Для чего служит дифференциал: устройство, виды и принцип работы

Содержание

Как работает дифференциал при движении автомобиля. Дифференциалы автомобилей — типы

Механизм трансмиссии, распределяющий крутящий момент двигателя между ведущими колесами и ведущими мостами автомобиля, называется дифференциалом. Дифференциал служит для обеспечения ведущим мостам разной скорости вращения при движении автомобиля по неровным дорогам и на поворотах.

Разная скорость вращения ведущим колесам, проходящим разный путь на поворотах и неровных дорогах, необходима для их качения без скольжения и буксования. В противном случае повысится сопротивление движению автомобиля, увеличатся расход топлива и износ шин. В зависимости от типа и назначения автомобилей на них применяются различные типы дифференциалов (рисунок 1).

Рисунок 1 — Типы дифференциалов, классифицированных по различным признакам

Дифференциал, распределяющий крутящий момент двигателя между ведущими колесами автомобиля, называется межколесным

.

Дифференциал, который распределяет крутящий момент двигателя между ведущими мостами автомобиля, называется межосевым.

На большинстве автомобилей применяют конические дифференциалы, симметричные и малого трения.

Симметричный дифференциал распределяет поровну крутящий момент. Его передаточное число равно единице (uД = 1), т.е. полуосевые шестерни 3 и 4 (рисунок 2, а, б) имеют одинаковые диаметры и равное число зубьев. Симметричные дифференциалы применяются на автомобилях обычно в качестве межколесных и реже — межосевых, когда необходимо распределять крутящий момент поровну между ведущими мостами.

Рисунок 2 — Кинематические схемы шестеренных дифференциалов

а, б — симметричных; в, г — несимметричных; 1 — корпус, 2 — сателлит; 3, 4 — шестерни

Несимметричный дифференциал

распределяет не поровну крутящий момент. Его передаточное число не равно единице, но постоянно (uД ≠ 1 = const), т.е. полуосевые шестерни 3 и 4 имеют неодинаковые диаметры и разное число зубьев. Несимметричные дифференциалы применяют, как правило, в качестве межосевых, когда необходимо распределять крутящий момент пропорционально нагрузкам, приходящимся на ведущие мосты.

Межколесный конический симметричный дифференциал (см. рисунок 2, а) состоит из корпуса 1, сателлитов 2, полуосевых шестерен 3 и 4, которые соединены полуосями с ведущими колесами автомобиля. Дифференциал легкового автомобиля имеет два свободно вращающихся сателлита, установленных на оси, закрепленной в корпусе дифференциала, а у грузового автомобиля — четыре сателлита, размещенных на шипах крестовины, также закрепленной в корпусе дифференциала.

Принцип работы дифференциала

Работу дифференциала

при движении автомобиля поясняет рисунок 3.

При прямолинейном движении автомобиля по ровной дороге (рисунок 3, а) ведущие колеса одного моста проходят одинаковые пути, встречают одинаковое сопротивление движению и вращаются с одной и той же скоростью. При этом корпус дифференциала, сателлиты и полуосевые шестерни вращаются как одно целое. В этом случае сателлиты 3 не вращаются вокруг своих осей, заклинивают полуосевые шестерни 4 и на оба ведущих колеса передаются одинаковые крутящие моменты.

Рисунок 3 — Работа дифференциала при движении автомобиля

а — по прямой; б — на повороте; 1, 4 — шестерни; 2 — корпус; 3 — сателлит; 5 — полуось

При повороте автомобиля (рисунок 3, б) внутреннее по отношению к центру поворота колесо встречает большее сопротивление движению, чем наружное колеса, вращается медленнее, и вместе с ним замедляет свое вращение полуосевая шестерня внутреннего колеса. При этом сателлиты 3 начинают вращаться вокруг своих осей и ускоряют вращение полуосевой шестерни наружного колеса. В результате ведущие колеса вращаются с разными скоростями, что и необходимо при движении на повороте.

При движении автомобиля по неровной дороге ведущие колеса также встречают различные сопротивления и проходят разные пути. В соответствии с этим дифференциал обеспечивает им разную скорость вращения и качения без проскальзывания и буксования.

Одновременно с изменением скоростей вращения происходит изменение крутящего момента на ведущих колесах. При этом крутящий момент уменьшается на колесе, вращающемся с большей скоростью. Так как симметричный дифференциал распределяет крутящий момент на ведущих колесах поровну, то в этом случае на колесе с меньшей скоростью вращения момент тоже уменьшается и становится равным моменту на колесе с большей скоростью вращения. В результате суммарный крутящий момент и тяговая сила на ведущих колесах падают, а тяговые свойства и проходимость автомобиля ухудшаются.

Особенно это проявляется, когда одно из ведущих колес попадает на скользкий участок дороги, а другое находится на твердой сухой дороге. Если суммарного крутящего момента будет недостаточно для движения автомобиля, то автомобиль остановится. При этом колесо на сухой твердой дороге будет неподвижным, а колесо на скользкой дороге — буксовать.

Для устранения этого недостатка применяют принудительную блокировку (выключение) дифференциала, жестко соединяя одну из полуосей с корпусом дифференциала. При заблокированном дифференциале крутящий момент, подводимый к колесу с лучшим сцеплением, увеличивается. В результате создается большая суммарная тяговая сила на обоих ведущих колесах автомобиля. При этом суммарная тяговая сила увеличивается на 20…25% во время движения в реальных дорожных условиях.

Конический симметричный дифференциал является дифференциалом малого трения, так как имеет небольшое внутреннее трение.

Трение в дифференциале повышает проходимость автомобиля, так как оно позволяет передавать больший крутящий момент на небуксующее колесо и меньший — на буксующее, что может предотвратить буксование. При этом суммарная тяговая сила на ведущих колесах достигает максимального значения.

Однако в дифференциале малого трения увеличение суммарной тяговой силы на ведущих колесах составляет всего 4…6%, что также не способствует повышению тяговых свойств и проходимости автомобиля.

Конический симметричный дифференциал малого трения прост по конструкции, имеет небольшие размеры и массу, высокие КПД и надежность. Он обеспечивает хорошие управляемость и устойчивость, уменьшает изнашивание шин и расход топлива. Этот дифференциал также называется простым дифференциалом.

Межосевой дифференциал распределяет крутящий момент между главными передачами ведущих мостов многоприводных автомобилей. Дифференциал устанавливается в раздаточной коробке или в приводе главных передач. Межосевой дифференциал исключает циркуляцию мощности в трансмиссии автомобиля, которая очень сильно нагружает трансмиссию, особенно при движении по ровной дороге. В качестве межосевых на автомобилях применяются и конические, и цилиндрически дифференциалы.

Кулачковые дифференциалы

Кулачковые (сухарные) дифференциалы могут быть с горизонтальным (рисунок 4, а) или радиальным (рисунок 4, б) расположением сухарей. Сухари 3 размещаются в один или два ряда в отверстиях обоймы 2 корпуса 1 дифференциала между полуосевыми звездочками 4 и 5, которые установлены на шлицах полуосей. Сухари в дифференциале выполняют роль сателлитов.

Рисунок 4 — Кинематические схемы кулачковых (а, б) и червячных (в, г) дифференциалов

1 — корпус, 2 — обойма, 3 — сухарь; 4, 5 — звездочки; 6, 8 — червяки; 7 — сателлит; 9, 10 — шестерни

При прямолинейном движении автомобиля по ровной дороге сухари неподвижны относительно обоймы и полуосевых звездочек. Своими концами они упираются в профилированные кулачки полуосевых звездочек и расклинивают их. Все детали дифференциала вращаются как одно целое, и оба ведущих колеса автомобиля вращаются с одинаковыми скоростями.

При движении автомобиля на повороте или по неровной дороге сухари перемещаются в отверстиях обоймы и обеспечивают ведущим колесам автомобиля разную скорость вращения без проскальзывания и буксования.

Кулачковые дифференциалы являются дифференциалами повышенного трения, так как имеют значительное внутреннее трение, которое позволяет передавать больший крутящий момент на небуксующее колесо и меньший на буксующее колесо. При этом суммарная тяговая сила на ведущих колесах автомобиля достигает максимального значения. Так, за счет повышенного внутреннего трения суммарная тяговая сила на ведущих колесах увеличивается на 10…15%, что способствует повышению тяговых свойств и проходимость автомобиля. Кулачковые дифференциалы относительно

просты по конструкции и имеют небольшую массу. Они широко применяются на автомобилях повышенной и высокой проходимости.

Червячные дифференциалы

Червячные дифференциалы могут быть с сателлитами или без сателлитов. В червячном дифференциале с сателлитами (рисунок 4, в) крутящий момент от корпуса 1 дифференциала через червячные сателлиты 7 и червяки 6 и 8 передается полуосевым червячным шестерням 9 и 10, которые установлены на шлицах полуосей, связанных с ведущими колесами автомобиля.

При прямолинейном движении

автомобиля по ровной дороге корпус, сателлиты, червяки и полуосевые шестерни вращаются как одно целое. При движении автомобиля на повороте или по неровностям дороги разная скорость вращения ведущих колес обеспечивается за счет относительного вращения сателлитов, червяков и полуосевых шестерен.

В червячном дифференциале без сателлитов (рисунок 4, г) полуосевые червячные шестерни 9 и 10 находятся в зацеплении с червяками 6 и 8, которые находятся также в зацеплении между собой. Крутящий момент от корпуса 1 дифференциала передается полуосевым шестерням 9 и 10 через червяки.

Червячные дифференциалы обладают повышенным внутренним трением, которое увеличивает суммарную тяговую силу на ведущих колесах автомобиля на 10…15%. Это способствует повышению тяговых свойств и проходимости автомобиля. Однако червячные дифференциалы наиболее сложные по конструкции. Они самые дорогостоящие из всех дифференциалов, так как их сателлиты и полуосевые шестерни изготавливают из оловянистой бронзы. В связи с этим в настоящее время червячные дифференциалы на автомобилях

применяются очень редко.

Другие статьи по теме

Дифференциал (механика) — это… Что такое Дифференциал (механика)?

Устройство дифференциала (центральная часть)

Дифференциа́л — это механическое устройство, которое делит момент входного вала между выходными валами, которые называются полуосями. Наиболее широко применяется в конструкции привода автомобилей, где момент от выходного вала коробки передач (или карданного вала) поровну делится между полуосями правого и левого колеса. В полноприводных автомобилях также может применяться для деления момента в заданном соотношении между ведущими осями, хотя здесь достаточно распространены конструкции и без дифференциала (например, с вискомуфтой).

Назначение

Необходимость применения дифференциала в конструкции привода автомобилей обусловлена тем, что внешнее колесо при повороте проходит более длинную дугу, чем внутреннее. То есть при вращении ведущих колёс с одинаковой скоростью поворот возможен только с пробуксовкой, а это негативно сказывается на управляемости и сильно повышает износ шин.

Назначение дифференциала в автомобилях:

  • позволяет ведущим колёсам вращаться с разными угловыми скоростями;
  • неразрывно передаёт крутящий момент от двигателя на ведущие колёса;
  • в сочетании с главной передачей служит дополнительной понижающей передачей.

В случае единственного приводного колеса или отдельного двигателя для каждого из ведущих колёс дифференциал не требуется. В конструкции раллийных автомобилей иногда дифференциал намертво блокируют (заваривают), жёстко связывая колёса ведущей оси – это допустимо, так как на гравии или снегу в ралли повороты проходятся только с заносом. Также дифференциал отсутствует в конструкции картов, при этом гибкость их рам обычно позволяют вывешивать ведущее заднее колесо с внутренней стороны поворота без отрыва передних колёс от трассы. В веломобилях с ведущей осью вместо дифференциала часто применяются более простые и доступные трещотки (обгонные муфты) в колёсах – такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом весь момент передаётся только на то колесо, которое медленнее вращается.

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6×6 или 8×8) добавляется ещё межтележечный дифференциал.

Устройство

Дифференциал автомобиля Porsche Cayenne в разрезе

Классические автомобильные дифференциалы основаны на планетарной передаче. Карданный вал 1 через коническую зубчатую передачу передает вращение на корпус дифференциала 2. Корпус дифференциала через независимые друг от друга шестерни (сателлиты) 3 вращает полуоси 4. Такое зацепление имеет не одну, а две степени свободы, и каждая из полуосей вращается с такой скоростью, с какой может. Постоянна лишь суммарная скорость вращения полуосей.

Проблема буксующего колеса

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс оказывается в воздухе или на льду, то крутится именно это колесо, в то время как другое, стоящее на твёрдой земле, теряет всякую силу. Может показаться, что обычный дифференциал – это бессмысленный механизм, который направляет крутящий момент двигателя именно на то колесо, которое легче прокручивается. Конечно, целесообразнее было бы передавать больше крутящего момента на колесо с лучшим сцеплением, но этого не происходит в силу устройства дифференциала.

Дело в том, что создаваемый двигателем момент зависит от силы реакции на каждом из ведущих колёс автомобиля. В случае потери сцепления одним из колёс, его сопротивление падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущестенно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, моменты на колесах тоже равны друг другу, но при этом они равны наименьшей силе реакции точки опоры в системе (т.е. у проскальзывающего колеса), а весь лишний момент (который превышает момент точки опоры) уходит в раскрутку буксующего колеса.

Данную ситуацию можно выразить следующим выражением: момент не буксующего колеса равен моменту буксующего колеса плюс момент на раскрутку буксующего колеса.

Способы решения проблемы буксующего колеса

Ручная блокировка дифференциала

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем отключать блокировку после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется включать блокировку, когда автомобиль движется. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае ее превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 г. в команде «Макларен»: в повороте внутреннее колесо подтормаживалось рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений гонщика. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

Фрикционный самоблокирующийся дифференциал

Этот тип дифференциала (как, впрочем, и вязкостная муфта) основан на том, что на прямой полуоси вращаются синхронно с корпусом дифференциала, но в повороте появляется разница в угловых скоростях.

Между корпусом дифференциала 2 и полуосевой шестерней 4 установлен фрикцион (в зависимости от конструкции, фрикцион может быть установлен с одной стороны или с двух; на ходовые качества это не влияет). Когда автомобиль движется по прямой, корпус и шестерня вращаются с одной и той же скоростью, и потерь нет. При появлении разницы в скоростях вращения корпуса и шестерни на отстающую шестерню подается дополнительный крутящий момент из-за наличия трения между шестерней и корпусом дифференциала.

Этот вид дифференциала требует периодического обслуживания (так как трущиеся части фрикциона изнашиваются, снижается сила трения и эффективность блокировки) и поэтому редко устанавливается на серийные машины (в основном на спортивные и тюнингованные)

Вязкостная муфта (Вискомуфта, Viskodrive)

Упрощённый вариант фрикционного дифференциала. На одной из полуосей имеется резервуар, заполненный вязкой дилатантной жидкостью. В эту жидкость погружены два пакета дисков; один соединён с ротором, второй с полуосью. Чем больше разница в скоростях колёс, тем больше разница в скоростях вращения дисков и тем больше вязкое сопротивление.

Достоинство такой конструкции в простоте и дешевизне. Недостаток в том, что вязкостная муфта довольно инерционна и отказывается работать на полном бездорожье. Хороших ходовых качеств вязкостная муфта не обеспечивает и применяется только в «паркетниках» (вседорожниках, которые жертвуют проходимостью ради комфорта) между осями. Для установки в качестве осевого дифференциала такая конструкция слишком громоздка.

Иногда вместо дифференциала ставят коническую зубчатую передачу с вязкостной муфтой на одной из полуосей.

Кулачковый/зубчатый самоблокирующийся дифференциал

Принцип действия аналогичен, но полуоси соединяются зубчатой или кулачковой парой. Таким образом, при пробуксовке одного из колёс дифференциал резко блокируется. Поэтому такая система применяется только в военной и специальной технике (например, в бронетранспортёрах), где нужно большое тяговое усилие и долговечность в ущерб управляемости.

Гидророторный самоблокирующийся дифференциал

Попытка повысить эффективность и долговечность фрикционного дифференциала. При возникновении разницы в угловых скоростях насос закачивает жидкость в цилиндр, и поршень сжимает фрикционный пакет, блокируя дифференциал.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Шестеренчатые самоблокирующиеся дифференциалы

Существует три типа таких дифференциалов — планетарные, типа Quaife и типа Torsen. Все они основаны на свойстве косозубой или червячной передачи «заклинивать» при определённом соотношении крутящих моментов. Такие дифференциалы передают бо́льшую часть крутящего момента (до 80 %) небуксующему колесу.

Применяются во внедорожниках и гоночных автомобилях. Недостатки: сложность; бо́льшая потеря мощности, чем у обычного дифференциала.

Дифференциал типа Torsen изобретён в 1958 г. американцем Верноном Глизманом. Имеет достоинства вязкостной муфты и не имеет её недостатков. Принцип работы основан на свойстве червячной передачи «расклиниваться». Название Torsen произошло от англ. Torque sensitive («чувствительный к крутящему моменту»). Torsen — товарный знак JTEKT Torsen North America Inc.

Разновидностей конструкций не так уж и много — можно выделить три основных:

Первый тип(T-1) Червячными парами являются шестерни ведущих полуосей и сателлиты. При этом каждая полуось имеет собственные сателлиты, которые парно связанны с сателлитами противоположной полуоси обычным прямозубым зацеплением. Следует отметить, что ось сателлита перпендикулярна полуоси. При нормальном движении и равенстве передаваемых на полуоси моментов, червячные пары «сателлит / ведущая шестерня» либо остановлены, либо проворачиваются, обеспечивая разницу угловых скоростей полуосей в повороте. Как только дифференциал пытается отдать момент на одну из полуосей, то червячную пару этой полуоси начинает расклинивать и блокировать с чашкой дифференциала, что приводит к частичной блокировке дифференциала. Данная конструкция работает в самом большом диапазоне отношений крутящего момента — от 2.5/1 до 5.0/1, то есть является самой мощной в серии. Диапазон срабатывания регулируется углом наклона зубцов червяка.

Второй тип(T-2) В данном случае, оси сателлитов параллельны полуосям. Сателлиты расположены в своеобразных карманах чашки дифференциала. При этом парные сателлиты имеют косозубое зацепление, которое расклиниваясь, так же участвует в процессе блокировки. Подобное устройство имеет и дифференциал TrueTrac компании EATON. Даже у нас в России появилось производство аналогичных дифференциалов под отечественные автомобили УАЗ и.т.д.

Третий тип(Т-3) Планетарная структура конструкции позволяет сместить номинальное распределение момента в пользу одной из осей. Срабатывание частичной блокировки происходит при 20-30 % разнице в передаваемых на оси моментах. Подобная структура дифференциала делает его компактным, что в свою очередь, упрощает конструкцию и улучшает компоновку раздаточной коробки.

В отличие от других конструкций, датчики вращающего момента работают практически в любых условиях. Даже если колеса вращаются с различными скоростями (поворот, прохождение через ухабы), они тем не менее всегда получают вращающий момент основанный на сцеплении.

Данные дифференциалы не требуют применения специальных присадок к маслу (в отличие от фрикционных дифференциалов), однако лучше использовать качественное масло для нагруженных гипоидных передач.

См. также

Ссылки

Дифференциал автомобиля — как устроен и для чего служит

Что интересно, дифференциал — не изобретение начала автомобильной эры. Его изобрели китайцы много веков назад.

В чем заключается идея дифференциала

Идея дифференциала заключается в том, чтобы дать автомобилю возможность поворачивать. На ведомой оси, когда автомобиль поворачивает, внешнему колесу нужно пройти большее расстояние, чем внутреннему. Внешнее колесо должно вращаться быстрее, чем внутреннее.

Дифференциал необходим, чтобы оба колеса не вращались с одинаковой скоростью. Если бы его не было, одно из колес ведущей оси скользило бы по дорожному покрытию.

Дифференциал не только предотвращает это, но также предотвращает нежелательные нагрузки на трансмиссию.

Которые, в свою очередь, могут привести к поломкам, повышенному расходу топлива и повышенному износу шин.

Конструкция механизма

Дифференциал состоит из нескольких конических шестерен, заключенных во вращающийся корпус. Он связан с ведущим колесом.

Передача крутящего момента от коробки передач (и от двигателя) к ведомым колесам происходит при так называемом атакующем вале приводит в движение вышеупомянутую коронную шестерню через специальную гипоидную шестерню.

Она имеет скрученные оси и дугообразные зубчатые линии, что позволяет передавать большие нагрузки.

В переднеприводных автомобилях коронная шестерня имеет прямые или наклонные зубья, которые находятся на внешней окружности вала.

Решение является более простым и дешевым по сравнению с другими типами привода в производстве и эксплуатации — дифференциал интегрирован с коробкой передач.

Преобладание на рынке переднеприводных автомобилей объясняется именно этим.

В заднеприводных автомобилях дифференциал скрыт в специальном металлическом кожухе.

Это хорошо видно под ходовой частью — между ведущими колесами есть элемент, называемый задней осью.

Посередине находится крестовина, на которой установлены шестерни, называемые сателлитами, потому что они вращаются вокруг этого элемента в направлении движения, заставляя шестерни вращаться, которые, в свою очередь, передают крутящий момент на колеса автомобиля.

Если колеса автомобиля вращаются с разной скоростью (например, автомобиль принимает поворот), сателлиты по-прежнему вращаются на рычагах поперечины.

Избегайте скольжения

Иногда бывает, что дифференциал сложно снять. Это происходит, когда одно из колес автомобиля находится на скользкой поверхности, например на льду. Затем дифференциал передает на это колесо почти весь крутящий момент.

Все потому, что колесу с лучшим сцеплением необходимо использовать больший крутящий момент, чтобы преодолеть внутреннее трение в дифференциале.

Проблема такого типа решена в спортивных автомобилях, особенно в полноприводных.

В таких автомобилях обычно используются дифференциалы с высоким сопротивлением, которые способны передавать большую часть крутящего момента на колесо с лучшим сцеплением.

В конструкции дифференциала используются муфты между боковыми шестернями и корпусом. Когда одно из колес теряет сцепление с дорогой, одно из сцеплений начинает противодействовать этому явлению своей силой трения.

Однако это не единственное решение в системе привода, применяемой в автомобилях 4х4.

Большинство этих автомобилей все еще имеют межосевой дифференциал, который компенсирует разницу в скорости вращения между ведущими осями. Это решение исключает образование ненужных напряжений в трансмиссии, которые отрицательно сказываются на долговечности системы привода.

Кроме того, центральный дифференциал также распределяет крутящий момент между передней и задней осями. Для улучшения тяги каждый уважающий себя внедорожник имеет еще и редуктор, то есть механизм, увеличивающий передаваемый на колеса крутящий момент за счет скорости.

Самые современные  внедорожники оборудованы межосевыми дифференциалами и блокировками дифференциалов.

По словам экспертов дифференциал — это элемент автомобиля, который может прослужить Вам долго, но только при правильном использовании.

Например, не приветствуются резкие старты с визгом покрышек.

Конечно, чем старше автомобиль, тем больше изнашивается его система привода, в том числе дифференциал.

Это можно проверить даже дома. Вам нужно поднять ту часть машины, где находятся ведущие колеса.

После переключения любой передачи поверните колесо в обе стороны, пока не почувствуете сопротивление. Чем позже мы почувствуем сопротивление, тем больше степень износа дифференциала. В случае переднеприводных автомобилей такой люфт также может свидетельствовать об износе коробки передач.

Все, что вы хотели узнать о дифференциалах, но боялись спросить…

по материалам журналов «4х4Club» (7-8`99) и «5 Колесо» (11`99)



Что такое дифференциал
Принудительная блокировка
Самоблокирующиеся дифференциалы

• Дисковая блокировка
• Вязкостная блокировка
• Винтовая блокировка
• Кулачковая блокировка
• Особенности управления
Межосевой дифференциал и его блокировки
• Подключаемый передний мост



Что такое дифференциал

Дифференциал — это устройство, распределяющее поток мощности от двигателя к другим элементам трансмиссии. В автомобиле с приводом на одну ось используется только один дифференциал, межколесный, в полноприводном их целых три — два межколесных и межосевой. 

Рассмотрим для примера классический дифференциал (в отличие от блокируемых, его называют «открытым» или «свободным»). Он устанавливается в картере главной передачи и получает крутящий момент от ее ведомой шестерни. В коробке дифференциала расположены конические шестерни-сателлиты. Они входят в зацепление с шестернями, закрепленными на полуосях, а те, в свою очередь, вращают ведущие колеса. При движении по ровной и прямой дороге угловые скорости колес одинаковы, и сателлиты не вращаются вокруг своей оси. Во время поворота или движения по неровностям, когда колеса правого и левого борта проходят разный путь, сателлиты начинают вращаться и перераспределять крутящий момент.


Главная передача заднего моста ВАЗ-2101:
1 – фланец карданного вала;
2 – сальник;
3 – маслоотражательное кольцо;
4 – передний подшипник ведущей шестерни;
5 – задний подшипник ведущей шестерни;
6 – регулировочное кольцо;
7 – опорное кольцо шестерни полуоси;
8 – шестерня полуоси;
9 – сателлит;
10 – палец сателлитов;
11 – ведомая шестерня главной передачи;
12 – коробка дифференциала;
13 – болт крепления стопора регулировочной гайки;
14 – стопор регулировочной гайки;
15 – подшипник коробки дифференциала;
16 – регулировочная гайка ведомой шестерни;
17 – болт крепления ведомой шестерни к фланцу коробки дифференциала;
18 – ведущая шестерня главной передачи;
19 – картер редуктора главной передачи;
20 – распорная втулка;
21 – шайба;
22 – гайка ведущей шестерни заднего моста.

Существует простая формула, отражающая связь между частотами вращения коробки дифференциала и полуосевых шестерен. Если через а1 и а2 обозначить частоты вращения полуосевых шестерен, а через а — частоту вращения коробки дифференциала, то: а = (а1+а2)/2. Формула показывает, что если одно из колес автомобиля неподвижно, то другое колесо вращается с удвоенной частотой. Если одно из двух ведущих колес попадает на скользкую поверхность дороги (мокрый асфальт, масляные пятна, лед), сопротивление его вращению резко падает, уменьшается и сцепление с дорогой, а значит, колесо не в состоянии иметь необходимую силу тяги. Такое колесо начнет быстрее вращаться и пробуксовывать. К другому ведущему колесу, имеющему достаточное сцепление с дорогой, будет подводиться такой же крутящий момент, как и к буксующему. Имея возможность образовать большую силу тяги, второе колесо не сможет этого сделать потому, что дифференциал передаст ему только половину крутящего момента от главной передачи. Если сопротивление движению автомобиля превысит силу тяги у небуксующего колеса, то машина не сможет двигаться. Частота вращения буксующего колеса резко возрастет, а второе колесо остановится. Возникнет буксование автомобиля. Попытка водителя повысить силу тяги на колесах за счет увеличения подачи топлива приведет только к увеличению частоты вращения одного из колес. В такой ситуации проявляется существенный недостаток обычного дифференциала, снижающего проходимость автомобиля как на скользких дорогах, так и на грунтах, оказывающих большое сопротивление качению колес (пeсок, снег, распутица). 

Принудительная блокировка

На автомобилях, предназначенных для движения по бездорожью, приходится устанавливать дифференциалы специальных конструкций. Блокировки Часто применяют дифференциалы с принудительной блокировкой. В них водитель с помощью специального привода (чаще всего пневматического) останавливает на время вращение сателлитов, и колeca автомобиля начинают вращаться с одинаковой скоростью. Следует учесть, что автомобиль с заблокированным дифференциалом на извилистой дороге расходует больше топлива и у него происходит интенсивный износ шин. Как только взаимный поворот колес на общей оси с заблокированным дифференциалом будет больше, чем это допускает упругая деформация шин, произойдет буксование колес, продолжающееся до тех пор, пока какое-либо колесо на неровности не оторвется от дороги. Это говорит о том, что водитель не должен забывать выключать блокировку дифференциала после преодоления тяжелого участка. В ряде конструкций предусмотрена его автоматическая разблокировка или ограничение возможности включения блокировки по скорости.

Самоблокирующиеся дифференциалы

Для упрощения процесса управления применяются так называемые самоблокирующиеся дифференциалы. В настоящее время, в основном, используют четыре вида блокировок: дисковая (фрикционная, повышенного трения, LSD), вязкостная (вискомуфты) и винтовая (червячная). В самых современных разработках используются электронные системы контроля проскальзывания колес, основанные на применении датчиков вращения и использовании штатных тормозов (как правило, эти системы совмещаются с антиблокировочными и противопробуксовочными).


Дисковая блокировка


Существуют две наиболее характерные конструкции дифференциалов с фрикционными муфтами. В первом применяют одну, во втором — две муфты. В первом случае фрикционная дисковая муфта 1 введена между одной из полуосей и коробкой дифференциала. Бронзовые диски установлены в шлицах гильзы 2, связанной с коробкой дифференциала, стальные диски сидят на шлицах полуоси 3. Диски прижимаются друг к другу пружинами 4. Когда оба колеса испытывают одинаковое сопротивление, весь дифференциал вращается как одно целое и трение в муфте 1 отсутствует.


Вторая конструкция представляет из себя дифференциал повышенного трения с двойными фрикционными муфтами, получивший широкое распространение на американских автомобилях. В этой конструкции крестовина заменена двумя отдельными, пересекающимися под прямым углом осями 5 сателлитов 6. Оси 5 имеют возможность перемещаться одна относительно другой как в осевом, так и в угловом направлении, для чего их концы имеют скосы соответственно А и Б, которыми они опираются на коробку 9 дифференциала. Кроме того, в дифференциал введены промежуточные чашки 7, так же как и полуосевые шестерни, надетые на шлицы полуосей. При невращающихся сателлитах усилие к полуосям передается как и в простом дифференциале. При вращении сателлитов последние будут сдвигать концевые скосы осей 5 так, что усилие на фрикционную муфту 8, передаваемое через чашку 7, будет увеличиваться для отстающей полуоси и уменьшаться для оси, вращающейся быстрее. При этом величина подтормаживающего момента не будет постоянной, как в дифференциале с одной дисковой муфтой, а будет пропорциональна моменту, передаваемому колесами. 

Для нормальной работы такого дифференциала требуется использование специального трансмиссионного масла для LSD или соответствующих присадок к обычному маслу. Кроме того, со временем возникает необходимость регулировки из-за износа дисков.


Вязкостная блокировка


Принцип ее действия такой же, как у дисковой. Гидравлическая муфта состоит из большого числа дисков с липкими рабочими поверхностями. Благодаря свойствам особой вязкой жидкости на силиконовой основе отвердевать при нагреве диски передают крутящий момент в зависимости от разности частот вращения входных и выходных валов. Нагрев происходит, когда одна полуось начинает вращаться быстрее другой. Характерной особенностью конструкции является то, что в случае длительного буксования колес блокирующая муфта с вязкой жидкостью работает вначале мягко, а затем происходит значительный рост эффективности блокировки. В затвердевшем силиконе диски получают жесткое зацепление и полуоси блокируются. Вискомуфты не требуют обслуживания и считаются весьма надежными, однако для их продолжительной работы необходимо сохранение полной герметичности устройства. 

Винтовая блокировка

Принцип ее действия таков: в обычном режиме винты (или червяки, как их называют из-за характерной формы) свободно обкатываются вокруг центральной шестерни. В случае изменения момента винты проскальзывают в крайнее положение и фиксируются в эксцентричных пазах. Когда момент выравнивается, винты возвращаются в исходное положение. Момент срабатывания винтовых блокировок определяется профилем винтов. Такие дифференциалы мало подвержены износу (срок службы сопоставим со сроком коробки или классического дифференциала), а масло используется обычное трансмиссионное.


Кулачковая блокировка


Такая блокировка срабатывает при возникновении разности в скоростях вращения колес. Рассмотрим пример реализации дифференциала от компании Tractech. В корпусе дифференциала между парами корончатых шестерен установлены поворотные кулачки. В обычных условиях они не участвуют в работе, но, как только одно их колес начинает пробуксовывать (т.е., вращаться существено быстрее другого), кулачки поворачиваются и пары шестерен входят в зацепление, обеспечивая тем самым полную блокировку. Блокировка выключается, когда буксующее колесо прекратит проскальзывание. Этот тип дифференциалов также довольно долговечен и не требует специальных масел.


Особенности управления


Управление автомобилем, оборудованным самоблокирующимся межколесным дифференциалом имеет некоторые особенности. В частности, автомобиль в повороте на скользком покрытии может обладать избыточной поворачиваемостью, при слишком интенсивном разгоне на смешанном покрытии возможен увод в сторону от предполагаемой траектории и т.д. Особенно это касается разработок, предлагаемых в качестве дополнительного оборудования третьими фирмами. Однако грамотное использование свойств таких дифференциалов позволяет уверенно перемещаться в сложных дорожных условиях, и существенно повышает проходимость вне дорог. 

 

Межосевой дифференциал и его блокировки


При отсутствии межосевого разделения мощности (межосевого дифференциала или отключающего механизма) необходимо отключить передний мост, чтобы стало возможно вращение передних и задних колес с разными угловыми скоростями. По условиям движения требуется, чтобы колеса как переднего и заднего мостов, так и колеса одного моста могли вращаться с разной частотой и проходить различные пути. Особенно характерно это для поворотов: передние колеса при повороте проходят большее расстояние, чем задние. На изменение пути колес влияют различные факторы: скольжение шин, их углы увода, давление воздуха, нагрузка на колеса, кинематика подвески. При этом очевидно, что соотношение между путями, проходимыми колесами переднего и заднего мостов, также меняется во время движения. Это обстоятельство исключает возможность применения разных передаточных чисел в главных передачах мостов для компенсации разности проходимых путей.


Колеса разных осей автомобиля, кинематически жестко связанные одно с другим, имеют при вращении одинаковые угловые скорости. На твердой поверхности дороги при движении автомобиля с приводом на все колеса (при отсутствии межосевого дифференциала) могут возникнуть условия, при которых колеса разных осей будут стараться двигаться с различными линейными скоростями, а жесткая мехаческая связь между ними станет преградой к достижению этого. При прямолинейном движении описанное явление может быть вызвано, например, разностью радиусов качения связанных между собой колес. Качение колес в этом случае должно сопровождаться относительным перемещением точек площадки контакта шины по поверхности дороги (со скольжением или буксованием). Подобное же возможно и при одинаковых радиусах качения, но при движении по дороге с неровной поверхностью или на повороте. Возникающее в этих условиях скольжение или 6yксовaние шин сопровождается увеличеным их износом, износом механизмов трансмиссии и непроизводительной затратой энергии двигателя на движение автомобиля. Для того чтобы колеса катились без вредных сопровождающих явлений в трансмиссии, кроме дифференциалов межколесных устанавливают дифференциалы межосевые.

Однако, в условиях внедорожного движения автомобиль может лишиться подвижности в тот момент, когда колеса одного из мостов потеряют сцепление с дорогой и начнут буксовать. В такой ситуации дифференциал обычного типа будет не в состоянии передать требуемую для движения величину крутящего момента задним колесам, опирающимся на твердый грунт. Для избежания этого на внедорожниках устанавливают межосевые дифференциалы с принудительной блокировкой. Примером подобного конструктивного решения может служить «Нива» ВА3-2121, оснащенная раздаточной коробкой с принудительно блокируемым межосевым дифференциалом. 

Блокировкой пользуется водитель автомобиля для преодоления труднопроходимого участка дороги. При возвращении на шоссе межосевой дифференциал необходимо разблокировать. В современных конструкциях, кроме механического, применяются и другие приводы (пневматический, гидравлический, электрический), при этом сам процесс включения сводится к простому нажатию кнопки на панели. 

Следующим шагом стало появление самоблокирующихся межосевых дифференциалов. Принципы их работы сходны с межколесными, но условия и задачи несколько другие. Так, при поворотах машины забегающим относительно корпуса дифференциала всегда будет вал, передающий момент на управляемую ось, что определяется кинематикой поворота машины с колесной формулой 4х4. Исходя из этого, при забегании приводного вала управляемого моста коэффициент блокировки желательно иметь невысоким, а при забегании (буксовании) неуправляемого моста — несколько большим. Такой дифференциал называют самоблокирующимся с несимметричными блокирующими свойствами.

В настоящее время на легковых внедорожниках широко используются межосевые дифференциалы с автоматической блокировкой с помощью гидравлической муфты с вязкой жидкостью. Они обеспечивают оптимальную силу тяги во всех условиях движения, в связи с чем отпадает необходимость в принудительной блокировке. Есть у них и другие преимущества. Этот узел предохраняет трансмиссию от перегрузки, которая может возникнуть, например, при внезапном ударе колеса.Дифференциал, автоматически блокирующийся гидравлической муфтой с вязкой жидкостью, чутко реагирует на состояние дорожной поверхности и обеспечивает более равномерную скорость автомобиля, а также уменьшает вероятность его застревания. При торможении межосевой дифференциал такого типа предотвращает блокировку колеса одного моста относительно колеса другого, приводящую к потере устойчивости. К тому же перераспределение избыточной тормозной силы с одной пары колес на другую значительно сокращает тормозной путь и сохраняет полный контроль над машиной.

Рассмотрим, как работает автоматически блокируемый межосевой дифференциал фирмы GKN с гидравлической муфтой. Изменение момента трения в ней рассчитано так, чтобы при маневрировании на поверхности с хорошими сцепными свойствами ( асфальт, бетон и т.д.) имелся малый момент трения между выходными валами. С ростом разности частот их вращения трение между звеньями муфты значительно возрастает. Блокировка с помощью муфты с вязкой жидкостью происходит точно в соответствии с распределением крутящего момента в межосевом дифференциале.

Испытания подтвердили, что распределение моментов между передними и задними колесами обеспечивает почти нейтральную поворачиваемость автомобиля. По легкости вождения и безопасности полноприводные автомобили с таким приводом превосходят даже переднеприводные легковые автомобили. Однако, при всех достоинствах такого рода блокировки, необходимо отметить, что фактическое включение блокировки после начала пробуксовки колес, характерное для вискомуфты, существенно снижает шансы на успешное преодоление серьезных внедорожных препятствий в виде слабого грунта, грязи или снега, поскольку буксующее колесо способно быстро зарываться. В результате возможностей автомобиля даже с заблокированным межосевым дифференциалом может оказаться недостаточно для самостоятельного выезда. 


Подключаемый передний мост


Очень многие производители внедорожников используют схему с подключаемым передним мостом (так называемый part time 4WD). В этом случае межосевой дифференциал, как правило, отсутствует, и в режиме полного привода между мостами устанавливается жесткая кинематическая связь. Производители рекомендуют подключать передний мост только в сложных дорожных условиях, когда колеса склонны к пробуксовке. Продолжительное движение в таком режиме по дорогам с твердой поверхностью вызывает повышенный износ шин и трансмиссии (в частности, в раздатках с цепной передачей перегружается цепь), повышенный расход топлива, а также ухудшает управляемость на высоких скоростях. Для избежания этих отрицательных последствий многие контрукции предусматривают не только отключение переднего моста, но и отсоединение передних колес от полуосей. Для этого применяются колесные хабы (муфты свободного хода), которые могут быть автоматическими и ручными, рассоединение полуосей при помощи электрического или пневматического привода и т.д.

Дифференциал КПП: назначение, устройство, принцип работы

Дифференциал — механизм в устройстве трансмиссии, который необходим для передачи, преобразования и распределения крутящего момента. В случае с автомобилем, дифференциал отвечает за распределение момента между ведущими колесами, а также позволяет колесам вращаться с разной угловой скоростью при определенных условиях.

Содержание статьи

Где находится дифференциал в устройстве трансмиссии автомобиля, виды дифференциалов

Как известно, автомобили бывают переднеприводными, заднеприводными, а также полноприводными. Что касается места расположения дифференциала:

  • если привод реализован на передние колеса, дифференциал находится в самой коробке передач;
  • на заднеприводном авто дифференциал устанавливается в картере заднего моста;
  • в автомобилях с полным приводом для привода ведущих колес дифференциал стоит в картере переднего и заднего моста, а для привода ведущих мостов механизм устанавливается в раздаточной коробке (раздатке).

Также дифференциалы бывают межколсесными и межосевыми. Если дифференциал использован для привода ведущих колес, это межколесный дифференциал. Межосевой дифференциал располагается между ведущими мостами применительно к автомобилям с полным приводом.

Что касается устройства и особенностей конструкции, в основу дифференциала положен планетарный редуктор. С учетом типа зубчатой передач, которая применена в редукторе, дифференциал (редуктор) может быть: коническим, цилиндрическим, червячным. Теперь давайте рассмотрим устройство и принцип работы дифференциала более подробно.

Устройство дифференциала и принцип работы

Начнем с первого типа. Конический дифференциал зачастую выполнят функцию межколесного дифференциала. Цилиндрический дифференциал обычно встречается на полном приводе и ставится между осями. Червячный дифференциал универсален, что позволяет ставить механизм как между колесами, так и использовать в качестве межосевого.

При этом наиболее распространенным является конический дифференциал, а базовые элементы его конструкции активно используются и в устройстве других типов дифференциалов. По этой причине рассмотрим устройство и принцип работы конического дифференциала в качестве примера.

  • Итак, конический дифференциал, как уже было сказано выше, фактически является планетарным редуктором. В конструкцию включены полуосевые шестерни и сателлиты, которые находятся в корпусе (чашке дифференциала).

На корпус от главной передачи передается крутящий момент, затем через сателлиты происходит его передача на полуосевые шестерни. Также на корпусе крепится ведомая шестерня главной передачи (крепление жесткое). В корпусе установлены оси, на осях вращаются сателлиты.

Сами сателлиты, которые реализуют функцию планетарной шестерни, позволяют соединить корпус и полуосевые шестерни. С учетом того, какую величину крутящего момента нужно передать, в конструкцию дифференциала могут интегрировать 2 или 4 четыре сателлита.

Солнечные (полуосевые шестерни) осуществляют передачу крутящего момента на ведущие колеса автомобиля. Передача происходит через полуоси, соединение полуосевых шестерен и полуосей выполнено через шлицы.

Полуосевые шестерни бывают левыми и правыми, с одинаковым или разным количеством зубьев. Если число зубьев одинаковое, тогда это симметричный дифференциал, разное количество зубьев на левой и правой шестерне используется в устройстве несимметричных дифференциалов.

В первом случае симметричный дифференциал позволяет распределять крутящий момент по осям в равной степени, причем независимо от величины угловых скоростей ведущих колес.

Такой дифференциал используют для установки между колесами (симметричный межколесный дифференциал). Несимметричный дифференциал способен разделять крутящий момент в том или ином соотношении. Данная особенность позволяет использовать его между ведущими осями.

Теперь перейдем к принципам работы дифференциала. Прежде всего, симметричный дифференциал работает в трех основных режимах. Первый режим – движение по прямой, второй — движение в повороте, третий — езда по дорогое с плохим сцеплением (грязь, лед и т.д.).

Когда автомобиль движется прямо, колеса испытывают равнозначное  сопротивление. Происходит передача крутящего момента от главной передачи на корпус дифференциала. Вместе с корпусом перемещаются сателлиты, которые, в свою очередь, осуществляют передачу момента на ведущие колеса.

С учетом того, что вращения сателлитов на осях не происходит, движение полуосевых шестерен осуществляется с равной угловой скоростью, частота вращения левой и правой шестерни равна частоте вращения ведомой шестерни главной передачи.

Однако если машина заходит в поворот, колесо, которое находится ближе к центру (внутреннее ведущее) нагружается сильнее и начинает испытывать большее сопротивление сравнительно с наружным колесом (дальним от центра поворота).

В результате роста нагрузки внутренняя полуосевая шестерня несколько замедляет вращение, а это приводит к тому, что сателлиты начинают вращаться вокруг своей оси. Такое вращение сателлитов приводит к увеличению частоты вращения наружной полуосевой шестерни.

  • На практике возможность движения ведущих колес с разными угловыми скоростями делает возможным прохода поворота без пробуксовок. Кстати, крутящий момент все равно распределяется на ведущие колеса равнозначно.

Если же автомобиль забуксовал в грязи, в снегу или на льду, одно колесо испытывает большее сопротивление, чем другое. В этом случае дифференциал (благодаря своей конструкции) инициирует ускоренное вращение буксующего колеса, тогда как другое колесо замедляется.

Однако недостаточная сцепка с покрытием не позволяет получить большой крутящий момент на буксующем колесе, а особенность работы симметричного дифференциала не позволит также развить нужный момент на другом колесе. Часто в этом случае машина попросту не может продолжить  дальнейшее движение.

Выходом из ситуации становится необходимость увеличения крутящего момента на колесе, которое не буксует. Для этого дифференциал необходимо заблокировать. По этой причине внедорожники имеют дополнительную возможность блокировки дифференциала, тогда как легковые авто и даже некоторые современные бюджетные «паркетники» лишены такой функции. 

Читайте также

устройство, принцип действия и 3 типа блокировки

Содержание статьи

В современном автомобилестроении существует множество технических решений реализации дифференциала. В зависимости от привода автомобиля используют различные типы узлов: для заднеприводных, переднеприводных и дифференциальные устройства для внедорожников. Кроме того этот узел трансмиссии классифицируют по внутреннему устройству (конический, цилиндрический, червячный) и способу блокировки.

Дополнительно рекомендуем прочитать статью нашего специалиста, в которой подробно рассказывается о том, что такое трансмиссия.

Также советуем изучить материал нашего эксперта, посвящённый тому, что такое главная передача и каково её устройство.

Предназначение дифференциала в автомобиле

Основная задача дифференциала — обеспечивать колёсам разную скорость вращения. Такой способ  вращательного движения необходим для правильного вхождения машины в повороты, при пробуксовке колес и в другие моменты. Когда машина поворачивает, то разные колёса описывают разные траектории. Если ведущие колеса будут двигаться с одинаковой скоростью, то выполнить поворот на такой машине будет очень сложно. Распределение моментов между приводимыми в движение колёсами происходит при помощи дифференциала.

Во время пробуксовки одного из колёс, обычный планетарный механизм начнёт работать в сторону увеличения крутящего момента. Колесо начинает буксовать ещё сильнее. Колесо, находящееся на твёрдой поверхности, перестанет крутиться. Для решения таких проблем дифференциальные устройства обеспечиваются блокировочными механизмами различных типов: ручными или автоматическими. Блокировка дифференциала значительно повышает проходимость полноприводного автомобиля. Пока хотя бы одно колесо цепляет дорогу, машина двигается.

Классификация дифференциалов

Различают два основных вида дифференциальных механизмов: межколёсный и межосевой. Межколёсный предназначается для различных автомобилей с приводом на два колеса. Межосевой делит крутящий момент на все четыре. В зависимости от модели дифференциала, используются различные конструктивные решения механизма. В переднеприводных машинах этот узел обычно помещают в картере коробки передач. У заднепрводных раздаточные шестерни размещают в корпусе заднего моста.

Полноприводные внедорожники  используют для размещения дифференциального механизма чаще всего отдельную раздаточную коробку («Land Cruiser», «Нива»). Некоторые производители используют конструкцию с двумя раздельными дифференциалами (Jeep «Cherokee», UAZ «Hunter»),  размещёнными в переднем и заднем мостах.

Устройство и схема работы дифференциала на примере свободного дифференциала

Самым простым устройством на базе планетарного редуктора является свободный дифференциал. Рассмотрим вкратце принцип его действия. Вращение от двигателя передаётся на механизм шестернёй главной передачи. Зубья жёстко передают движение на ведомую шестерню большого размера, находящуюся в корпусе дифференциала.

На ведомой шестерёнке закреплены два конических сателлита с двумя степенями свободы: они вращаются вместе с ведомой шестернёй, и одновременно могут вращаться вдоль своей оси. Когда автомобиль едет прямо, сателлит бежит по большому кругу и передаёт одинаковое вращательное движение на обе полуоси. Как только машина поворачивает, сателлиты совершают вращательные движения вокруг своей оси, и скорость вращения полуосей изменяется. В результате одно из колёс движется медленнее, а другое, описывающее больший поворотный радиус, быстрее.

Зачем необходима блокировка дифференциала?

У свободного дифференциала есть один большой недостаток. В момент пробуксовки одного из колёс, сателлит начинает прокручиваться и передавать весь импульс движения на него. Буксующее колесо крутится с большой скоростью, в то время как стоящее на твёрдой почве второе колесо, бездействует. Особенно опасно, когда такие процессы происходят на большой скорости.

Если на дороге попадается участок с неравномерной обледенелой поверхностью, то машина со свободным дифференциалом может уйти в неуправляемый занос. Для решения этой проблемы используется блокировка дифференциала.

Типы дифференциалов по способу блокировки

Естественным решением предотвращения пробуксовки является временная приостановка одного из компонентов механизма. Существует несколько решений этой задачи: можно временно блокировать одно из колёс, полуось, сам дифференциальный узел или даже двигатель. По способу реализации разделяют блокировки следующих типов: ручная, самоблокирующаяся, электронная.

Дифференциалы с ручной блокировкой

Самым простым вариантом блокирования дифференциального механизма является его ручное отключение. Обычно такая функция реализуется с помощью специального рычага или кнопки в салоне внедорожника. Движением рычага блокируется возможность вращения сателлитов вдоль своей оси, и планетарка становится обычной муфтой. Выполнять подобную операцию следует только во время полной остановки автомобиля с выжатым сцеплением.

Использовать блокировку следует при движении на малых скоростях по сложнопроходимым дорогам. При отключенном дифференциале, автомобиль становится трудноуправляемым и стремится ехать по прямой.

Поэтому ручное управление механизмом раздачи мощности по колёсам требует определённых навыков водительского мастерства. Ручной блокировкой дифференциала оборудуются внедорожники с жёсткой рамой: «Land Cruiser», «Hilux», «Нива» и другие.

Самоблокирующиеся дифференциалы

Для увеличения проходимости автомобиля и упрощения управлением в трудных условиях были созданы несколько моделей самоблокирующихся дифференциалов. Принцип работы этих узлов основан на возникновении блокировки работы узла при определённых обстоятельствах.

Дифференциалы Speed sensitive

Рассмотрим подробнее дифференциалы Speed sensitive, которые срабатывают, если полуоси начинают вращаться на различных угловых скоростях.

Примером автомобиля, где установлен такой тип дифференциала, может служить Toyota «Rav4» с вискомуфтой. Одна часть этого узла закреплена на чашке дифференциала, другая часть на полуоси. В режиме обычного движения или небольшом расхождении в повороте, рабочие поверхности муфты двигаются независимо и не мешают вращению полуосей. Вращение одной из осей, с заметно большей скоростью, приводит к тому, что вискомуфта срабатывает и начинает тормозить движение.

При падении скорости, сила трения уменьшается, и части узла вновь становятся независимыми. Такой дифференциал вполне подходит для автовладельцев, которые не стремятся покорить все вершины бездорожья. В городском режиме и на грунтовых дорогах машины с такими дифференциалами прекрасно себя зарекомендовали. Но у вискомуфты есть проблемные места — в сложной ситуации она не тянет нагрузками, начинает греться, запаздывает со включением и может прийти в нерабочее состояние.

На спецтехнике устанавливают другой тип самоблокирующихся дифференциальных механизмов — кулачковые пары. Примером реализации служит «ГАЗ-66». Данная конструкция узла позволяет в разы повысить проходимость машины, но чревата опасными ситуациями, когда дифференциал самопроизвольно заклинивает. Схема действия проста, как всё гениальное. Вместо планетарки в механизме применяются зубчатые пары. Они свободно поворачиваются при малейших расхождениях в скоростях колёс, а при значительном расхождении заклинивают.

Интересный вариант конструкторского решения самоблокирующегося дифференциала реализован в Kia «Sportage». Основанный на похожих методах, что и вискомуфта, этот тип использует пластины для торможения нежелательных вращений. Принципиальным отличием или существенным усовершенствованием является использование гидравлической системы для сближения фрикционных пластин.

При возникновении большой разницы в скоростях полуосей срабатывает насос, который нагнетает давление масла в системе фрикционов и заставляет пластины сближаться. Таким образом, скорость вращения пробуксовывающего колеса начинает снижаться, и происходит перераспределение крутящего момента.

Дифференциалы Torque sensitive

Более современным и эффективным можно назвать дифферинциалы Torque sensitive, приходящие в рабочее состояние при снижении скорости вращения на одной из полуосей. Такой узел осуществляет контроль за показателями скоростей вращения и снижает их в автоматическом режиме.

Конструктивно такие дифференциальные устройства представляют собой обычный свободный дифференциал с комплектом подпружиненных фрикционных гасителей скорости, размещённых между полуосями и чашкой дифференциала. Принцип действия основан на свойствах гипоидных передач, которые могут самопроизвольно разблокироваться. Различают три основных конструктивных реализации этого типа дифференциалов.

Первый тип использовался на внедорожнике Toyota «Celica GT-4» и назывался Т-1. Каждая полуось в этом узле имеет свои сателлиты, связанные между собой. Таким образом, как только возникает разница в крутящих моментах сателлитов, червяк синхронизирует их, и колёса будут крутиться с одной и той же скоростью. Диапазон их разницы определяется углом наклона зубчиков межсателлитового вала.

Такой механизм приводит к тому, что колёса либо движутся с одной скоростью (при езде по прямой), либо благодаря синхронизированным сателлитам делают обороты с различными скоростями (при повороте). Никаких пробуксовок не возникает. Модель узла трансмиссии с такими характеристиками стала популярна не только среди внедорожников, её установили на спортивную машину Mazda «RX-7» (1991 г.).

В продолжение серии была выпущена модель T-2, более чувствительная к разнице в скоростях. Как и аналогичный механизм Rod Quaife, эта конструкция отличается наличием более сложной передачи между сателлитами вместо червяка. Эта модель приобрела ещё большую популярность и применима для большого количества машин: BMW «Z3», Audi «A4», «A6», «A8», родстеры Honda «S2000», Volkswagen «Passat» (B6), Mazda «MX-5», внедорожники «Range Rover», Hummer.

Третья разновидность дифференциалов модели Torque sensitive называется Т-3 и используется чаще всего в качестве межосевых узлов. Это более совершенная конструкция позволяет автоматически распределять нагрузку между задней и передней осями в определенном промежутке. Обычно это происходит в диапазоне 65 на 35. Если на пути Lexus «GX 470», оснащенного таким дифференциалом, выступает препятствие, то сила тяги у него будет подаваться на те колёса, которые ещё могут зацепить дорожное покрытие.

Дифференциалы с электронным управлением

Механический способ блокировки дифференциала не стоит рассматривать, как единственную разработку, направленную на улучшение проходимости и повышение контроля за автомобилем. Примером может служить система управления трансмиссией с помощью электроники — Traction Control (TRAC) — схема контролирования за тягой и сцеплением колёс. В основе TRAC лежит простой принцип: отслеживание и коррекция частоты оборотов колёс при помощи специальных датчиков.

Как только колесо начинает буксовать, в это время включается тормоз и крутящий момент уходит на другую полуось. На первый взгляд машина будет вести себя, как будто у неё блокировали дифференциал. На самом деле эта система даже эффективнее механической блокировки, проще в исполнении и надежнее. Кроме того, TRAC не создает помех в работе механизмов любых дифференциалов, а является их удачным дополнением. Именно поэтому современные внедорожники, такие как «Hilux», Lexus, «Prado» оборудованы электронным управлением Traction Control.

Активные дифференциалы

Наиболее популярным и современным решением в области конструирования дифференциального узла стало изобретение активного дифференциала. Идея этого механизма в том, чтобы не тормозить полуоси и колёса, а напротив, разгонять их до большей скорости. С помощью электроники и фрикционных сцеплений колесо, бегущее по внешнему кругу, получает в разы больший момент, чем внутреннее.

Благодаря этому техническому решению прохождение крутых поворотов отличается легкостью и устойчивостью. Это обстоятельство сразу же взяли на вооружение производители спортивных автомобилей. Но до выхода в широкое производство этому типу дифференциалов ещё далеко.

Заключение

Дифференциал за годы своего существования прошёл большой путь эволюционного развития и это не удивительно. Конструкторы автомобилей сделали всё возможное, чтобы этот узел стал надёжным и обеспечивал комфортное и беспрепятственное движение автомобиля. Если задаваться вопросом, с каким дифференциалом выбрать машину, то это наиболее улучшенная модель из разряда Torque sensitive, с дополнением в виде электронного управления Traction Control.

Пожалуйста, оцените этот материал!

Загрузка…

Если Вам понравилась статья, поделитесь ею с друзьями!

Дифференциал:описание,история,фото,виды

Многие покупатели при выборе внедорожника наверняка сталкивались в описании той или иной модели с термином «электронная блокировка дифференциала». Но что это такое, и как работает этот самый дифференциал, знают далеко не все потенциальные владельцы автомобилей этого класса. В нашем сегодняшнем материале мы подробно расскажем, для чего машине дифференциал, каковы его разновидности и на какие автомобили он устанавливается

История создания и назначение дифференциала

На автомобилях, оснащенных двигателем внутреннего сгорания, дифференциал появился через несколько лет после их изобретения. Дело в том, что первые экземпляры машин, приводимых в действие двигателем, имели очень плохую управляемость. Оба колеса на одной оси при повороте вращались с одинаковой угловой скоростью, что приводило к пробуксовке колеса, идущего по внешнему, большему, чем внутренний, диаметру. Решение проблемы было найдено просто: конструкторы первых автомобилей с ДВС позаимствовали у паровых повозок дифференциал – механизм, изобретенный в 1828 году французским инженером Оливером Пекке-Ром.

Он представлял собой устройство, состоящее из валов и шестерней, через которые крутящий момент от двигателя передается на ведущие колеса. Но после установки на автомобиль дифференциала обнаружилась еще одна проблема – пробуксовка колеса, утратившего сцепление с дорогой. Обычно это проявлялось, когда автомобиль двигался по дороге, покрытой участками льда. Тогда колесо, попавшее на лед, начинало вращаться с большей скоростью, чем то, которое находилось на грунте или бетоне, что в итоге приводило к заносу автомобиля. Тогда конструкторы задумались об усовершенствовании дифференциала с тем, чтобы при подобных условиях оба колеса вращались с одинаковой скоростью и автомобиль не заносило. Первым, кто проводил эксперименты с созданием дифференциала с ограниченным проскальзыванием, стал Фердинанд Порше.
Ему понадобилось три года, чтобы разработать, протестировать и выпустить на рынок так называемый кулачковый дифференциал – первый механизм с ограниченным проскальзыванием, который устанавливался на первые модели марки Volkswagen. Впоследствии инженеры разработали различные виды дифференциалов, о которых речь пойдет ниже. В автомобиле дифференциал выполняет три функции: 1) передает крутящий момент от двигателя к ведущим колесам, 2) задает колесам разные угловые скорости, 3) служит понижающей передачей в сочетании с главной передачей.

Главная передача

При движении автомобиля крутящий момент от коленвала двигателя передается коробке передач и затем, через главную передачу и дифференциал, на ведущие колеса. Главная передача позволяет увеличивать или уменьшать крутящий момент передаваемый колесам автомобиля и одновременно уменьшать и соответственно увеличивать скорость вращения колес. Передаточное число в главной передаче подбирается таким образом, что максимальный крутящий момент и частота вращения ведущих колес находятся в наиболее оптимальных значениях для конкретного автомобиля. Кроме того, главная передача очень часто является объектом тюнинга автомобиля.

Устройство главной передачи

По сути, главная передача — это не что иное, как шестеренчатый понижающий редуктор, в котором ведущая шестерня связана с вторичным валом КПП, а ведомая – с колесами автомобиля. По типу зубчатого соединения главные передачи различаются на следующие разновидности:

  • цилиндрическая – в большинстве случаев применяется на автомобилях с поперечным расположением двигателя и коробки передач и передним приводом;
  • коническая – применяется очень редко, так как имеет большие габариты и высокий уровень шума;
  • гипоидная – наиболее востребованная разновидность главной передачи, которая применяется на большинстве автомобилей с классическим задним приводом. Гипоидная передача отличается малыми размерами и низким уровнем шума;
  • червячная – практически не применяется на автомобилях по причине трудоемкости изготовления и высокой стоимости.

Также стоит отметить, что автомобили с передним и задним приводом имеют различное расположение главной передачи. В переднеприводных автомобилях с поперечным расположением КПП и силового агрегата, цилиндрическая главная передача располагается непосредственно в картере КПП.

В автомобилях с классическим задним приводом главная передача установлена в корпусе ведущего моста и соединена с коробкой передач посредством карданного вала. В функционал гипоидной передачи заднеприводного автомобиля также входит и разворот вращения на 90 градусов за счет конических шестерен. Несмотря на различные типы и расположение, предназначение главной передачи остается неизменным.

Разновидности дифференциалов

По виду блокировки дифференциалы делятся на два – ручная и электронная блокировка. Ручная, как следует из названия, производится водителем вручную при помощи кнопки или тумблера. В этом случае шестерни-сателлиты механизма блокируются, ведущие колеса двигаются с одинаковой скоростью. Обычно ручная блокировка дифференциала предусмотрена на внедорожниках. Ее рекомендуется включать при преодолении сложного бездорожья и отключать при выезде на обычные дороги.

Электронная или автоматическая блокировка дифференциала осуществляется при помощи электронного блока управления, который, анализируя состояние дорожного покрытия (используется информация с датчиков ABS и антипробуксовочной системы), сам блокирует шестерни-сателлиты. Задний дифференциал с электронным управлением Range Rover Sport По степени блокировки это устройство делится на дифференциал с полной блокировкой и дифференциал с частичной блокировкой шестерен-сателлитов. Полная блокировка дифференциала предполагает 100%-ную остановку вращения шестерен-сателлитов, при которой сам механизм начинает выполнять функцию обычной муфты, передавая равнозначный крутящий момент на обе полуоси.

Вследствие этого оба колеса вращаются с одинаковой угловой скоростью. Если же одно из колес теряет сцепление с дорогой, весь крутящий момент передается на колесо с лучшим сцеплением, что позволит преодолеть бездорожье. Такое устройство дифференциала используется на внедорожниках Toyota Land Cruiser, Mercedes-Benz G-Class и других. Полная блокировка дифференциала Частичная блокировка дифференциала предполагает неполную остановку вращения шестерен-сателлитов, то есть с проскальзыванием. Достигается такой эффект за счет так называемых самоблокирующихся дифференциалов.

В зависимости от того, каким образом срабатывает этот механизм, их делят на два вида: Speed sensitive (функционируют при разнице в угловых скоростях вращения полуосей) и Torque sensitive (функционируют при уменьшении крутящего момента на одной из полуосей). Такое устройство дифференциала используется на внедорожниках Mitsubishi Pajero, Audi с системой полного привода Quattro, BMW с системой X-Drive и так далее. Дифференциалы, относящиеся к группе Speed sensitive, имеют разную конструкцию. Существует механизм, в котором роль дифференциала играет вискомуфта. Она представляет собой резервуар, расположенный между полуосью и ротором карданного вала, заполненный специальной вязкой жидкостью, в которую, в свою очередь, погружены диски, сочлененные с полуосью и ротором. Когда угловая скорость вращения колес разнится (одно колесо вращается быстрее другого), диски в резервуаре тоже начинают вращаться с разными скоростями, но вязкая жидкость постепенно выравнивает их скорость, и, соответственно, крутящий момент.

Как только угловые скорости обоих колес сравняются, вискомуфта отключается. По своим характеристикам вискомуфта менее надежна, чем фрикционный дифференциал, поэтому ее устанавливают на машины, предназначенные для преодоления бездорожья средней степени или спортивные модификации автомобилей. Еще один механизм дифференциала, относящийся к группе Speed sensitive – героторный дифференциал.

Здесь роль блокировки, в отличие от вискомуфты, играет масляный насос и фрикционные пластины, которые монтируются между корпусом дифференциала и шестерней-сателлитом полуосей. Но принцип действия во многом схож с таковым у вискомуфты: при возникновении разницы в угловых скоростях ведущих колес насос нагнетает масло на фрикционные пластины, которые под давлением блокируют корпус дифференциала и шестерню полуоси до тех пор, пока скорости вращения колес не сравняются. Как только это происходит, насос перестает работать и блокировка отключается.

Дифференциалы, относящиеся к группе Torque sensitive, тоже имеют разную конструкцию. К примеру, есть механизм, в котором используется фрикционный дифференциал. Его особенностью является разность угловых скоростей вращения колес при движении автомобиля на прямой и в повороте. При езде по прямой дороге угловая скорость обоих колес одинаковая, а при прохождении поворота ее значение различно для каждого колеса. Это достигается за счет установки между корпусом дифференциала и шестерней-саттелитом фрикциона, который способствует улучшению передачи крутящего момента на колесо, утратившее сцепление с дорогой. Еще один тип дифференциалов — с гипоидным (червячным или винтовым) и косозубым зацеплением.

Их условно делят на три группы. Первая – с гипоидным зацеплением, в которой у каждой полуоси есть собственные шестерни-сателлиты. Они объединятся между собой при помощи прямозубого зацепления, причем ось шестерни располагается по отношению к полуоси перпендикулярно. При возникновении разницы в угловых скоростях ведущих колес, шестерни полуосей расклиниваются, образуется трение между корпусом дифференциала и шестернями. Происходит частичная блокировка дифференциала и крутящий момент передается на ту ось, угловая скорость вращения которой меньше. Как только угловые скорости колес выровняются, происходит деактивация блокировки.

Вторая – с косозубым зацеплением, в которой у каждой полуоси также есть свои шестерни-сателлиты (они винтовые), но их оси располагаются параллельно полуосям. А объединяются эти агрегаты между собой при помощи косозубого зацепления. Сателлиты в этой механизме установлены в специальных нишах на корпусе дифференциала. Когда угловая скорость вращения колес различается, происходит расклинивание шестерен, и они, сопрягаясь с шестернями в нишах корпуса дифференциала, частично блокируют его.

При этом крутящий момент направляется на ту полуось, скорость вращения которой меньше. Третья – с косозубыми шестернями полуосей и винтовыми шестернями сателлитов, которые располагаются параллельно друг другу. Такой тип используется в конструкции межосевого дифференциала. Благодаря планетарной конструкции дифференциала, имеется возможность посредством частичной блокировки смещать крутящий момент на ту ось, угловая скорость вращения колес которой меньше. Диапазон такого смещения весьма широк – от 65/35 до 35/65. При установлении равнозначной угловой скорости вращения колес передней и задней оси дифференциал разблокируется. Эти группы дифференциалов получили самое широкое применение в автомобилестроении: их устанавливают как на «гражданские» модели, так и на спортивные.

ВА Уход за автомобилем | Что такое дифференциал в автомобиле и для чего он нужен?

Брайан Инглэнд , Пн, 19 января 2015 г.

Столько раз мы слышим слова, связанные с нашими автомобилями, и даже не понимаем, что это такое. Консультант по автомобильному обслуживанию может сказать клиенту : «Нам нужно заменить масло в дифференциале» , а клиент может понятия не иметь, о чем он говорит. Так что же такое дифференциал?

Ну, вот краткое описание того, что такое дифференциал на автомобиле.

Дифференциал является частью переднего и/или заднего моста в сборе. Ось — это центральный вал, вокруг которого вращаются колеса автомобиля. На фото ниже показано, где он расположен на автомобиле с полноприводной автоматической коробкой передач.

Дифференциал позволяет колесам одной оси вращаться с разной скоростью. Когда ваш автомобиль входит в поворот, внешнее колесо должно двигаться быстрее, чем внутреннее. Дифференциал позволяет это сделать.Двухколесные автомобили имеют одну ось, а полноприводные – две.

На автомобилях с передним приводом ось/дифференциал в сборе находится в узле оси трансмиссии (коробка передач). Дифференциальную жидкость или масло в коробках передач и мостах следует менять в рамках графика профилактического обслуживания. Это часть вашей службы передачи. Некоторые полноприводные автомобили требуют замены масла в осях каждые 30 тысяч миль. На других автомобилях это каждые 60 тысяч миль или более. Эта услуга может продлить срок службы вашего дифференциала.Обратитесь к руководству по эксплуатации вашего автомобиля, чтобы узнать рекомендации производителя. Если вы используете свой автомобиль в экстремальных условиях, меняйте его чаще. На фото выше точка стрелки на переднем дифференциале касается крышки. Эта защитная крышка удерживает масло в полости, где находятся шестерни.

Фотография ниже представляет собой 3D-рендеринг дифференциала. Вы можете видеть шестерни, и, как вы понимаете, они должны быть хорошо смазаны, чтобы обеспечить оптимальную работу.

Итак, в следующий раз, когда консультант по обслуживанию упомянет о замене масла в дифференциале, вы будете точно знать, о чем он говорит.

Что такое дифференциал? — Типы, работа, детали и схема

Что такое дифференциал? — Дифференциал представляет собой зубчатую передачу, состоящую из трех валов, которые обладают тем свойством, что скорость вращения одного вала является средней скоростью других или фиксированным кратным этому среднему значению.

👉 Содержание 👈

Что такое дифференциал?

Дифференциал позволяет каждому заднему колесу вращаться с разной скоростью.Во время поворота, но в то же время, он передает равный крутящий момент на каждое колесо, когда оба колеса имеют одинаковое сцепление с дорогой. Система шестерен в дифференциале устроена таким образом, что она соединяет карданный вал с задней осью. Разница в слове предназначена для обеспечения относительного движения задним колесам.

Необходимость дифференциала

Дифференциал позволяет неуправляемым колесам вращаться с разной скоростью, чтобы автомобиль мог проходить повороты без чрезмерного износа шин.Колесо внутри поворота перемещается на меньшее расстояние по сравнению с внешним колесом. Если ось не позволяет колесам вращаться независимо друг от друга, шина одного колеса будет тянуться по земле.

Компоненты дифференциала
  1. Ведущая шестерня или коническая шестерня
  2. Зубчатый венец или зубчатый венец
  3. Корпус дифференциала
  4. Боковая шестерня дифференциала или солнечные шестерни
  5. Шестерни дифференциала или планетарные шестерни
  6. Полуоси или полуоси
Дифференциальная схема Что такое дифференциал, потребность в дифференциале, компоненты дифференциала, работа дифференциала, типы дифференциала.

Конструкция дифференциала

На рисунке показаны основные детали дифференциала, применяемого в заднеприводных автомобилях. Небольшая коническая шестерня, называемая боковой шестерней дифференциала, установлена ​​на внутренних концах каждой оси. Две конические шестерни соединены вместе и соединяют ведущий и ведомый валы под углом 90°. Корпус дифференциала связан с двухколесными мостами и полуосями дифференциала.

Корпус дифференциала имеет подшипники, которые вращают две полуоси.Затем к корпусу дифференциала подходят две шестерни и поддерживающий их вал, называемый валом-шестерней. Затем вал-шестерня входит в зацепление с двумя боковыми шестернями дифференциала, соединенными с внутренними концами полуосей.

Зубчатый венец перемещается к фланцу на картере дифференциала. Зубчатый венец вращает корпус дифференциала. Наконец, ведущая шестерня устанавливается. Ведущая шестерня соединяется с корпусом дифференциала, называемым корпусом дифференциала или держателем. Ведущий вал соединяется с ведущей шестерней с помощью универсального шарнира и входит в зацепление с зубчатым венцом.Следовательно, ведущая шестерня вращается, когда водитель поворачивает вал. Таким образом, зубчатый венец вращается.

Работа дифференциала

Входной крутящий момент передается на зубчатый венец через ведущую шестерню, которая заменяет весь корпус дифференциала. Корпус дифференциала соединен с обеими боковыми шестернями дифференциала только через шестерни дифференциала. Крутящий момент передается на боковые шестерни дифференциала через шестерни дифференциала. Шестерни дифференциала вращаются вокруг оси корпуса дифференциала, приводя в движение боковые шестерни дифференциала.

Когда автомобиль движется по прямой дороге, сопротивление обоих колес одинаково, и зубчатый венец, корпус дифференциала, ведущая шестерня дифференциала и две шестерни дифференциала заменяются как одно целое. В результате боковые шестерни вращаются с одинаковой скоростью, а зубчатый венец заставляет оба ведущих колеса вращаться с одинаковой скоростью. Шестерни дифференциала вращаются без вращения вокруг своей оси, и оба колеса вращаются с одинаковой скоростью.

Если встречается левая боковая шестерня дифференциала (когда транспортное средство движется по криволинейной траектории), шестерня дифференциала вращается, а также пробуксовывает, что позволяет левой шестерне дифференциала замедляться в сторону правого дифференциала.Это заставляет внешнее колесо вращаться быстрее, чем внутреннее колесо.

Типы дифференциала
  1. Обычный или открытый дифференциал
  2. Дифференциал повышенного трения (самоблокирующийся дифференциал или блокировка дифференциала)
  3. Нескользящий дифференциал
  4. Двухступенчатый дифференциал

1. Обычный дифференциал | Открытый дифференциал Обычный дифференциал — Что такое дифференциал, потребность в дифференциале, компоненты дифференциала, работа дифференциала, типы дифференциала, дифференциальная схема.

Обычный дифференциал, показанный на рисунке, представляет собой графическое изображение дифференциала. Принцип работы такой же, как описано выше.

2. Дифференциал повышенного трения (самоблокирующийся дифференциал | Блокировка дифференциала)

Стандартный дифференциал хорошо работает в большинстве ситуаций. на очень скользких дорожных покрытиях, таких как заснеженные или грязные дороги, недостаток движущей силы, называемой силой тяги, может привести к проскальзыванию задних колес, поскольку стандартный дифференциал будет приводить в движение колеса с наименьшим сцеплением с дорогой.Если одно ведущее колесо находится на сухой дороге, а другое — на заснеженной или грязной дороге, зубчатый венец и корпус дифференциала будут приводить в движение ведущую шестерню. Но шестерни не будут приводить в движение обе боковые шестерни.

Когда шестерни движутся мимо картера дифференциала, они будут двигаться вокруг боковой шестерни, соответствующей колесу на сухой дорожке. Это приводит к тому, что шестерни приводят в движение проскальзывающее колесо, и автомобиль не движется. Стандартный дифференциал передает почти всю мощность двигателя на буксующее колесо.Этой проблемы можно избежать, используя блокировку дифференциала. Блокировка дифференциала преодолевает проблемы с сцеплением, посылая одинаковую мощность на оба колеса, обеспечивая при этом нормальный поворот автомобиля.

Дифференциал повышенного трения — Что такое дифференциал, потребность в дифференциале, компоненты дифференциала, работа дифференциала, типы дифференциала, схема дифференциала.

Дифференциал повышенного трения (LSD) ограничивает дифференциальную скорость вращения между двумя колесами, двумя упорными шайбами ​​и диском сцепления, который входит в корпус дифференциала, показанный на рис.Когда сопротивление левого дифференциала больше сопротивления колеса, правый дифференциал будет вращаться. Он образует зубья правого элемента сцепления дифференциала, взбираясь по зубьям левого элемента сцепления дифференциала. Таким образом, для удаления друг от друга требуется два члена сцепления.

Следовательно, боковые шестерни толкают противоположно упорным шайбам. За счет этого обороты задней полуоси приближаются к картеру дифференциала из-за трения между полуосью и упорными шайбами.Таким образом, это называется эффектом ограниченного проскальзывания.

Типы самоблокирующихся дифференциалов

I. Дифференциал диска сцепления Дифференциал сцепления — Что такое дифференциал, потребность в дифференциале, компоненты дифференциала, работа дифференциала, типы дифференциала, схема дифференциала.

В дифференциале фрикционных дисков используется несколько фрикционных дисков, похожих на небольшие ручные диски сцепления. Основное различие между этим дифференциалом повышенного трения и стандартным дифференциалом заключается между боковой шестерней пакета сцепления и корпусом дифференциала.

Фрикционные диски сцепления изготовлены из стали, покрытой фрикционным материалом. Диски сцепления изготовлены из стали. Диски и пластины поочередно насажены на боковую шестерню и входят в канавки на корпусе дифференциала. Канавки на дисках или пластинах предназначены для лучшего захвата мощности.

Шестерня, боковая шестерня и другие детали аналогичны стандартному дифференциалу. Дифференциал повышенного трения состоит из двух частей, что позволяет снимать пакет сцепления.Диски и пластины приводятся в действие пружинами предварительного натяжения и механическим давлением ведущей шестерни на боковую шестерню.

Поскольку ведущая и боковая шестерни являются коническими шестернями, их зубья пытаются выйти из зацепления, когда дифференциал передает крутящий момент двигателя. Это создает толкающее действие на боковые шестерни и вынуждает их двигаться наружу к картеру дифференциала.

Внешнее давление боковых шестерен прижимает фрикционные диски и стальные пластины между боковой шестерней и картером.Всякий раз, когда диски и пластины прижимаются друг к другу, шлицевые и зубчатые соединения (т.е. выступы входят в канавки) обеспечивают сцепление боковой шестерни и корпуса дифференциала.

Когда автомобиль движется прямо, дифференциал диска сцепления работает аналогично стандартному дифференциалу. Задние колеса и корпус дифференциала вращаются с одинаковой скоростью. Пакеты сцепления применяются, но не требуются.

Когда автомобиль совершает поворот, более высокий крутящий момент из-за внешнего колеса вращается быстрее, чем корпус, и вызывает проскальзывание пакета сцепления.Это позволяет дифференциалу работать так же, как стандартный дифференциал при выполнении поворотов. Диски и пластины скользят друг относительно друга. Диски крутятся с боковыми шестернями, с поворотами пластинчатого корпуса, которые допускают разные скорости вращения между корпусом и боковыми шестернями. Поэтому задние колеса вращаются с разной скоростью.

II. Дифференциал конусной муфты Дифференциал муфты конуса – Что такое дифференциал

Это другая версия самоблокирующегося дифференциала.Вместо пакетов фрикционов используются конусы с фрикционной накладкой. В коническом дифференциале используется конусообразная муфта, которая входит в зацепление с соответствующим конусообразным гнездом. Работа аналогична дифференциалу с диском сцепления. Пружина предварительного натяжения и давление бокового зубчатого колеса заставляют конус войти в выпуклое углубление в картере дифференциала.

Трение пытается заблокировать конус. Следовательно, боковая передача передает мощность на колесо с наибольшим сцеплением. И для диска сцепления, и для конусного дифференциала требуется специальное трансмиссионное масло с ограниченным проскальзыванием.Использование обычного трансмиссионного масла в дифференциале повышенного трения вызовет проскальзывание и вибрацию дисков и пластин или конусов во время поворота.

3. Нескользящий дифференциал

Этот дифференциал является регулятором крутящего момента. Возможна предварительная загрузка системы. Итак, дифференциал действует по результирующим моментам. Предварительная нагрузка может регулироваться.

Преимущества нескользящего дифференциала
  1. Максимальная тяга при любом уровне сцепления
  2. Уменьшение расхода топлива.
  3. Уменьшение износа шин.
  4. Комфортное вождение.
  5. Обеспечение постоянной скорости привода.
  6. Уменьшается недостаточная поворачиваемость в поворотах.

4. Двухступенчатый дифференциал Дифференциал с двойным редуктором – Что такое дифференциал

В бортовых передачах имеется одноступенчатый редуктор. Это единственная редукторная передача в максимальных автомобилях и легковых автомобилях, а также в некоторых грузовиках средней грузоподъемности между карданным валом и колесами.Конечные передачи с двойным редуктором используются для большегрузных автомобилей. При таком расположении нет необходимости иметь большое зубчатое колесо для достижения требуемого передаточного числа.

Первая редукторная передача достигается за счет единой фиксированной конечной передачи посредством шестерни и зубчатого венца. Вторичная шестерня расположена на валу первичного зубчатого венца. Понижение второй шестерни является результатом вторичной шестерни, которая плотно соединяется с первичной зубчатой ​​передачей и приводит в движение более крупную косозубую шестерню, которая крепится к картеру дифференциала.

Двухступенчатые бортовые редукторы могут быть разработаны для транспортных средств, таких как 5-тонные грузовики. В большинстве коммерческих автомобилей такого размера используется одноступенчатая или двухступенчатая коробка передач.

Часто задаваемые вопросы – что такое дифференциал

Что такое дифференциал?

Дифференциал представляет собой набор шестерен, передающих мощность двигателя на колеса, при этом позволяя им вращаться с разной скоростью. При заднем приводе (RWD) дифференциал находится между задними колесами, которые связаны с трансмиссией карданным валом.

Какие бывают типы дифференциалов?

Между транспортными средствами используются четыре общих различия: открытые, с блокировкой, с ограниченным проскальзыванием и вектором крутящего момента.

Понравилась эта статья? Не забудьте поделиться им! ❤️

Дифференциал функции

Определение дифференциала функции

Рассмотрим функцию y = f ( x ), которая непрерывна в интервале [ a , b ].Предположим, что в какой-то момент x 0 ∈ [ a , b ] независимая переменная увеличивается на Δ x . Приращение функции Δ y , соответствующее изменению независимой переменной Δ x , равно

\[\Delta y = \Delta f\left( {{x_0}} \right) = f\left( {{x_0} + \Delta x} \right) — f\left( {{x_0}} \right ).\]

Для любой дифференцируемой функции приращение Δ y можно представить в виде суммы двух слагаемых:

\[\Delta y = A\Delta x + \omicron\left( {\Delta x} \right),\]

, где первый член (называемый главной частью приращения) линейно зависит от приращения \(\Delta x,\), а второй член имеет более высокий порядок малости по отношению к \(\Delta x.2.\)

Обратите внимание, что в этом примере коэффициент \(A\) равен значению производной \(S\) в точке \({x_0}:\)

\[А = 2{х_0}.\]

Оказывается, для любой дифференцируемой функции справедлива следующая теорема:

Коэффициент \(A\) при главной части приращения функции в точке \({x_0}\) равен значению производной \(f’\left( {{x_0}} \right )\) в этот момент, то есть приращение \(\Delta y\) равно

\[\Delta y = A\Delta x + \omicron\left( {\Delta x} \right) = f’\left({{x_0}} \right)\Delta x + \omicron\left( {\ Дельта х} \справа).\]

Деление обеих частей уравнения на \(\Delta x \ne 0\) дает

\[\frac{{\Delta y}}{{\Delta x}} = A + \frac{{\omicron\left({\Delta x} \right)}}{{\Delta x}} = f ‘\left( {{x_0}} \right) + \frac{{\omicron\left( {\Delta x} \right)}}{{\Delta x}}.\]

В пределе как \(\Delta x \to 0\) мы получаем значение производной в точке \({x_0}:\)

\[y’\left( {{x_0}} \right) = \lim\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = A = f’ \влево( {{x_0}} \вправо).\]

Здесь мы учли, что для малой величины \(\omicron\left( {\Delta x} \right)\) более высокого порядка малости, чем \(\Delta x,\) предел равен

\[\lim\limits_{\Delta x \to 0} \frac{{\omicron\left( {\Delta x} \right)}}{{\Delta x}} = 0.\]

Предполагая, что дифференциал независимой переменной \(dx\) равен ее приращению \(\Delta x:\)

\[дх = \Дельта х,\]

получаем из соотношения

\[dy = A\Delta x = y’dx\]

то

\[y’ = \frac{{dy}}{{dx}},\]

я.т. е. производную функции можно представить как отношение двух дифференциалов.

Геометрический смысл дифференциала функции

На рис. \(2\) схематично показано разбиение приращения \(\Delta y\) на главную часть \(A\Delta x\) (дифференциал функции) и член более высокого порядка малости \(\ омикрон\влево({\Delta x}\вправо).\)

Рис. 2.

Касательная \(MN\), проведенная к кривой функции \(y = f\left( x \right)\) в точке \(M,\), как известно, имеет угол наклона \(\alpha,\) тангенс которой равен производной:

\[\tan \alpha = f’\left( {{x_0}} \right).\]

Когда независимая переменная изменяется на \(\Delta x\), тангенс увеличивается на \(A\Delta x.\) Это линейное приращение, образованное тангенсом, является просто дифференциалом функции. Оставшаяся часть полного приращения \(\Delta y\) (отрезок \(N{M_1}\)) соответствует «нелинейной» добавке более высокого порядка малости по \(\Delta x.\)

Свойства дифференциала

Пусть \(и\) и \(v\) — функции переменной \(х\).Дифференциал имеет следующие свойства:

  1. Постоянная может быть вынесена за знак дифференциала:

    \[d\влево( {Cu} \вправо) = Cdu,\]

    где \(С\) — постоянное число.
  2. Дифференциал суммы (разности) двух функций равен сумме (разности) их дифференциалов:

    \[d\left( {u \pm v} \right) = du \pm dv.\]

  3. Дифференциал константы равен нулю:

    \[d\влево(С\вправо) = 0.\]

  4. Дифференциал независимой переменной \(x\) равен ее приращению:

    \[dx = \Delta x.{n — 1}}dx,\;\;\;d\left( {\ln x} \right) = \frac{{dx}}{x},\;\;\;d\left( {\ sin x} \right) = \cos x dx,\]

    и так далее.

    Формоинвариантность дифференциала

    Рассмотрим композицию двух функций \(y = f\left( u \right)\) и \(u = g\left( x \right).\). Ее производную можно найти по цепному правилу:

    \[{y’_x} = {y’_u} \cdot {u’_x},\]

    , где субиндекс обозначает переменную дифференцирования.

    Дифференциал «внешней» функции \(y = f\left( u \right)\) можно записать как

    \[dy = {y’_u}\,du.\]

    Дифференциал «внутренней» функции \(u = g\left( x \right)\) можно представить аналогичным образом:

    \[du = {u’_x}\,dx.\]

    Если в последнюю формулу подставить \(du\), то получится

    \[dy = {y’_u}\,du = {y’_u}{u’_x}\,dx.\]

    Поскольку \({y’_x} = {y’_u} \cdot {u’_x},\), то

    \[dy = {y’_x}\,dx. 2}}} = — \ frac {\ pi }{ 2}.2}дх.\]

    Дополнительные проблемы см. на стр. 2.

    определение дифференциала в The Free Dictionary

    дифференциал

     (dĭf′ə-rĕn′shəl) прил.

    1. Относящийся к или показывающий разницу.

    2. Создание или изменение; отличительный.

    3. Зависит от конкретного различия или отличия или использует его.

    4. Математика Дифференциация или относящаяся к ней.

    5. Включая различия в скорости или направлении движения.

    н. 1. Математика

    а. Бесконечно малое приращение переменной.

    б. Произведение производной функции одной переменной на приращение независимой переменной.

    2. Дифференциал.

    3. Разница между сопоставимыми вещами, например, в размере заработной платы или в цене.


    по-разному нареч.

    Словарь английского языка American Heritage®, пятое издание. Авторские права © 2016, издательство Houghton Mifflin Harcourt Publishing Company. Опубликовано издательством Houghton Mifflin Harcourt Publishing Company. Все права защищены.

    дифференциал

    (ˌdɪfəˈrɛnʃəl) прил

    1. относящийся к различию или использующий его

    2. составляющий различие; отличительный

    3. (Математика) Математика , содержащая или включающая одну или несколько производных или дифференциалов движения, силы и т. д.: дифференциальный усилитель.

    n

    5. фактор, который различает две сопоставимые вещи

    6. (Математика) математика

    a. приращение данной функции, выраженное как произведение производной этой функции и соответствующего приращения независимой переменной

    b. приращение заданной функции двух или более переменных, f( x 1, x 2, … xn ), выраженное как сумма произведений каждой частной производной и приращения соответствующей переменной

    7. (Машиностроение) планетарная зубчатая передача, позволяющая двум валам вращаться с разными скоростями, при этом приводимый в движение третьим валом.См. также дифференциал

    8. (Термины производственных отношений и управления персоналом) главным образом Брит разница между ставками оплаты за разные виды труда, особенно при формировании структуры оплаты труда в отрасли

    9. ( Commerce) (в коммерции) разница в ставках, особенно между сопоставимыми трудовыми услугами или транспортными маршрутами , 2003, 2006, 2007, 2009, 2011, 2014

    разн.

    (ˌdɪf əˈrɛn ʃəl)

    прил.

    1. различия или разнообразия.

    2. представляющие собой разницу; отличительный; отличительный.

    3. демонстрирующие или зависящие от различия или отличия.

    4. относящиеся к разности двух или более движений, сил и т. д. или включающие их.

    5. относящиеся к математическим производным или производным или включающие их.

    н.

    6. разница или величина разницы, как в скорости, стоимости, степени или качестве, между сопоставимыми вещами.

    8. Матем.

    а. функция двух переменных, которая получается из заданной функции, y = f ( x ), и которая выражает приблизительное приращение данной функции как произведение производной функции на приращение независимой переменной, записанное как dy = f~ ( x ) dx.

    б. любое обобщение этой функции на более высокие измерения.

    9. Физика. количественная разница между двумя или более силами, движениями и т. д.: перепад давления.

    [1640–50; <средневековая латынь]

    по-разному, нареч.

    Рэндом Хаус Словарь колледжа Кернермана Вебстера, © 2010 K Dictionaries Ltd. Авторские права 2005, 1997, 1991 принадлежат Random House, Inc.Все права защищены.

    Дифференциальные уравнения. Введение

    Дифференциальное уравнение — это уравнение с функцией и одной или несколькими ее производными:


    Пример: уравнение с функцией y и ее производная д дх  

    Решение

    Мы решим его, когда найдем функцию y (или набор функций y).

    Есть много «приемов» решения дифференциальных уравнений ( если их можно решить!).

    Но сначала: почему?

    Чем полезны дифференциальные уравнения?

    В нашем мире вещи меняются, и , описывая, как они меняются, часто заканчивается дифференциальным уравнением:

    Пример: Кролики!

    Чем больше у нас будет кроликов, тем больше у нас будет крольчат.

    Потом эти кролики вырастают и тоже рожают! Население будет расти все быстрее и быстрее.

    Важными частями этого являются:

    • население N в любое время т
    • скорость роста р
    • скорость изменения населения dN dt

    Подумайте о dN dt как о «насколько население меняется с изменением времени в любой момент времени».

    Представим, что скорость роста r равна 0.01 новых кроликов в неделю за каждого текущего кролика.

    Когда популяция составляет 1000 , скорость изменения dN dt составляет 1000×0,01 = 10 новых кроликов в неделю.

    Но это верно только для конкретного времени , и не включает в себя то, что население постоянно увеличивается. Чем больше популяция, тем больше новых кроликов мы получаем!

    Когда население составляет 2000 , мы получаем 2000×0.01 = 20 новых кроликов в неделю и т.д.

    Таким образом, лучше сказать, что скорость изменения (в любой момент) равна скорости роста, умноженной на численность населения в этот момент:

    дН дт = рН

    И это Дифференциальное уравнение , потому что оно имеет функцию N(t) и ее производную.

     

    А как сильна математика! В этом коротком уравнении говорится, что «скорость изменения численности населения с течением времени равна скорости роста, умноженной на численность населения».

    Дифференциальные уравнения

    могут описать, как меняется население, как перемещается тепло, как вибрируют пружины, как распадается радиоактивный материал и многое другое. Это очень естественный способ описать многие вещи во Вселенной.

    Что с ними делать?

    Дифференциальное уравнение само по себе является прекрасным способом что-то выразить, но его трудно использовать.

    Итак, мы пытаемся решить их, превратив дифференциальное уравнение в более простое уравнение без дифференциальных битов, чтобы мы могли выполнять вычисления, строить графики, предсказывать будущее и так далее.

    Пример: сложные проценты

    Деньги приносят проценты. Проценты могут рассчитываться в фиксированное время, например, ежегодно, ежемесячно и т. д., и добавляться к исходной сумме.

    Это называется сложным процентом.

    Но когда он начисляется непрерывно , то в любое время проценты добавляются пропорционально текущей стоимости кредита (или инвестиции).

    И по мере роста кредита проценты по нему увеличиваются.

    Использование т на время, р на процентную ставку и В на текущую стоимость кредита:

    dV dt = rV

     

    А вот и крутая вещь: это то же самое уравнение, которое мы получили с Кроликами! Просто там разные буквы.Итак, математика показывает нам, что эти две вещи ведут себя одинаково.

     

    Решение

    Дифференциальное уравнение говорит об этом хорошо, но его трудно использовать.

    Но не волнуйтесь, это можно решить (используя специальный метод разделения переменных) и получить:

    В = ПЭ рт

    Где P — основная сумма (первоначальный заем), а e — число Эйлера.

    Таким образом, непрерывно начисляемый кредит в размере 1000 долларов США на 2 года с процентной ставкой 10% становится:

    В = 1000 × e (2 × 0.1)

    В = 1000 × 1,22140…

    V = 1221,40 доллара США (с точностью до цента)

    Итак, дифференциальные уравнения прекрасно описывают вещи, но их нужно решать, чтобы они были полезными.

    Дополнительные примеры дифференциальных уравнений

    Уравнение Ферхюльста

    Пример: Снова кролики!

    Помните о нашем росте Дифференциальное уравнение:

    дН дт = рН

    Ну, этот рост не может продолжаться вечно, так как скоро у них закончится доступная еда.

    Итак, давайте улучшим его, включив:

    • максимальное население, которое может поддерживать еда k

    Парень по имени Ферхульст все понял и получил дифференциальное уравнение:

    dN dt = rN(1−N/k)

    Уравнение Ферхюльста

    Простое гармоническое движение

    В физике простое гармоническое движение — это тип периодического движения, при котором восстанавливающая сила прямо пропорциональна смещению.Примером этого является масса на пружине.

    Пример: пружина и груз

    К пружине прикреплен груз:

    • груз опускается под действием силы тяжести,
    • по мере растяжения пружины ее натяжение увеличивается,
    • вес тормозит,
    • затем натяжение пружины тянет его обратно,
    • , затем он падает вниз, вверх и вниз, снова и снова.

    Опиши это математически!

     

    Вес притягивается вниз под действием силы тяжести, и мы знаем из второго закона Ньютона, что сила равна массе, умноженной на ускорение:

    F = m a

    А ускорение есть вторая производная положения по времени, поэтому:

    F = м d 2 x dt 2

     

    Пружина тянет ее обратно в зависимости от того, насколько она растянута ( k — жесткость пружины, а x — степень ее растяжения): F = -kx

    Две силы всегда равны:

    м d 2 x dt 2 = −kx

    У нас есть дифференциальное уравнение!

    Имеет функцию x(t) и вторую производную д 2 х дт 2

     

    Примечание: мы не включили «демпфирование» (замедление отскоков из-за трения), что немного сложнее, но вы можете поиграть с ним здесь (нажмите play ):

     

    Создание дифференциального уравнения является первым важным шагом.Но нам также нужно 90 599 решить 90 600, чтобы узнать, как, например, пружина подпрыгивает вверх и вниз с течением времени.

    Классифицируйте, прежде чем пытаться решить

    Так как же нам решить их?

    Это не всегда просто!

    За годы работы мудрые люди разработали специальных методов для решения некоторых типов дифференциальных уравнений.

    Таким образом, нам нужно сначала узнать какой тип дифференциального уравнения.

    Это как путешествие: разные виды транспорта решили, как добраться до определенных мест. Это близко, так что мы можем просто пройтись? Есть ли дорога, чтобы мы могли взять машину? Или он находится в другой галактике, и мы просто пока не можем туда добраться?

    Итак, давайте сначала классифицируем дифференциальное уравнение .

     

    Обычный или частичный

    Первая основная группа:

    • «Обычные дифференциальные уравнения» (ОДУ) имеют единственную независимую переменную (например, y )
    • «Уравнения с частными производными» (УЧП) имеют две или более независимых переменных.

    Мы изучаем обыкновенных дифференциальных уравнений здесь!

     

    Орден и степень

    Далее прорабатываем Орден и Степень:

    Заказ

    Орден является высшей производной (это первая производная? вторая производная? и т.д.):

    Пример:

    dy dx + y 2 = 5x

    Имеет только первую производную д дх , так и «Первый Орден»

    Пример:

    d 2 y dx 2 + xy = sin(x)

    Имеет вторую производную г 2 г дх 2 , так и «Заказ 2»

    Пример:

    d 3 y dx 3 + x dy dx + y = e x

    Имеет третью производную г 3 г дх 3 который превосходит д дх , так и «Заказ 3»

    Степень

    Степень является показателем старшей производной.

    Пример:

    ( dy dx ) 2 + y = 5x 2

    Наивысшая производная — это просто dy/dx, и ее показатель степени равен 2, так что это «Вторая степень»

    На самом деле это обыкновенное дифференциальное уравнение первого порядка второй степени

    Пример:

    d 3 y dx 3 + ( dy dx ) 2 + y = 5x

    7 2

    Высшая производная d 3 y/dx 3 , но у нее нет показателя степени (на самом деле, степени 1, которая не показана), так что это «Первая степень».

    (Показатель степени 2 для dy/dx не считается, так как это не самая высокая производная).

    Итак, это обыкновенное дифференциальное уравнение первой степени третьего порядка

     

    Будьте осторожны, не путайте порядок со степенью. Некоторые люди используют порядок слов, когда имеют в виду степень!

    Линейный

    Это Линейный , когда переменная (и ее производные) не имеет степени или другой функции.

    So no y 2 , y 3 , √y, sin(y), ln(y) и т. д.,
    просто y
    (или любая другая переменная)

    Более формально Линейное дифференциальное уравнение имеет форму:

    dy dx + P(x)y = Q(x)

    Решение

    Хорошо, мы классифицировали наше дифференциальное уравнение, теперь нужно решить его.n$ с $\gamma (0) = x$ и $\dot \gamma (0) = v$.

    Правильным следствием $q(x) = q(-x)$ является то, что

    $$(\Bbb d _x q) (v) = (\Bbb d _x q) (\dot \gamma (0)) = \frac {\Bbb d} {\Bbb d t} (q (\gamma (t )) (0) = \ frac {\ Bbb d} {\ Bbb d t} (q (\ color {red} — \ gamma (t)) (0) = (\ Bbb d _ {\ color {red} — x } q) (\color{red} — \dot \gamma (0)) = (\Bbb d _{\color{red} — x} q) (\color{red} — v)$$

    , и эта часть должна прояснить путаницу, связанную с тем, что $\Bbb d q$ «является одновременно $\text{Id}$ и $-\text{Id}$».n(\Bbb R)$ определяются не какой-либо явной формулой, а просто очень формальной и абстрактной формулой $x \sim -x$, поэтому у вас нет явной формулы для $[x]$, с которой можно было бы работать; класс эквивалентности $x$ — это класс эквивалентности $x$, вот и все, к сожалению; вы можете выжать из этого некоторые полезные свойства (как я сделал выше), но не ждите явных формул.

Вы удивлены? Вы не должны, потому что вы видели, как та же проблема возникает в совершенно другом и элементарном контексте, но не осознавая этого.4 = 4$, или что это иррационально — без действительного знания его явной формы .

Применяя подход, весьма ориентированный на Галуа («Sauter à pieds Joints sur ces расчеты»), я бы сказал, что получение математического понимания с помощью невычислительных средств (поскольку в большинстве случаев они невозможны) лежит в основе математики. Вы столкнетесь с этим внутренним напряжением между желанием вычислять (поскольку вычисления просты и алгоритмичны и не требуют интеллектуальной изобретательности и творческих усилий — а мы все любим лениться, не так ли?) и невозможностью вычислить. делайте это в каждом разделе высшей математики — за исключением, может быть, численного анализа (который стремится вычислить ).Если вы планируете заняться исследовательской карьерой в области математики, чем раньше вы эмоционально и мысленно примете это, тем лучше. Математическое мышление заключается в разумном избегании невозможных вычислений, в обходном пути (иногда долгом и напряженном) там, где прямой путь желателен, но невозможен.

Что касается вашего конкретного вопроса, то он, по сути, является вычислительным, поэтому он плохо вписывается в концептуальную и операционную структуру гладких многообразий. Это тот вопрос, который вы не должны задавать в дифференциальной геометрии.* \omega _{U_y}) \big| _V = \omega’ _{U_y} \big| _V$$

, так что в действительности каждая такая локальная форма согласуется с соответствующими перекрытиями, таким образом, являясь локальными ограничениями уникальной формы $\omega’$, которая является «выталкиванием» $\omega$.

Что такое дифференциал?

ЗАЧЕМ нужны дифференциалы?

Все просто: при повороте внешнее колесо на оси движется по большей дуге, чем внутреннее колесо, поэтому дифференциальная передача позволяет одному колесу двигаться с другой скоростью, чем другому, в то время как оба остаются под напряжением.Но у дифференциальной передачи также есть недостаток, заключающийся в том, что мощность направляется по пути наименьшего сопротивления, как вода и электричество.

КРУТЯЩИЙ МОМЕНТ И МОЩНОСТЬ

ЧТОБЫ правильно понять, как работает дифференциал, вам необходимо понять мощность и крутящий момент, а также то, как они соотносятся друг с другом.

Крутящий момент можно определить как силу, стремящуюся повернуть объект вокруг своей оси. Крутящий момент в автомобильных приложениях измеряется в ньютон-метрах (Нм). 1 Нм — это крутящий момент на оси, возникающий от силы в один ньютон (около 0.1 кг) на руку длиной 1 м.

Сила — это движение. Единицей измерения мощности является ватт (Вт).

Один ватт равен одному джоулю в секунду. Для наших целей один джоуль равен 1 Нм. Мощность двигателей измеряется в кВт (киловатт): 1кВт = 1000Вт.

Если вы посмотрите на приведенное ниже простое уравнение, то увидите, что между крутящим моментом, мощностью и числом оборотов существует взаимосвязь: кВт = Нм x об/мин/ 9549

ЧТО ВНУТРИ ДИФФЕРЕНЦИАЛА?
В НАСТОЯЩЕЕ ВРЕМЯ термин «дифференциал» используется для всего узла привода, включая корпус, тормоза, оси и т. д.Но на самом деле это относится к узлу дифференциала внутри сердца (водила) дифференциала.

Обычный дифференциал состоит из четырех передач. Два прикреплены непосредственно к осям, два других могут свободно вращаться вокруг своей оси, но закреплены на водиле, которое, в свою очередь, приводится во вращение зубчатым венцом.

Как передать мощность вращения карданного вала водилу? Обычно используются два типа зубчатых колес:

Гипоидные спирально-конические зубчатые колеса
Гипоидное зубчатое зацепление похоже на спирально-коническое зубчатое колесо, за исключением шестерни, которая не имеет той же оси, что и кольцо. шестерня — в заднем дифференциале она обычно устанавливается ниже.

Преимущество зацепления ведущей шестерни с нижней осью заключается в том, что большее количество зубьев шестерни одновременно находится в зацеплении с зубчатым венцом, а это означает, что мощность двигателя распределяется по большей площади, чем при конической передаче. Таким образом, для передачи того же размера она способна передавать больше мощности и крутящего момента. Однако шестерни скользят друг по другу, когда входят в зацепление, что создает трение. Это трение требует мощности, поэтому гипоидная передача, хотя и мощнее, не так эффективна.

Есть еще одно соображение с гипоидной спирально-конической передачей: у шестерни есть две стороны, сторона привода и сторона выбега, причем сторона выбега на 30-40 процентов слабее, чем ведущая.Это лишь одна из причин, по которой не следует выполнять подъем рывковым ремнем в обратном направлении.

Спиральные конические шестерни
В дифференциале небольшая шестерня вращается приводным валом. Затем он входит в зацепление с зубчатым венцом, поворачивая водило. Шестерня и зубчатый венец имеют одну и ту же ось.

КАК ЭТО РАБОТАЕТ?

ОБЫЧНЫЙ дифференциал постоянно распределяет крутящий момент поровну налево и направо (за вычетом небольших потерь на трение). Это происходит независимо от того, несут ли вас оба колеса по дороге со скоростью 100 км/ч или одно колесо бешено крутится в воздухе на гусенице с низким радиусом действия.

9

ТРУДНАЯ СИТУАЦИЯ
ПРОВЕРЬТЕ движение на кольцевой развязке. Обратите внимание, что передние колеса более крупных транспортных средств будут находиться ближе к внешней стороне кольцевой развязки, а задние колеса — ближе к внутренней. Это говорит вам о том, что при повороте передние колеса делают большую дугу, чем задние.

Когда мы блокируем центральный дифференциал на постоянном 4WD с обычным дифференциалом (или включаем 4WD на неполный 4WD), мы лишаем центральный дифференциал возможности компенсировать разницу скоростей между передним и задним колесами, когда согласование углов.

Это проблема только на поверхностях с высоким сцеплением, таких как битум и скользкая порода. На рыхлых поверхностях, таких как грязь или гравий, дифференциал скорости не представляет проблемы, так как поверхность позволяет колесам немного проскальзывать и снимать напряжение.

На дорогах с высоким сцеплением дифференциал скорости при прохождении поворотов будет создавать скручивающую силу между передним и задним дифференциалами, что в конечном итоге приведет к выходу из строя трансмиссии.

Первым признаком неисправности является то, что автомобиль не выходит из режима 4WD.Или, может быть, вы ездите на полноприводном автомобиле неполный рабочий день и не можете перевести рычаг обратно в режим 2WD. Это связано с тем, что вы не можете отключить 4WD из-за силы скручивания в трансмиссии, связывающей механизм.

Чтобы вывести машину из режима 4WD, у вас есть два варианта. Во-первых, вы можете развернуться по дуге. Это заставит передние колеса двигаться быстрее, чем задние, и уменьшит напряжение до такой степени, что центральный дифференциал перестанет мигать, или вы сможете нажать на рычаг, чтобы включить 2WD.

Второй вариант — свернуть на обочину, въехать двумя колесами в гравий и продолжить движение вперед. Проскальзывание, допускаемое рыхлой поверхностью, рассеивает крутящую силу, позволяя вам вернуть автомобиль в дорожный режим.

ЗАЧЕМ БЛОКИРОВАТЬ ЦЕНТРАЛЬНЫЙ ДИФФЕР?
БЛОКИРОВКА центрального дифференциала гарантирует передачу мощности на передний и задний дифференциалы.

Еще одна причина блокировки межосевого дифференциала – избежать проблем, связанных с застреванием в автомобиле с автоматической коробкой передач.Если вы идете в гору и застреваете, вам придется выполнить обратное восстановление.

Если вы попробуете это без блокировки межосевого дифференциала, передние колеса останутся заблокированными до самого подножия холма из-за смещения веса на заднюю часть и того факта, что все автомобили имеют смещение торможения вперед.

БЛОКИРОВКА ДИФФЕРЕНЦИАЛА РАСПРЕДЕЛЕНИЯ КРУТЯЩЕГО МОМЕНТА
КОГДА вы включаете блокировку, она эффективно отключает действие дифференциала от дифференциала. Итак, теперь вы вернулись к твердой оси между колесами, и не имеет значения, находится ли одно колесо на твердой земле, а другое находится на высоте 50 см в воздухе, оба колеса будут вращаться с одинаковой скоростью.

Чтобы объяснить, как заблокированный дифференциал может изменять величину крутящего момента на каждом колесе, нам придется использовать математику. Позвольте представить вам стандартное уравнение трения:

F_r = сила сопротивления трения
μ = коэффициент трения шины о поверхность, по которой вы едете.
Н = нормальная сила (в ньютон-метрах), представляющая собой вес автомобиля, давит шину на землю.
Давайте рассмотрим сценарий, в котором одна шина находится в грязи, а другая — на дорожном покрытии.На обе шины действует усилие 1000 Н.

Дорога μ = 1 Грязь μ = 0,3
Грязь
F_r=μН F_r=0,3 x 1000 F_r=300
Дорога
F_r=μН F_r=1 x 1000 F_r=1000

Сложив оба вместе, вы получите общую силу сопротивления трение 1300 Н, что означает, что 77 процентов крутящего момента передается шиной для движения по обочине дороги и 23 процента — шиной для движения по грязи.

ОБЫЧНОЕ ДИФФЕРЕНЦИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ КРУТЯЩЕГО МОМЕНТА
Теперь рассмотрим тот же сценарий, но на этот раз оставим шкафчик в покое.Помните маленькие шестеренки, которые свободно вращаются внутри держателя и соединены с каждой осью? Что ж, они обеспечивают равномерное распределение крутящего момента между обеими осями и отсутствие смещения крутящего момента в обе стороны.

У вас по-прежнему есть потенциальная сила сопротивления трения 300 Н со стороной в грязи, но сторона на дороге также получит только 300 Н благодаря маленьким свободно вращающимся шестерням в середине дифференциала. Итого 600 Н. Но на этом хорошие новости не заканчиваются.

Вы замечали, что, когда вы толкаете большой тяжелый предмет, например диван, его трудно тронуть, но когда он движется, вам кажется, что толкать его не так сложно? Что ж, на самом деле это измеримое явление, известное как скольжение или кинетический коэффициент трения, и оно будет заметно меньше статического коэффициента трения.

Теперь, когда вы нажмете на педаль и начнете крутить колесо в грязи, коэффициент трения упадет с μ 0,3 до 0,2. Не забывайте, что при открытом дифференциале крутящий момент на одной стороне равен крутящему моменту на другой, так что теперь вместо 600 Н мы получаем 400 Н.В том же сценарии мы перешли от 1300 Н с заблокированным дифференциалом к ​​400 Н со стандартным открытым дифференциалом.

ДИФФЕРЕНЦИАЛ С ОГРАНИЧЕННЫМ ПРОСКОЛЬЖЕНИЕМ

Целью, как следует из названия, является ограничение проскальзывания колес. Однако существует несколько различных вариаций с разной степенью эффективности.

9

МУФТА СЦЕПЛЕНИЯ LSD
Этот тип имеет многодисковый пакет сцепления, аналогичный мотоциклетному. Одна сторона узла сцепления соединена с карданными валами, а другая — с картером дифференциала.Различные методы, такие как рампы или естественная сила разделения между
зубьями шестерни, используются для включения пакета сцепления, когда в дифференциале одно колесо вращается быстрее, чем другое, что затем передает часть мощности на колесо с более медленным вращением.

9

ОДНОСТОРОННИЙ, ПОЛУТОРОННИЙ И БУКСИРОВОЧНЫЙ
Односторонний LSD обеспечивает блокировку пробуксовки только в одном направлении – например, при ускорении, но не при торможении.
Напротив, 1,5-позиционный LSD обеспечивает различную степень ограничения проскальзывания при ускорении и торможении, что может повысить устойчивость при резком торможении.
Двусторонняя LSD обеспечивает одинаковый эффект ограниченного проскальзывания как при ускорении, так и при торможении.

9

TORSEN
Дифференциал, чувствительный к крутящему моменту, представляет собой дифференциал повышенного трения, в котором для ограничения проскальзывания используется одностороннее действие червячной передачи. Они также могут быть изготовлены с TBR (коэффициент смещения крутящего момента), где есть возможность передавать больший крутящий момент на заднее колесо в приложении межосевого дифференциала.

9

АВТОБЛОКИРОВКА
Говоря об автоматических блокировках, многие думают о «блокировках для ланч-боксов», которые заменяют крестовину в середине картера дифференциала. Вероятно, лучше называть их разблокирующими шкафчиками, так как шкафчики для ланч-боксов запираются при движении под напряжением по прямой. Когда они испытывают различные нагрузки по крутящему моменту, например, при повороте накатом, они разблокируются. Это может обеспечить интересные характеристики управляемости на дороге, а при установке спереди они намного лучше в сочетании с системой полного привода.

9

ВЫБИРАЕМЫЙ ШКАФЧИК
Выбираемые шкафчики, которые многие считают Святым Граалем, бывают двух основных видов: пневматические (TJM/ARB) и электромагнитные (ELocker). В обоих пневматических шкафчиках используется простой механизм типа кулачковой муфты, который устраняет действие дифференциала при активации. Тем не менее, ELocker использует механизм штифта и рампы для управления серией штифтов, которые блокируют дифференциал. При переходе с прямого на задний ход они разблокируются, а затем снова блокируются из-за используемых рамп активации прямого и обратного хода.

9

КОНТРОЛЬ ТЯГИ
Существует два основных типа контроля тяги: один снижает мощность двигателя, а другой снижает характеристику дифференциала «мощность по пути наименьшего сопротивления». Современные системы отслеживают скорость отдельных колес, и если два колеса на одной оси движутся с разной скоростью, они тормозят вращающееся колесо — для этого требуется больший крутящий момент от двигателя. Поскольку крутящий момент всегда одинаков с обеих сторон обычного дифференциала, более медленное колесо получает дополнительный крутящий момент.Ранние системы были не очень хороши, но теперь противобуксовочная система стала почти жизнеспособной альтернативой шкафчикам — последние модели LandCruiser и Pajero особенно хороши.

ШКАФЧИКИ ПРОТИВ ТЯГОВОГО КОНТРОЛЯ?
ЕСЛИ ВЫ едете вниз по крутому холмистому склону, автомобиль с двойной блокировкой не может быть лучше, поскольку он уменьшает вес, приходящийся на чередующиеся колеса. Разблокированный автомобиль блокирует тормоза и периодически скользит, прежде чем схватиться с дорогой, когда вес вернется на колесо. Заблокированная машина не будет блокировать колеса, а затем скользить вниз по склону, так как оба колеса механически заблокированы вместе, действуя как единое целое.

Если идти в гору, шкафчики снова имеют решающее значение. Система контроля тяги ожидает, когда ось начнет терять сцепление с дорогой, прежде чем противодействовать торможению пробуксовывающего колеса. Это требует времени, поэтому вы всегда будете терять скорость, ожидая, пока среагирует система контроля тяги, и этого может быть достаточно, чтобы остановить вас.

Однако любой, кто водил автомобиль с двойным замком, скажет вам, что повороты не являются его сильной стороной. С другой стороны, система контроля тяги достаточно умна, чтобы работать даже на крутых поворотах.

ДИФФЕРЕНЦИАЛЫ С ВЕКТОРОМ КРУТЯЩЕГО МОМЕНТА
ОБЫЧНАЯ система передачи дифференциала расположена в центре, но по обеим сторонам водила находится пакет сцепления, который (при электронном включении) может механически связывать ось непосредственно с водилой. Используя электронное управление пакетами сцепления, конструкторы могут изменять крутящий момент на каждом колесе. При повороте компьютер может передавать больший крутящий момент на внешние колеса, тем самым улучшая характеристики поворота и управляемости.

При использовании в качестве центрального дифференциала в режиме постоянного полного привода у вас может быть автомобиль со смещением к задним колесам для повседневной езды, но при движении по бездорожью можно разделить крутящий момент 50:50. Это отличается от дифференциала Torsen, где распределение крутящего момента устанавливается механически и не может быть изменено на лету.

9

.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Разное