. будете ездить на 95ом бензе и не будете настраивать агрессивно зажигание, то проездите очень долго
По поводу масла: менять желательно раз в 5 тысяч км. масло по вязкости подбирать самое узкое, т.е. 10w30 гораздо лучше нежели 0w50. так как все эти добавки к маслам, обеспечивающие мультивязскость при встрече с высокой температурой в турбе отлько помогают коксоваться.
Охлаждение водяное турбины применять не стоит, только будет постоянно перегревать двиг. просто воьмите за привычку постле того. как отожгли, дать постоять на холостых оборотах двигу минуты 3-4 перед тем, как заглушить.
Охлаждение масла применять так же не стоит, так как масло должно быть в своей рабочей температуре, дабы хорошо всё смазывать.
Давления штатной масляной помпы хватит с головой, дабы покрыть потребности и двига и турбы.

Интеркуллер устанавливать перед радиатором охлаждения под бампером.
Фильтр можно прикрутить прямо к турбе, либо патрубком вывести куда по выше. помните, что в лужи заезжать крайне не рекомендуется с фильтром на самой турбе. уж поверьте мне, был опыт. засосёт стока воды…

PS: на коллекторе впускном есть клапан вентиляции кратерных газов. он изначально подключен к патрубку до дросельной заслонки. теперь же от него надо провести шланг и подключить до турбины. тоже самое касается шланга от сопуна на клапанной крышке. хотя на него можно просто оставить открытым (вторая картинка) или повесить на него какой фильтр (первая картинка)
Про уменьшение давления, при котором будет открываться внутренний вестгейт. (сразу сделаю краткий словарь своих постов. т.к. я без понятия как называються все эти вещи, то я приведу их названия по своему).

Это касается внутренних вестгейтов. Такая круглая штука, которая крепится к компрессионной улитке — я буду обзывать «актуатором». Стержень, который торчит из актуатора — рычаг.
Собственно дырка с заслонкой, через которую выплёвываютсья излишки выхлопных газхов — вестгейт собственно.)
Так как при удлинении рычага, мы автоматически открываем сам вестгейт, то мы получаем большее время, необходимое на раскручивание турбины. т.к. часть газов уходит в уже немного открытый клапан. это плохо.
решение этой проблемы очень простое: в дополнение к актуатору поставить ещё пружинку, дабы вестгейту было поще открываться было проще открываться. тем самым мы уменьшим усилие, необходимое для открытия вестгейта, но тем самым мы оставим клапан закрытым полностью, что поможет получить время включения турбины раньше.

просто до безобразия
Вот картинка, призванная помочь понять о чём я тут болтал
alt

Honda Fit Base Supercharger Kit. Automatic Transmission
alt

The KraftWerks Fit Base supercharger kit is just what the doctor ordered for this pint-sized hatchback. Using the small Rotrex C15-16 on the Auto, this CARB-Pending kit gives the anemic Fit a needed increase in power. The extra power allows for easy cruising at highway speeds, as well as canyon carving fun with just a touch of the pedal. All required hardware and electronics are included, so there is absolutely nothing else needed.
-L15A AT Engine Only-
-CARB Pending-

Included Items:
• Rotrex C15-16 Supercharger at 5 PSI*
• Rotrex Self-Contained Oiling System with Oil Cooler
• KraftWerks Recirculating Bypass Valve
• KraftWerks Automatic Belt Tensioning System
• KraftWerks SuperCard Engine Management System
• KraftWerks Aluminum Intake and Discharge Piping
• KraftWerks Silicone Hoses
• KraftWerks Oiled Air Filter
• KraftWerks 5-Rib Belt
• KraftWerks Brackets and Hardware

*Boost level is determined at sea level, and can change depending on modifications, weather, altitude, etc.

Estimated Ship Date: August
Price: $3,495.00

Турбина это сложное техническое устройство, которое позволяет развивать двигателю большую мощность. Установка турбины на атмосферный двигатель является доступной доработкой для улучшения динамических характеристик автомобиля.

Данное устройство устанавливается на некоторые автомобили с завода, но далеко не на все. В последнее время, очень популярны бензиновые малолитражки с мотором 1.2 или 1.4 и установленной на них турбиной. Примечательно, что расход топлива у них в городском цикле редко превышает 7 литров, а вот мощности хватит, чтобы уделывать со светофоров средние атмосферники.

Принцип работы турбины


Как видим, в корпус турбины попадают выхлопные газы, они крыльчатку или, другими словами, турбинное колеса, после того как они отработали они выходят из турбины. На одном валу турбинным валом находится рабочее колесо компрессора. Оно установлено внутри корпуса компрессора. На вход идет атмосферный воздух, а на выходе под большим давлением мы получаем, так называемый, надувочный воздух.

Турбонадув очень хорошо способствует увеличению мощности и снижению расхода топлива. Например, если на двигатель объемом 1.4 или 1.6 установить турбину, то вполне вероятно получить очень не плохую мощность автомобиля сравнимую с мощностью автомобиля без турбины, но с двигателем 1.8-2.0. Экономичнее из этих двух автомобилей, будет конечно-же автомобиль, с меньшим объемом двигателя. Эта технология очень популярна у немцев и некоторых японцах. Например, некоторые модели VW Golf идут с небольшими объемами мотора, но с хорошей мощностью, которая в свою очередь достигается за счет турбины.

Что необходимо для установки турбины

Помимо самой турбины, в системе присутствуют еще некоторые компоненты, которые не обходимы для её работы. Такими компонентами являются:

Выпускной коллектор турбины.

Так как турбина работает на отработавших газах, её нужно врезать в магистраль выхода выхлопных газов из двигателя. Поможет на в этом так называемый специальный выпускной коллектор. Вот так вот она выглядет в сборе с турбиной.

Пайп для вывода отработавших газов

Еще одним необходимым элементом системы с установленным турбокомпрессором является специальный пайп для вывода отработавших газов наружу.

Кстати говоря в него нужно встраивать датчик лямбда зонда. Вот так это выглядит.

Магистраль подачи воздуха

Следующий необходимый элемент это сооружение магистрали подачи воздуха. Тут используются алюминиевые трубки и силиконовые патрубки для их соединения.

Прежде чем попасть воздух в мотор, для его более эффективного использования его нужно охладить. Для этого применяется интеркуллер. Вот так вот он выглядит.

На картинки он уже вместе с необходимыми патрубками. Следует отметить, что так как в турбину поступают отработанные газы, то она очень сильно нагревается, и просто необходимо подвести к ней канал с охлаждающей жидкостью.

Так – же обороты крыльчатки турбины очень высокие, и для обеспечения её долгой и надежной работы, необходимо подвести к ней масло канал из двигателя.

Блоуофф

Все наверное слышали так называемый пшик у автомобилях с турбиной, или блоуофф. Нужен он для сброса лишнего давление воздуха.

Электроника

Если вы решили установить турбину на свой автомобиль, то необходимо позаботится о форсунках. Форсунки нужно приобреси с более высокой производительностью, так мощность двигателя возрастет и стандартных форсунок просто напросто не хватит. У народных тюнеров пользуются спросом форсунки от субару, ну или более дешевый вариант — поставить волговские.

Так же стоит уделить внимание и на ЭБУ. Так как стандартная программа больше не подойдет, ее нужно будет менять и откатывать онлайн. Для этого нужно будет воспользоваться услугами настройщиков у которых есть специальное оборудование для этого.

Проблемы турбированных двигателей

Самый главный враг надутых моторов, это детонация. С турбиной в моторе образуется большее количество воздушно топливной смеси. Существую несколько путей решения, как избежать детонации.
— установить поршни в двигатель с более низкой степенью сжатия
— использовать бензин с более высоким октановым числом
— уменьшить угол опережение зажигания

На большинстве стоковых моторов, при установке турбины нельзя дуть более 0.5 бар, так как при большем давлении есть риск, что стандартная поршневая может не выдержать. Поэтому для достижения более высоких показателей, устанавливают кованные поршни, которые рассчитаны на более высокие нагрузки.

На этом вводная статья заканчивается, но мы обязательно вернемся еще к этой теме, так как она в наше время очень актуальна.

Кто из автовладельцев не мечтал повысить мощность своего автомобиля? Об этом задумывался каждый. Некоторые хотели бы добавить 10 лошадиных сил, иные – 20. Но есть и те автолюбители, которые хотят повысить возможности автомобиля максимально. Цель их – максимальный рост крутящего момента при минимальном бюджете, а это значит, что мощный мотор от другого автомобиля уже не установить. А значит, остается только два варианта по увеличению технических характеристик – компрессор или установка турбины. Первый сразу же не подходит – с ним будет большой расход топлива, а КПД при этом невысокое. Да и не во всех автомобилях есть место под установку такого агрегата. В итоге остается только турбина. Но возникает вопрос: «Можно ли поставить ее на непредназначенный для этого атмосферный мотор?». Рассмотрим более детально этот вопрос.

Особенности турбирования

Самое главное, что нужно понимать – при том, что турбированные моторы имеют схожесть с атмосферными ДВС, построены они на базе совершенно других принципов. Связано это с конкретными особенностями горения смеси топлива и воздуха в условии избыточных давлений и нагрузок. Чем больше воздуха, тем больше нужно топлива. Соответственно, динамика автомобиля будет более приемлемой.

На практике с одной стороны планируемый прирост мощности составляет 20-30 процентов, при этом объемы работ и вливание денежных средств – значительные. Поэтому выходит, что правильнее всего поднять результат до среднего уровня, чтобы затраты себя окупили и соответствовали желаемым требованиям.

Стоит ли игра свеч

Многие уверены, что установка турбины – это дело двух часов. Но в результате увеличится продуктивность, а вместе с ней и нагрузки на двигатель – без замены основных элементов не обойтись.

Отзывы говорят, что придется менять форсунки. С турбиной устанавливают более производительные. Также меняют топливный насос, устанавливают новую выхлопную систему – с трубами большего диаметра. Дальше меняют лямбда-зонд. Дополнительно нужно найти подходящее место под монтаж интеркулера. Меняют и поршневую систему, улучшают систему охлаждения. Кроме всего этого, необходимо обеспечить приток масла к турбине, уменьшить степень сжатия ДВС, поменять распределительные валы, установить усиленные опоры двигателя.

Но это еще не все. Когда двигатель собран, появляется следующий неприятный момент – оказывается, что на штатном ЭБУ агрегат даже не заведется. Работают такие моторы с дорогими перенастраиваемыми блоками управления. Нужно менять прошивку – говорят отзывы.

Что такое турбина и как она работает

Принцип действия системы турбонаддува основывается на потоках выхлопных газов из выпускного коллектора. Они попадают в корпус турбины и раскручивают крыльчатку, которая тесно связана с колесом компрессора. Последний, в свою очередь, засасывает дополнительно количество воздуха через фильтр. Кислород используется для обогащения смеси и затем подачи ее в цилиндры. В камеру попадает большее количество смеси. Это и способствует росту мощностных характеристик и увеличению потенциала.

Как установить наддув

Перед установкой турбины важно помнить, что в процессе монтажа нельзя использовать герметики. При воздействии высоких температур они разжижаются, а их частицы могут попасть внутрь турбины. Небольшого кусочка достаточно для полного уничтожения устройства.

Далее выполняют демонтаж сапуна с его очисткой. Ротор турбины прокручивают для определения силы его вращения. А затем тщательно промывают подающие магистрали и после удаляют масло. Перед установкой, все детали трения турбины тщательно смазывают. Можно использовать обычное моторное масло.

Правила и рекомендации по турбироавнию

Прежде чем заняться установкой турбины на «Ниву», нужно знать несколько рекомендаций. Мотор должен быть бензиновым, а заправлять его следует только высокооктановым горючим. Турбина будет создавать давление до двух атмосфер – за счет этого существенно повысится степень сжатия. Спортивные турбины повлекут за собой огромный расход топлива. Отзывы говорят, что 1,6-литровый мотор станет потреблять от 20 литров на сотню. В гражданской эксплуатации такой тюнинг не нужен.

Подготовительные работы

Операция по установке требует определенных подготовительных мероприятий. Стоит заранее продумать каждую незначительную деталь. Технически установка проста, но у новичков могут быть некоторые сложности. Первым делом необходимо подобрать турбокомпрессор. Он должен подходить к конкретному двигателю. От вида нагнетателя, размеров турбины, а также характеристик, зависит схема производимых работ. Нужно найти компромиссный агрегат, где сочетание мощности и тепловыделения максимально оптимальное.

Если установлен катализатор, следует проверить, работает он или нет. Лишние выхлопные газы будут мешать работе турбокомпрессора. Также проверяют воздушный фильтр. Он должен быть герметичным и цельным. А лучше всего установить нулевик – говорят отзывы владельцев. На следующем этапе промывают систему вентиляции картера.

Составные элементы турбины

При грамотном монтаже на авто серийного производства, можно увеличить мощность двигателя в 1,5 раза. Главный компонент турбины – это выпускной коллектор с фланцами, которые подходят к посадочному месту. Для выхода отработанных газов нужен специальный фланец с гайкой для лямбда-зонда.

Чтобы уплотнить зазоры, применяют специальные прокладки. Для организации воздухопровода рекомендуется использовать алюминиевые трубки, патрубки из силикона и силовые хомуты.

Монтажные работы

Схема установки турбины на двигатель предусматривает несколько этапов. Первым делом приводят вал турбины в движение и запоминают скорость ее вращения. Перед установкой внутрь агрегата заливают масло и вращают ротор. Вначале не рекомендуется закручивать маслопровод – следует убедиться, что подаче ничто не препятствует.

Заключение

Снятие и установка турбины – это несложно. Трудности возникают в правильном расчете и подборе комплектующих. Что касается отзывов тех, кто использует турбонаддув, то в целом это весьма результативный тюнинг. Однако для повседневной эксплуатации он вряд ли подходит.

Турбинный двигатель Снятие и установка силовой установки

Авиационный двигатель, используемый в этом обсуждении, представляет собой типичный пример процедур снятия и установки турбовентиляторной силовой установки. Двигатель и все установленные на нем аксессуары образуют QECA.

Доступ к двигателю обеспечивается дверцами, которые можно поднять и запереть. Ориентиры направления, такие как вправо и влево, по часовой стрелке и против часовой стрелки, относятся к двигателю, если смотреть со стороны кормовой или выхлопной части двигателя.

Рисунок 8-17. Изоляция двигателя ВСУ. [щелкните изображение, чтобы увеличить] Снятие и замена вспомогательной силовой установки (APU)

1. Откройте защелки дверцы отсека APU и откройте дверцу. Установите стержни опоры двери. Разомкните автоматические выключатели и переключатели по мере необходимости. [Рисунок 8-17]

2. Снимите нижний опорный кожух.

3. Отсоедините жгут APU, стартер APU и вилки генератора APU от разъемов в верхнем кожухе.

4. Отсоедините штекер управления генератором ВСУ от гнезда в верхнем кожухе.

5. Отсоедините разъем системы индикации температуры выхлопных газов (EGT) от гнезда в верхнем кожухе.

6. Отсоедините линию сжатого воздуха для управления стравливающей нагрузкой от фитинга в верхнем кожухе.

7. Отсоедините топливный шланг от колена на топливном фильтре низкого давления. Собрать капающее топливо в подходящую емкость.

8. Отсоедините вилку элемента датчика обнаружения пожара от гнезда в верхнем кожухе.

9. Отсоедините перемычку APU от верхнего кожуха.

10. Снимите хомут, крепящий муфту воздуховода отвода воздуха к фланцу отвода воздуха из камеры статического давления турбины.

11. Сдвиньте муфту воздуховода стравливающего воздуха наружу до упора.

12. Переместите ручку фиксатора воздухозаборника компрессора наружу, пока пятка кулачка не освободится от рычага пружины.

13. Поверните камеру статического давления компрессора вниз так, чтобы входное отверстие для воздуха компрессора в камере статического давления больше не совпадало с входным воздуховодом в верхнем кожухе.

14. Установите подъемные механизмы на кронштейны в отсеке ВСУ с помощью штифтов.

15. При использовании подставки F80002 вставьте трубки в основание подставки и закрепите штифтами.

16. Прикрепите тросы подъемника к трубкам узла люльки с помощью штифтов.

17. Установите основание люльки на силовой агрегат ВСУ и закрепите на месте шпильками.

18. Туго натяните тросы подъемника, чтобы снять нагрузку с опор двигателя ВСУ.

19. Снимите гайки, шайбы и болты крепления крышек опоры к кронштейнам опоры двигателя. Не снимайте колпачок и шарнирные болты кронштейна. Откройте заглушки крепления.

20. Медленно опустите силовую установку. Направляющее устройство для очистки муфты отводного воздуховода, топливопровода и конструкции самолета.

21. После установки агрегата на транспортную тележку ослабьте подъемные тросы.

22. Отсоедините подъемные тросы от труб, вынув штифты.

Установите силовую установку APU

1. Разместите силовую установку APU, установленную на подставке, непосредственно под отсеком APU.

2. Подсоедините подъемные тросы к трубам с помощью штифтов.

3. Поверните впускное отверстие для приточного воздуха компрессора вниз. Медленно поднимите силовую установку ВСУ. Направляющий блок, чтобы очистить конструкцию самолета.

4.Установив APU на место, убедитесь, что уплотнение впускного канала охлаждающего воздуха касается фланцев охлаждающего вентилятора.

5. Закройте монтажные крышки и установите болты, шайбы и гайки. Затяните гайки с крутящим моментом от 30 до 40 фунт-дюймов.

6. Поверните камеру статического давления компрессора, чтобы совместить впускное отверстие для воздуха компрессора в камере статического давления и впускное отверстие для воздуха в верхнем кожухе.

7. Переместите ручку фиксатора воздухозаборника компрессора внутрь до тех пор, пока пятка кулачка не окажется за рычагом пружины. Установите стопорные винты и две гайки, чтобы зафиксировать стопорную ручку.

8. Ослабьте подъемные тросы и отсоедините кабели от труб, вынув штифты.

9. Снимите штифты, крепящие основание подставки к силовой установке APU, и снимите подставку.

10. Снимите штифты, крепящие лебедку к кронштейнам в отсеке ВСУ, и снимите лебедки.

11. Сдвинуть муфту воздуховода стравливающего воздуха внутрь до упора.

12. Установить хомут, крепящий муфту воздуховода отбора воздуха к фланцу отбора воздуха из камеры статического давления турбины. Затяните гайку зажимной муфты с крутящим моментом от 45 до 55 фунт-дюймов.

13. Подсоедините топливный шланг к колену на топливном фильтре низкого давления.

14. Подсоедините вилку элемента датчика обнаружения пожара к розетке на верхнем кожухе и предохранительной проволоке.

15. Подсоедините линию сжатого воздуха, регулирующую нагрузку на спуск, к фитингу в верхнем кожухе.

16. Подсоедините вилку системы индикации EGT к розетке в верхнем кожухе и предохранительной проволоке.

17. Подсоедините штекер управления генератором APU к розетке в верхнем кожухе и предохранительному тросу.

18. Подсоедините жгут APU, стартер APU и вилки генератора APU к гнездам в верхнем кожухе и разъемам предохранительной проволоки.

19. Подключите APU к перемычке верхнего кожуха.

20. Измените состояние топливной системы или прочистите ее на автомобиле.

Бортовой механик рекомендует

Как работают газотурбинные электростанции

Газовые турбины, устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном они состоят из трех основных частей:

  • Компрессор , который втягивает воздух в двигатель, нагнетает давление его и подает в камеру сгорания со скоростью сотни миль в час.
  • Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом. Смесь сжигается при температуре более 2000 градусов по Фаренгейту. При сгорании образуется высокотемпературный газовый поток под высоким давлением, который входит и расширяется через турбинную секцию.
  • Турбина представляет собой сложную систему чередующихся неподвижных и вращающихся лопастей с профилем крыла. Когда горячий газ сгорания расширяется через турбину, он раскручивает вращающиеся лопасти.Вращающиеся лопасти выполняют двойную функцию: они приводят в действие компрессор, чтобы втянуть больше сжатого воздуха в секцию сгорания, и вращают генератор для выработки электричества.

Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давления (обычно ниже 20) и имеют тенденцию быть физически большими. Степень давления — это отношение давления нагнетания компрессора к давлению воздуха на входе.Двигатели на базе авиационных двигателей являются производными от реактивных двигателей, как следует из названия, и работают при очень высоких степенях сжатия (обычно превышающих 30). Двигатели на базе авиационных двигателей имеют тенденцию быть очень компактными и полезны там, где требуется меньшая выходная мощность. Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы таким образом, чтобы обеспечивать низкие выбросы загрязняющих веществ, таких как NOx.

Одним из ключевых факторов удельного расхода топлива турбины является температура, при которой она работает.Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной эксплуатации. Газ, протекающий через обычную турбину электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только до 1500-1700 градусов по Фаренгейту. Следовательно, воздух из компрессора может использоваться для охлаждения. ключевые компоненты турбины, снижающие конечный тепловой КПД.

Одним из главных достижений программы передовых турбин Министерства энергетики было преодоление предыдущих ограничений по температурам турбин с использованием комбинации инновационных технологий охлаждения и современных материалов.Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе турбины до 2600 градусов по Фаренгейту — почти на 300 градусов выше, чем в предыдущих турбинах, и достичь КПД до 60 процентов.

Еще одним способом повышения эффективности является установка рекуператора или парогенератора с рекуперацией тепла (HRSG) для рекуперации энергии из выхлопных газов турбины. Рекуператор улавливает отходящее тепло в выхлопной системе турбины, чтобы предварительно нагреть воздух на выходе компрессора перед его поступлением в камеру сгорания.ПГРТ вырабатывает пар за счет улавливания тепла из выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, такая конфигурация называется комбинированным циклом.

Газовая турбина простого цикла может достигать КПД преобразования энергии в диапазоне от 20 до 35 процентов. С учетом более высоких температур, достигнутых в турбинной программе Министерства энергетики, будущие газотурбинные установки с комбинированным циклом, работающие на водороде и синтез-газе, вероятно, будут иметь КПД 60 процентов или более.Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может приближаться к 80%.

газотурбинный двигатель | Британника

газотурбинный двигатель , любой двигатель внутреннего сгорания, использующий газ в качестве рабочего тела, используемого для вращения турбины. Этот термин также обычно используется для описания полного двигателя внутреннего сгорания, состоящего, по меньшей мере, из компрессора, камеры сгорания и турбины.

Общие характеристики

Полезная работа или тяга может быть получена от газотурбинного двигателя. Он может приводить в действие генератор, насос или воздушный винт или, в случае чисто реактивного авиационного двигателя, развивать тягу, ускоряя поток выхлопных газов турбины через сопло. Такой двигатель, который при той же мощности намного меньше и легче поршневого двигателя внутреннего сгорания, может производить большую мощность. Возвратно-поступательные двигатели зависят от движения поршня вверх и вниз, которое затем должно быть преобразовано во вращательное движение с помощью механизма коленчатого вала, тогда как газовая турбина передает мощность вращающегося вала напрямую.Хотя концептуально газотурбинный двигатель представляет собой простое устройство, компоненты для эффективного агрегата должны быть тщательно спроектированы и изготовлены из дорогостоящих материалов из-за высоких температур и напряжений, возникающих во время работы. Таким образом, установки газотурбинных двигателей обычно ограничиваются крупными установками, где они становятся рентабельными.

Британская викторина

Энергия и ископаемое топливо

От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Никола Тесла — мир работает на энергии.Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.

Циклы газотурбинного двигателя

Большинство газовых турбин работают в открытом цикле, в котором воздух забирается из атмосферы, сжимается в центробежном или осевом компрессоре, а затем подается в камеру сгорания. Здесь топливо добавляется и сжигается при практически постоянном давлении с частью воздуха. Дополнительный сжатый воздух, который обходится вокруг секции горения и затем смешивается с очень горячими газами сгорания, необходим для поддержания температуры на выходе из камеры сгорания (фактически, на входе турбины) на достаточно низком уровне, чтобы турбина могла работать непрерывно.Если установка должна производить мощность на валу, продукты сгорания (в основном воздух) расширяются в турбине до атмосферного давления. Большая часть мощности турбины требуется для работы компрессора; только остальная часть доступна для обеспечения работы вала генератора, насоса или другого устройства. В реактивном двигателе турбина предназначена для обеспечения мощности, достаточной для привода компрессора и вспомогательных устройств. Затем поток газа выходит из турбины с промежуточным давлением (выше местного атмосферного давления) и проходит через сопло для создания тяги.

В первую очередь рассматривается идеализированный газотурбинный двигатель, работающий без потерь по этому простому циклу Брайтона. Если, например, воздух поступает в компрессор при температуре 15 ° C и атмосферном давлении и сжимается до одного мегапаскаль, он затем поглощает тепло от топлива при постоянном давлении до тех пор, пока температура не достигнет 1100 ° C, прежде чем расширится через турбину обратно до атмосферного. давление. Этот идеализированный блок потребует выходной мощности турбины 1,68 киловатт на каждый киловатт полезной мощности с 0.68 киловатт потребляется для работы компрессора. Тепловой КПД установки (чистая произведенная работа, разделенная на энергию, добавленную через топливо) составит 48 процентов.

Фактическая производительность в простом разомкнутом цикле

Если для агрегата, работающего в пределах одного и того же давления и температуры, компрессор и турбина имеют КПД только 80 процентов (, т. Е. , работа идеального компрессора равна 0,8 фактической работы, в то время как фактическая мощность турбины в 0,8 раза больше идеальный выход), ситуация кардинально меняется, даже если все остальные компоненты остаются идеальными.На каждый киловатт производимой полезной мощности турбина должна теперь производить 2,71 киловатт, а работа компрессора становится 1,71 киловатт. Тепловой КПД падает до 25,9 процента. Это демонстрирует важность высокоэффективных компрессоров и турбин. Исторически сложность разработки эффективных компрессоров, даже более эффективных, чем эффективных турбин, задерживала разработку газотурбинного двигателя. Современные агрегаты могут иметь КПД компрессора 86–88 процентов и КПД турбины 88–90 процентов при проектных условиях.

КПД и выходную мощность можно увеличить за счет повышения температуры на входе в турбину. Однако все материалы теряют прочность при очень высоких температурах, а поскольку лопатки турбины движутся с высокой скоростью и подвергаются серьезным центробежным напряжениям, температура на входе в турбину выше 1100 ° C требует специального охлаждения лопаток. Можно показать, что для каждой максимальной температуры на входе в турбину существует также оптимальное соотношение давлений. Современные авиационные газовые турбины с охлаждением лопаток работают при температурах на входе в турбину выше 1370 ° C и при соотношении давлений около 30: 1.

Промежуточное охлаждение, повторный нагрев и регенерация

В авиационных газотурбинных двигателях необходимо обращать внимание на вес и диаметр. Это не позволяет добавлять дополнительное оборудование для повышения производительности. Соответственно, двигатели коммерческих самолетов работают по простому циклу Брайтона, идеализированному выше. Эти ограничения не применяются к стационарным газовым турбинам, в которые могут быть добавлены компоненты для повышения эффективности. Усовершенствования могут включать (1) уменьшение работы сжатия за счет промежуточного охлаждения, (2) увеличение мощности турбины за счет повторного нагрева после частичного расширения или (3) уменьшение расхода топлива за счет регенерации.

Первое улучшение будет заключаться в сжатии воздуха почти постоянной температуры. Хотя это не может быть достигнуто на практике, это можно приблизить с помощью промежуточного охлаждения (, т.е. , путем сжатия воздуха в два или более этапов и его водяного охлаждения между этапами до его начальной температуры). Охлаждение уменьшает объем обрабатываемого воздуха и, соответственно, необходимую работу по сжатию.

Второе усовершенствование включает повторный нагрев воздуха после частичного расширения через турбину высокого давления во втором наборе камер сгорания перед подачей его в турбину низкого давления для окончательного расширения.Этот процесс аналогичен повторному нагреву, используемому в паровой турбине.

Оба подхода требуют значительного дополнительного оборудования и используются реже, чем третье улучшение. Здесь горячие выхлопные газы турбины проходят через теплообменник или регенератор для повышения температуры воздуха, выходящего из компрессора перед сгоранием. Это снижает количество топлива, необходимое для достижения желаемой температуры на входе в турбину. Однако повышение эффективности связано со значительным увеличением начальной стоимости и будет экономичным только для агрегатов, которые работают почти непрерывно.

Турбинные реактивные двигатели, установленные в главном кампусе для поддержки энергетических систем: Отдел новостей UNM

Люди, которые в середине мая стали свидетелями грузовика, доставляющего реактивный двигатель в Ford Utility Center, могли почесать головы от удивления. Тем не менее, для Подразделения управления объектами коммунального хозяйства важной частью плана технического обслуживания коммунального предприятия был капитальный ремонт основных компонентов системы производства энергии для обеспечения бесперебойной и эффективной работы.

В 2005 году Подразделение коммунальных услуг завершило столь необходимую реконструкцию энергетических систем университетского городка, в которой нуждались как устаревшее оборудование, так и рост кампуса.Ремонт включал установку когенерационной турбоагрегата с газовым реактивным двигателем. Второй блок был добавлен в 2013 году. Эта система не только вырабатывает электроэнергию, необходимую кампусу Университета Нью-Мексико, по цене дешевле, чем ее можно купить, но также улавливает то, что в противном случае было бы потрачено впустую, и повторно задействует его для другого энергосбережения. целей.

Инженер

Ханс Барсун объясняет: «Когенерационные установки вырабатывают электроэнергию с помощью газотурбинных реактивных двигателей, и мы улавливаем выхлопные газы двигателей и используем это тепло для производства пара.Зимой мы используем пар для обогрева помещений кампуса, а летом, когда требуется меньше тепла, мы используем его для работы абсорбционных чиллеров, которые производят охлажденную воду для охлаждения зданий ».

Эта система с обратной связью очень эффективна и позволяет Подразделению коммунальных услуг поставлять тепло и электроэнергию примерно на 2 500 000 долларов в год меньше, чем при закупке у внешних поставщиков, таких как PNM. Чтобы добиться такой экономии, комплексные мероприятия по техническому обслуживанию, подобные тем, которые проводились в мае, тщательно планируются и выполняются, чтобы минимизировать время простоя.

Руководство коммунального предприятия выбрало май месяцем для проведения капитального ремонта, так как когенерационные установки должны были быть остановлены для ежегодной страховой проверки. Пока агрегаты не работали, работники коммунальных предприятий приступили к работе. В более старом агрегате заменили реактивный двигатель, поскольку срок его службы составил 30 000 часов.

У другого блока был заменен устаревший отводной клапан, чтобы обеспечить более эффективное управление воздушным потоком в системе. У обоих агрегатов были сняты и очищены внутренние генераторы, что является немалым подвигом, поскольку каждый генератор весит приблизительно 13 000 фунтов.

Если бы этот очень сложный проект технического обслуживания не был завершен, расходы ЕНД и налогоплательщиков были бы значительными.

«Когда наши потребности в энергии превышают наши производственные мощности или когда когенерационная установка отключается, мы должны потреблять электроэнергию из PNM, за которую взимается высокая плата», — сказал заместитель директора подразделения коммунальных услуг Ларри Шустер. «Первоначальная плата за потребление составляет 120 000 долларов США за каждое вышедшее из строя устройство, поэтому использование уже запланированного простоя было наиболее экономичным решением для завершения проекта.”

Несмотря на то, что эти периодические работы по техническому обслуживанию являются дорогостоящими и сложными, такая бдительность позволит когенерационным установкам работать бесконечно долго, предотвращая крупные ремонтные работы в будущем, подобные тем, которые проводились в 2005 году, и поможет ЕНД идти в ногу с энергопотреблением штата Нью-Мексико. цели сохранения.

Двигатель внутреннего сгорания и газовая турбина — время запуска

Во время запуска газовая турбина (ГТ) подвергается последовательности увеличивающегося вращения компрессора для достижения скорости зажигания, зажигания, ускорения турбины до самоподдерживающейся скорости, синхронизации и нагрузки.Во время запуска ГТ существуют многочисленные термомеханические ограничения, в том числе ограничения скорости воздушного потока через лопатки компрессора для предотвращения останова, пределы колебаний и ограничения температуры сгорания для предотвращения усталости лопаток турбины, при этом важным параметром является температура на входе в турбину. Технология авиационных газовых турбин лучше подходит для частых запусков и для работы по требованию. Современные авиационные газовые турбины способны быстро запускать менее 10 минут.Однако частые и быстрые запуски могут повлечь за собой штрафы за техническое обслуживание.

При работе в комбинированном цикле парогенератор-утилизатор (HRSG) накладывает дополнительные тепловые ограничения на газотурбинную электростанцию, поскольку высокотемпературная среда подвергает компоненты HRSG термической нагрузке. ПГРТ напрямую соединен с газовой турбиной, поэтому изменения в выхлопных газах турбины вызывают градиенты расхода, температуры и давления внутри ПГРТ. Эти градиенты необходимо тщательно контролировать, чтобы предотвратить неблагоприятные воздействия, такие как усталость материала, ползучесть (повреждение, вызванное высокими температурами) и коррозия.Во избежание ударов запуск ПГРТ из холодных условий занимает больше времени, чем из жарких. Определение «горячих» условий варьируется в зависимости от производителя, но обычно определяется как период от восьми (8) до 16 часов после остановки HRSG. В результате время, прошедшее с момента последнего выключения, сильно влияет на время запуска. Некоторые производители используют прямоточные котлы-утилизаторы для преодоления ограничений по температуре и давлению при пуске, которые существуют в паровых барабанах.

ПГУ

также подлежат очистке для предотвращения самовоспламенения от возможного скопления горючих газов в газовой турбине, HRSG и выхлопных системах.Перед перезапуском агрегата требуется продувка. Время продувки зависит от объема котла и расхода воздуха через HRSG и обычно составляет около 15 минут. Это время продувки добавляется к общему времени начала. Кроме того, паровая турбина может ограничивать скорость загрузки ГТ, если температура пара на выходе из ПГРТ превышает пределы для паровой турбины. Чтобы избежать этого, может потребоваться согласование температуры с использованием удержания GT при увеличении нагрузки.

Чтобы обеспечить более быстрый запуск, производители ПГУ попытались отделить запуск газовой турбины от ПГРТ и разогрева паровой турбины.Были разработаны варианты пуска с улучшенными технологическими характеристиками и оборудованием, которые можно использовать в условиях горячего пуска. «Кредит на очистку» позволяет завершить очистку системы при останове, устраняя необходимость в дополнительной очистке при следующем запуске. Кредит на продувку можно использовать только в некоторых ПГРТ, которые не имеют канальных горелок и где ГТ работает только на природном газе. Байпасные заслонки могут использоваться для ограничения потока выхлопных газов в HRSG. Однако оборудование по контролю за выбросами оксидов азота (NOx) и оксида углерода (CO) обычно интегрировано в HRSG, и экологические нормы для этих выбросов могут запрещать запуск ГТ без HRSG.В другом способе отделения ПГРТ и паровой турбины от выхлопного газа ГТ используются регуляторы разбрызгивания воды или регуляторы подачи воздуха для регулирования температуры пара, так что нагрузка газовой турбины не ограничивается согласованием температуры. Это обеспечивает параллельную загрузку газовой турбины и паровой турбины.

Хотя условия горячего запуска ПГУ несколько различаются в зависимости от производителя, поддержание под напряжением электрических систем, продувка и контроль температуры пара обеспечивают время запуска ПГУ примерно от 30 до 35 минут с момента начала последовательности запуска.Это примерно вдвое меньше времени для обычного горячего пуска, который потребует продувки и остановок газовой турбины. В простом цикле опубликованное время запуска газовых турбин составляет от 10 до 15 минут.

Газовые турбины — обзор

4.6 Турбины

Последней частью газовой турбины является турбинная секция. Здесь энергия топлива преобразуется в форму механической энергии, при этом вращение вала турбины создает крутящий момент. Во всех газовых турбинах, за исключением некоторых очень маленьких машин, используются секции турбины с осевым потоком.Как и в случае с компрессором, турбина с осевым потоком будет состоять из ряда ступеней, каждая ступень включает в себя набор неподвижных лопаток, обычно называемых соплами, и набор вращающихся лопаток, прикрепленных к валу турбины.

Существует два основных типа конструкции турбины / лопатки, которые могут быть применены к газовой турбине, каждый из которых определяется способом извлечения энергии из жидкости. Эти две турбины называются реактивными и импульсными. Один из способов понять разницу состоит в том, чтобы заметить, что реактивные турбины используют статическое давление в жидкости, тогда как импульсные турбины используют динамическое давление.Это означает, что когда жидкость проходит через реакционную турбину, статическое давление падает, но скорость жидкости, определяющая ее динамическое давление, остается относительно постоянной. Напротив, когда жидкость проходит через ступень импульсной турбины, скорость падает, а статическое давление остается постоянным. Ступени современной осевой газовой турбины, как правило, объединяют эти две ступени, извлекая часть их энергии из статического давления и частично из динамического давления. Обычно первые стадии имеют преимущественно импульсный тип, в то время как последние стадии являются более реакционными.Однако на всех этапах обычно используется и то, и другое.

Порядок неподвижных лопаток и вращающихся лопаток в турбине — обратный порядку компрессора. Газ под высоким давлением и высокой температурой из камеры сгорания сначала встречает лопатки ступени, а затем направляется к ее лопаткам. Лопатки образуют сходящиеся каналы, которые преобразуют статическое давление в динамическое давление, увеличивая скорость проходящего через них воздуха. Это динамическое давление затем используется для вращения вращающихся лопастей. Как и в компрессоре, лопасти и лопасти имеют форму аэродинамических крыльев, чтобы обеспечить плавный поток воздуха через всю турбину.Каждая ступень извлекает часть энергии, содержащейся в воздухе.

В простой газовой турбине компрессор и лопатки турбины находятся на одном валу. Однако есть более сложные механизмы. В некоторых машинах есть два концентрических вала. Одна из них несет лопатки компрессора и первые одну или две ступени лопаток турбины. Более поздние ступени турбины прикреплены ко второму валу, который приводит в действие генератор для выработки электроэнергии. В некоторых авиационных газовых турбинах это делается еще дальше, и ступени компрессора также разделены.Затем лопатки компрессора низкого давления устанавливаются на тот же вал, что и ступени турбины низкого (или среднего) давления, в то время как ступени компрессора высокого давления находятся на том же валу, что и ступени турбины высокого давления.

КПД газовой турбины будет зависеть от падения температуры на ступенях. Для достижения высокого КПД температура на входе ступени турбины должна быть очень высокой. В некоторых современных газовых турбинах температура на входе может достигать 1600 ° C. Для разработки компонентов турбины, способных выдерживать такую ​​температуру, требуются особые материалы и особые методы проектирования.

Эффективность газовой турбины будет зависеть не только от температуры газа на входе, но и от температуры газа на выходе из последней ступени газовой турбины. Отработавший газ из газовой турбины простого цикла, не входящей в конфигурацию комбинированного цикла, должен быть как можно более холодным для достижения максимальной эффективности. Однако в электростанции с комбинированным циклом часть энергии улавливается парогенератором, который использует отходящее тепло в выхлопе газовой турбины.Температура выхлопных газов на выходе из турбины в этом типе установки будет намного выше. Температура на выходе высокоэффективной авиационной газовой турбины, вероятно, будет в диапазоне от 400 ° C до 500 ° C. Несмотря на то, что это относительно высокий показатель, он все же обеспечивает КПД до 46% для лучших машин. Другие небольшие промышленные турбины будут иметь КПД до 42%. И наоборот, большие промышленные газовые турбины, предназначенные для работы в комбинированном цикле, могут иметь температуру выхлопных газов выше 600 ° C.Эффективность может составлять всего 38%, но обычно она достигает 42%.

62B-104 БАЗОВАЯ ГАЗОВАЯ ТУРБИНА

62B-104 БАЗОВАЯ ГАЗОВАЯ ТУРБИНА
Инженерное обучение

ЛИСТ НАЗНАЧЕНИЯ

ДВИГАТЕЛИ С БАЗОВЫМИ ТУРБИНАМИ

Распределительный лист 60B-104

ВВЕДЕНИЕ

С увеличением количества судов с газотурбинными двигателями становится важным понимать основы конструкции и работы завода по производству газовых турбин.Офицер наземных войск должен также понимать последствия эксплуатации этих двигателей в морской среде.

ТЕМА УРОКА ЦЕЛИ ОБУЧЕНИЯ

Терминал Цель:

7.0 ОПИСАТЬ принципы, конструкцию, функции, компоненты, системы управления и контроля, а также работу газотурбинной двигательной установки и связанных вспомогательных систем поддержки. (JTI: A)

Обеспечивающие цели:

7.1 ОПИСАТЬ следующие области применения газовых турбин и указать тип газовой турбины, связанной с каждой из них:

а.Двигательная установка

г. Электроэнергетика

7.2 Имея график, представляющий соотношение давления и объема идеального цикла Брайтона, НАМЕРИТЕ пять фаз и объясните процесс преобразования энергии, происходящий в каждой.

а. 2 копеек

г. Сжатие

г. Горение

г. Расширение

e. Выхлоп

7.3 ОПРЕДЕЛИТЬ следующее применительно к газотурбинным двигателям, включая их преимущества и недостатки, если это применимо.

а. Двигатель с разъемным валом

г. Одновальный двигатель

г. Кольцевая камера сгорания

г. Канализационная камера сгорания

e. Осевой поток

ф. Коробка отбора мощности

7.4 ОПИСАТЬ и указать их функции:

а. Компрессор

г. Камера сгорания

г. Турбина высокого давления / турбина газогенератора

г. Турбина низкого давления / силовая турбина

e.Подшипник газовой турбины / рама в сборе

ф. Дополнительный привод в сборе

г. Входные направляющие лопатки

ч. Лопатки регулируемого статора компрессора

и. Коллекторы для удаления воздуха из двигателя

Дж. Коллектор для удаления воздуха заказчика

к. Муфта быстроходная эластичная

л. Впуск / выпуск

7.5 ОБСУДИТЕ источник и использование отбираемого клиентом воздуха.

7.6 СОСТОЯНИЕ Функция системы впуска и выпуска воздуха газовой турбины.

7.7 ОПИСАТЬ путь воздуха от влагоотделителей к эжекторам выхлопных газов.

7.8 ОПИСАТЬ влияние следующих факторов на газотурбинные двигатели и меры предосторожности, принимаемые с учетом окружающей среды, включая:

а. Солевой спрей

г. Льдообразование / температура наружного воздуха

г. Повреждение посторонним предметом

г. Чистота компрессора

e. Киоски / скачки

ф.Пусков / остановок

7.9 ОПИСАТЬ следующие системы двигателя:

а. Система обнаружения льда

г. Система обнаружения и пожаротушения

г. Система зажигания

г. Система промывки водой

7.10 НЕ НАЗНАЧЕН; зарезервировано для будущего использования

7.11 НЕ НАЗНАЧЕН; зарезервировано для будущего использования

7.12 НЕ НАЗНАЧЕН; зарезервировано для будущего использования

НАЗНАЧЕНИЕ НА ИЗУЧЕНИЕ

  1. Прочтите информационный лист 60B-104.
  2. Краткий информационный лист 60B-104, используя вспомогательные цели урока 60B-104 в качестве руководства.
  3. Сценарии изучения ответов.

СЦЕНАРИИ ИЗУЧЕНИЯ:

Изучая для вас предстоящую доску SWO, вы изучаете другие типы морских силовых установок. Вы задаете себе несколько вопросов по газотурбинным двигателям.

1. Зная, что газотурбинный двигатель представляет собой открытый термодинамический цикл, как двигатель преобразует энергию, запасенную в топливе и воздухе, в полезную работу в виде вращающегося пропеллера?

После изучения вы явитесь на мостик для промежуточной стражи как JOOD.Здесь тихо, поэтому вы просматриваете доску чтения сообщений OOD. Вы видите, что в этом районе происходит несколько небольших песчаных бурь (в настоящее время вы находитесь в Персидском заливе) и что в сообщении всем судам с газотурбинными двигателями рекомендуется внимательно следить за состоянием своих воздушных фильтров / демистеров.

2. В чем важность этого компонента? Если не удается, не работает ли двигатель?

Просмотрев трафик сообщений, вы замечаете, что одного из FFG в вашей боевой группе нет поблизости.Любопытно, вы спрашиваете ООД, знает ли она, куда они пошли, и она говорит вам, что им пришлось выехать в Бахрейн для замены и двигателя из-за плохой камеры сгорания.

3. Почему замена камеры сгорания LM2500 настолько сложна, что требует захода корабля в порт?

ИНФОРМАЦИОННЫЙ ЛИСТ

ДВИГАТЕЛИ С БАЗОВЫМИ ТУРБИНАМИ

Информационный лист 64B-104I

ВВЕДЕНИЕ

С увеличением количества судов с газотурбинными двигателями становится важным понимать основы конструкции и работы завода по производству газовых турбин.Офицер наземных войск должен также понимать последствия эксплуатации этих двигателей в морской среде.

ССЫЛКИ

(а) Руководство по силовой установке ДД-963

(b) Морские газотурбинные операции (НАВЕДТРА-10097)

ИНФОРМАЦИЯ

  1. Обзор урока:
  2. Завод газовой турбины представляет собой новаторскую концепцию для судовых электростанций.Военно-морские суда США используют авиационные газотурбинные двигатели как для главных силовых установок, так и для служебной электроэнергии. Высокая степень автоматизации предприятия достигается за счет интегрированной системы пультов управления и мониторинга.
  3. Преимущества:
  4. Преимущества газотурбинной установки по сравнению с паровой установкой сопоставимой мощности включают:
    1. Снижение массы на 70%
    2. Простота (меньшее количество вспомогательных силовых установок)
    3. Уменьшение численности персонала за счет автоматизированного управления силовой установкой
    4. Более быстрое время отклика
    5. Более быстрое ускорение / замедление
  5. Принципы газовой турбины:
    1. Компоненты базового газотурбинного двигателя включают:
      1. Компрессор
      2. Камера сгорания
      3. Турбина
    2. Рабочий цикл:
    3. В газотурбинном двигателе сжатие, сгорание и расширение происходят непрерывно в разных камерах.Газотурбинные двигатели работают по циклу Брайтона (цикл открытого двигателя).

      Рис.1: Цикл Брайтона

      1. Фаза всасывания:
      2. Наружный воздух втягивается в двигатель под действием компрессора. Давление, температура и объем остаются неизменными на протяжении фазы всасывания.
      3. Фаза сжатия:
      4. Всасываемый воздух сжимается механически. Давление и температура увеличиваются с соответствующим уменьшением объема.Механическая энергия, приводящая в движение компрессор, преобразуется в кинетическую энергию в виде сжатого воздуха.
      5. Фаза сгорания:
      6. Топливо распыляется в камеру сгорания и сжигается, преобразовывая химическую энергию в тепловую в виде горячего расширяющегося газа. Объем и температура значительно увеличиваются, в то время как давление в камере сгорания остается постоянным.
      7. Фаза расширения:
      8. Тепловая энергия преобразуется в механическую, когда горячие расширяющиеся газы из камеры сгорания вращают ротор турбины.Давление и температура уменьшаются, а объем увеличивается в фазе расширения.
      9. Выхлопная фаза:
      10. Горячие выхлопные газы проходят через судовые каналы и попадают в атмосферу. Давление, температура и объем остаются неизменными на всем протяжении фазы выпуска.
  6. Компоненты газовой турбины:
    1. Компрессоры: существует два основных типа газотурбинных компрессоров.
      1. Центробежный компрессор:
      2. В этом компрессоре используется вращающееся рабочее колесо, которое втягивает всасываемый воздух и ускоряет его наружу за счет центробежной силы в диффузор.Он используется в небольших газовых турбинах и лучше всего подходит для низких отношений давления, когда общий диаметр двигателя не важен.

        Рис. 2: Центробежный компрессор

      3. Осевой компрессор:
      4. Состоит из вращающихся лопастей и неподвижных лопаток. Воздух сжимается, поскольку он течет вдоль вала в осевом направлении. Это обеспечивает большую эффективность и более высокие отношения давления за счет многоступенчатой ​​конструкции. Стадия сжатия состоит из одного ряда вращающихся лопаток, за которым следует ряд неподвижных лопаток.Это наиболее распространенный тип компрессора, используемый в судовых газотурбинных двигателях.

        Рис. 3. Компрессор с осевым потоком

      5. Остановка компрессора:
      6. Остановка или помпаж определяется как прерывание потока воздуха через компрессор. Заглох на работающем двигателе может вызвать серьезные повреждения двигателя из-за чрезмерных вибраций и перегрева секции камеры сгорания. Чтобы предотвратить остановку компрессора, двигатели оснащены выпускными клапанами компрессора или лопатками компрессора с изменяемой геометрией.Выпускные клапаны выпускают воздух из компрессора во время запуска, а регулируемые лопатки компрессора регулируют воздушный поток, чтобы избежать турбулентности, тем самым предотвращая остановку компрессора.
    2. Камеры сгорания:
    3. Камера сгорания смешивает сжатый воздух с топливом и сжигает смесь с образованием горячего расширяющегося газа. Есть три основных типа камер сгорания.
      1. Банка:
      2. Отдельные бидоны горелки установлены по периферии двигателя. Каждая канистра представляет собой отдельную камеру сгорания и футеровку, получающую собственное топливо.
        1. Преимущество: простая замена
        2. Недостатки — неэффективность, более слабая конструкция

        Рис. 4: Камера сгорания баночного типа

      3. Кольцевой:
      4. Одна большая камера сгорания внутри корпуса двигателя. Множественные топливные форсунки образуют сплошное «огненное кольцо». Этот тип используется на LM2500.
        1. Преимущества: Самая эффективная, самая прочная рама двигателя.
        2. Недостаток: для ремонта или замены требуется полная разборка двигателя.

        Рис. 5: Кольцевая камера сгорания

      5. Канал-кольцевой:
      6. В этом гибридном типе используется несколько отдельных баллонов с отдельными топливными форсунками, которые принимают воздух из общего кольцевого корпуса (Allison 501-K17).
        1. Преимущества: Прочность, простота замены.
        2. Недостаток: менее эффективен, чем кольцевая камера сгорания.

      Рис. 6: Консольная кольцевая камера сгорания

    4. Турбина:

      1. Энергия:
      2. Тепловая энергия горячих расширяющихся газов камеры сгорания преобразуется в механическую энергию путем вращения колеса турбины.
      3. Конструкция:
      4. Состоит из неподвижных лопаток (сопел) и вращающихся лопаток. Ступень турбины — это один ряд сопел и один ряд лопаток.
    5. Узел привода вспомогательных агрегатов:
    6. Узел привода вспомогательных агрегатов приводится в движение компрессором через конические шестерни. Вспомогательный привод используется для привода компонентов, чтобы сделать двигатель автономным. Общие аксессуары включают такие компоненты, как насосы для смазочного масла двигателя и топливного масла.
    7. Двигатели:
      1. Два основных типа, используемых в ВМС США:
        1. Одновальный двигатель:
        2. Одновальный двигатель имеет один вал, который проходит по всему двигателю.На этом валу установлены все вращающиеся части двигателя. Продолжение того же вала, коробка отбора мощности, приводит в движение нагрузку. В основном этот тип двигателя используется там, где требуется постоянная скорость, например, для выработки электроэнергии. Для этого используется двигатель Allison 501-K17.

          Рис.7: Ротор турбины

        3. Двигатель с разъемным валом:
        4. Двигатель разделен на две основные секции: газогенератор и секцию силовой турбины. Секция газогенератора состоит из компрессора, камеры сгорания и турбины высокого давления (ВД).Назначение газогенератора — производить горячий расширяющийся газ для использования в силовой турбине. Силовая турбина аэродинамически связана с газогенератором, но два вала не связаны механически. Силовая турбина преобразует тепловую энергию газогенератора в механическую энергию для привода нагрузки.
          1. Выходная скорость изменяется путем управления скоростью газогенератора, который определяет количество выхлопных газов, отправляемых в силовую турбину.
          2. Газотурбинные двигатели с разъемным валом, такие как LM2500, подходят для основных силовых установок.Преимущества в этом приложении:
            1. Газогенератор более чувствителен к требованиям нагрузки, поскольку работа компрессора не ограничивается нагрузкой на силовую турбину.
            2. Секция газогенератора и секция силовой турбины работают почти со своими наиболее эффективными скоростями во всем диапазоне требований нагрузки.
      2. Система воздухозаборника газовой турбины:

        1. Узел с высоким потолком:

          1. Конструкция:
          2. Внешняя конструкция, которая поддерживает сепараторы влаги и вмещает в себя выдувные дверцы .
          3. Влагоотделители (жалюзи и сетчатые экраны):
          4. Влагоотделители удаляют капли воды и грязь из всасываемого воздуха, чтобы предотвратить эрозию компонентов компрессора. Электрические ленточные нагреватели предотвращают образование льда на жалюзи.
          5. Двери продувки:
          6. Двери продувки установлены для предотвращения воздушного голодания двигателя при загрязнении влагоотделителей.
            1. Эти двери открываются автоматически при увеличении перепада давления воздуха на влагоотделителях.
            2. В открытом состоянии всасываемый воздух обходит забитые влагоотделители и подает нефильтрованный воздух в двигатель, чтобы предотвратить воздушное голодание двигателя.

          Рис.8: Сборка High Hat

        2. Впускной канал:

          1. Назначение:
          2. Впускной канал подает воздух для горения для двигателя и охлаждающий воздух для модуля.
          3. Модульная система охлаждения:
          4. Модульная система охлаждения направляет часть всасываемого воздуха в кожух двигателя для вентиляции модуля и внешнего охлаждения двигателя.Охлаждающий воздух модуля кружится вокруг двигателя, отводя тепло и вентилируя модуль, прежде чем выйти через небольшой воздушный зазор вокруг задней части силовой турбины. Выхлоп работающих двигателей вызывает эффект эдуктора, втягивающий охлаждающий воздух модуля в выхлопной канал.

          Рис.9: Воздуховод GTM

        3. Коллектор для защиты от обледенения:

          1. Назначение:
          2. Коллектор для защиты от обледенения предназначен для нагнетания горячего отбираемого воздуха во впускной ствол под воздуховодом охлаждения модуля для предотвращения образования льда.
          3. Обледенение:
          4. Обледенение может возникнуть во впускном канале, когда температура наружного воздуха упадет до 38 o F. Сигнализация обледенения загорится при 41 o F с влажностью 70%, чтобы предупредить оператора до образования льда. во впуске.
          5. Последствия:
          6. Обледенение на входе в компрессор может ограничить поток воздуха, вызывая остановку двигателя, а также представляет опасность серьезного повреждения двигателя посторонними предметами (FOD).
          7. Датчики:
          8. Датчик детектора льда, расположенный во впускной камере, генерирует аварийный сигнал, предупреждающий оператора о возможности образования льда в воздухозаборнике.
          9. Контроль:
          10. Воздушная система защиты от обледенения активируется вручную с помощью часовых стоек и контролируется для предотвращения образования льда.
        4. Глушители:

          1. Расположение:
          2. Глушители на впуске расположены на полпути вниз по воздуховоду, чтобы снизить уровень воздушного шума.
          3. Конструкция:
          4. Глушители состоят из вертикальных лопаток из звукопоглощающего материала, заключенных в перфорированные листы из нержавеющей стали.
          5. Канал охлаждающего воздуха модуля:
          6. Канал охлаждающего воздуха модуля содержит один глушитель в форме пули, чтобы заглушить шум, создаваемый охлаждающим воздухом.
        5. Компенсатор
        6. : Компенсатор представляет собой резиновый чехол, соединяющий впускной канал с впускной камерой модуля. Это предотвращает передачу шума модуля на корпус корабля.
      3. Узел (модуль) базового корпуса газовой турбины LM2500:

        1. Описание:
        2. Узел основного корпуса состоит из модуля корпуса (26’x8’x9 ‘) на противоударном основании.
          1. Основание модуля:
          2. Основание представляет собой сварную стальную раму с двутавровой балкой с креплениями для крепления двигателя.
          3. Проникновения:
          4. Сервисные соединения проникают в основание для всех сервисов двигателя, таких как электричество, воздух, масло, топливо, CO 2 или Галон .
          5. Защита:
          6. Кожух термически и акустически изолирован, чтобы обеспечить двигателю контролируемую среду.
            1. Впускная камера: передняя часть модуля отделена от кожуха двигателя перегородкой.Впускная камера считается чистой секцией модуля. Экран FOD на входе газовой турбины устанавливается в этой области в передней части двигателя, чтобы предотвратить попадание крупных посторонних предметов в компрессор.
            2. Рис.10: Узел модуля GTM

            3. Кожух двигателя: кожух содержит собственно двигатель и выпускной патрубок и принимает воздух из охлаждающего канала модуля. Доступ к двигателю обеспечивается через боковую дверь и верхний люк.
        3. Система обнаружения и тушения пожара:
        4. Система обнаружения и тушения пожара обеспечивает автоматическую противопожарную защиту газотурбинного двигателя и модуля.

          Рис.11: Основание модуля в сборе

          1. Компоненты системы обнаружения пожара включают:

            1. Ультрафиолетовые датчики пламени, которые ищут пламя в зоне камеры сгорания.
            2. Датчики температуры, которые установлены на 400 o F для обнаружения возгораний вне зоны обзора УФ-детекторов.
            3. Ручная кнопка «ПОЖАР» — может использоваться дежурным для активации пожарной системы.
          2. Компоненты системы пожаротушения включают:

            1. Банк первичного CO 2 баллонов для быстрого затопления модуля.
            2. Банк вторичного CO 2 для поддержания инертной атмосферы в модуле, если это необходимо.
            3. A CO 2 Переключатель блокировки разблокировки, расположенный на пультах управления.Этот переключатель позволяет оператору остановить автоматический ввод первичного CO 2 в модуль в случае ложной тревоги или присутствия персонала в модуле.
            4. Электронный сигнал пожарной остановки, используемый для остановки двигателя при обнаружении пожара ультрафиолетовыми датчиками пламени, переключателями температуры или ручной кнопкой пожарной сигнализации. Этот сигнал активирует последовательность остановки огня. Остановка огня инициирует следующие действия:
              1. Пожарная сигнализация на пультах управления.
              2. Обеспечивает подачу топлива к двигателю.
              3. Останавливает вентилятор охлаждения модуля и закрывает вентиляционную заслонку.
              4. Выпускает CO 2 после 20-секундной задержки.

        Примечание по безопасности: входя в модуль, убедитесь, что система пожаротушения отключена, а на модуле и пультах управления размещены знаки, предупреждающие о том, что в модуле находится персонал.

        Примечание. Газовые печи с использованием галонов.

      4. Система выхлопных каналов:

        1. Функция:
        2. Отводит выхлопные газы двигателя в атмосферу, снижая при этом тепло и шум выхлопа.
        3. Выхлопной коллектор:
        4. Выхлопной патрубок направляет выхлопные газы в воздухозаборник. Зазор между выпускным коленом и воздухозаборником корабля вызывает эффект эдуктора, втягивающий охлаждающий воздух модуля в воздухозаборник.
        5. Воздухозаборный канал:
        6. Воздухозаборный канал для выхлопных газов изолирован для контроля тепла и шума при выходе выхлопных газов в атмосферу.
        7. Глушитель:
        8. Глушитель пластинчатого типа расположен в центре воздуховода. Эти глушители такие же, как и во впускном воздуховоде, но стационарно установлены.
        9. Выхлопные патрубки:
        10. Вытяжные патрубки расположены на самом верхнем конце вытяжного канала. Выхлопные эжекторы охлаждают выхлопные газы, смешиваясь с холодным окружающим воздухом, чтобы уменьшить инфракрасную сигнатуру корабля.
        11. Система подавления инфракрасного излучения пограничным слоем (BLISS):
        12. Колпачки Bliss устанавливаются в верхней части каждой смесительной трубы для дальнейшего охлаждения отработанного воздуха путем смешивания его со слоями окружающего воздуха.Это достигается за счет использования нескольких жалюзи, расположенных под углом для создания эдукторного эффекта. Это позволяет холодному окружающему воздуху смешиваться с горячими выхлопными газами.

        Рис.12: Выхлопная система GTM

      5. Система промывки водой:

        1. Назначение:
        2. Используется для удаления отложений грязи и соли с лопастей компрессора.
        3. Компоненты:
        4. Состоит из бака емкостью 40 галлонов и стационарного трубопровода для направления водного промывочного раствора на вход компрессора.
        5. Порядок действий:
        6. В соответствии с PMS компрессор необходимо промыть для поддержания эффективности и предотвращения остановок компрессора.

        Рис.13: Система водяной промывки

      6. Отводимый воздух:

        1. Источники:
        2. Отборный воздух потребителя отбирается из последней ступени компрессора на газотурбинных генераторах (ГТГ) и магистрали газовой турбины (ГТМ)
        3. Пользователи отбираемого воздуха: (СПАМ):
          1. Запуск или приведение в действие других газовых турбин.
          2. Воздух прерий для маскировки шума гребного винта.
          3. Воздух для защиты от обледенения для предотвращения обледенения воздухозаборника.
          4. Маскирующий воздух для маскировки шума корпуса главной силовой установки.

        Рис.14: Основные вращающиеся детали LM2500

      7. Газотурбинный двигатель LM2500 в сборе:

        1. Компоненты газогенератора:

          1. Секция компрессора:
          2. LM2500 имеет 16-ступенчатый компрессор осевого потока, состоящий из следующих компонентов:
              Ротор компрессора: 16 ступеней подвижных лопаток, приводимых в движение турбиной высокого давления.
            1. Статор компрессора: кожух компрессора, содержащий одну ступень входных направляющих лопаток (IGV), шесть ступеней регулируемых лопаток статора (VSV) и 10 ступеней неподвижных лопаток статора.
              1. IGV и лопатки статора 1-6 являются переменными, то есть имеют изменяемую геометрию. Угол атаки лопастей можно изменить, чтобы предотвратить остановку компрессора.
              2. Отборный воздух отбирается из компрессора для использования в судовой системе отбираемого воздуха и для внутреннего использования в двигателе.
          3. Камера сгорания:

            1. Камера сгорания кольцевого типа с 30 топливными форсунками и 2 искровыми воспламенителями.
            2. Около 30% воздуха из компрессора смешивается с топливом для поддержания горения. Остальные 70% используются для охлаждения и центрирования пламени внутри гильзы сгорания.
            3. Система зажигания вырабатывает искру высокой интенсивности для воспламенения топливно-воздушной смеси во время запуска. После запуска двигателя воспламенители больше не нужны и будут обесточены.
          4. Секция турбины высокого давления:

            1. Турбина высокого давления извлекает достаточно энергии из горячих расширяющихся газов для привода компрессора и вспомогательного привода.
            2. Турбина высокого давления представляет собой двухступенчатую турбину с осевым потоком, которая механически связана с ротором компрессора.
            3. Турбина ВД использует примерно 65% тепловой энергии камеры сгорания для привода компрессора и дополнительных устройств, установленных на двигателе.
          5. Дополнительный привод в сборе:

            1. Приводится через вал ротора компрессора через впускной редуктор, радиальный приводной вал и раздаточную коробку.
            2. Дополнительный редуктор обеспечивает монтаж топливного насоса, насоса смазочного масла, воздухо-масляного сепаратора и пневматического стартера.
        2. Силовая турбина:

          1. Конструкция:
          2. Силовая турбина представляет собой шестиступенчатую турбину осевого типа. Силовая турбина забирает оставшиеся 35% полезной энергии и использует ее для привода главного редуктора. Силовая турбина приводит в движение редуктор через высокоскоростной гибкий вал муфты и муфту в сборе.

            Comments |0|

            Legend *) Required fields are marked
            **) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
            Category: Двигател