Чем отличается роторный двигатель от обычного: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Содержание

Чем роторный двигатель отличается от обычного | С другого угла

Технический прогресс не стоит на месте и сегодня вместе с самым обычным поршневым двигателем на автомобильном рынке можно встретить и роторно-поршневой вариант. Сегодня вы узнаете, что такое роторный двигатель, и чем он отличается от обычного двигателя, который установлен почти во всех современных автомобилях.

Чем является РПД?

Для того, чтобы сравнивать роторный двигатель с поршневым необходимо полностью разобраться с тем, что же он из себя представляет. Как и поршневой вариант, роторный двигатель использует давление, которое появляется при сгорании топливно-воздушной смеси. Само же название происходит от основной детали – движущегося ротора, за счет которого и происходит процесс работы двигателя. Ротор имеет похожую на треугольник форму и крепится к особому механизму. Примечательно, что его вращение происходит не вокруг конкретной оси, а он будто бегает вокруг шестерни.

Двигатель имеет 4 фазы: Впуск, сжатие, зажигание, выпуск. Сначала топливно-воздушная смесь засасывается в первую камеру, где и смешивается. Затем, при помощи ротора, она сжимается в следующей камере и зажигается при помощи свечей. После смесь идет дальше, где вытесняются использованные части топлива и все начинается сначала.

На сегодняшний день серийным выпуском автомобилей с роторным двигателем занимается только компания «Mazda». Стоит признать, они неплохо себя показали, особенно тогда, когда компания не была настолько крупной и шла на большой риск, запуская подобные варианты двигателей.

Преимущества перед обычным двигателем внутреннего сгорания

Преимуществ перед обычным двигателем оказалось достаточно, чтобы компания «Mazda» могли выпускать их серийно и превратиться в серьезную корпорацию. Какие же преимущества у роторного двигателя перед обычным:

  • Благодаря механическому равновесию двигателя у него заметно меньше вибраций при работе, что влияет на комфорт в легковых автомобилях;
  • Высокая динамика работы двигателя позволяет на низкой передаче разгонять автомобиль до скорости свыше 100 км/час при высоких оборотах.
  • Выше мощность при меньших объемах. Двигатель объемом в 1,3 литра может выдавать до 250 лошадиных сил. Благодаря этому в Японии, где и находится главный офис компании «Mazda», они пользовались большой популярностью при большом налоге на топливо;
  • Меньше движущихся деталей и меньшие габариты. Если в поршневом ДВС будет минимум 40 движущихся частей, то, например в двухроторном двигателе их всего 3 – 2 ротора и выходной вал;
  • Экологичность. Хоть РПД выделяет слишком много углеводорода, выброс оксида азота у него значительно меньше, чем у обычных ДВС. Но даже проблема с углеводородом была решена японскими инженерами. После введения в США закона «о чистом воздухе», двигатели «Mazda» подверглись нескольким модификациям, которые позволили снизить выброс углеводорода;
Mazda RX-7 — спорткар c роторным двигателем объемом всего 1.3 литра, выпускавшийся японским автопроизводителем Mazda с 1978 по 2002 год

Недостатки роторного двигателя

Как у всего в этом мире у роторного двигателя есть и свои недостатки:

  • Цена двигателя может порой кусаться.
    Связано это с не самой большой популярностью роторных двигателей. В свое время и на западе рассматривали варианты использования РПД, но идею быстро отсекли и посчитали устаревшей. Интересно, что в России тесты также проходили, как вариант автомобилей для спецслужб, но идея тоже не прижилась из-за недостаточного финансирования со стороны государства. Серийный же выпуск таких двигателей удалось запустить только японцам. Поэтому и цена достаточно большая;
  • Высокий расход топлива. Из-за того, что камера сгорания больше обычно поршневого ДВС на нее необходимо больше топлива. Это и является одним из самых главных минусов роторного варианта двигателя. Тем более, при постоянно растущих в России ценах на топливо;

особенности, преимущества и недостатки моторов

Идея роторного двигателя слишком заманчива: когда и конкурент весьма далек от идеала, кажется, что вот-вот преодолеем недостатки и получим не мотор, а само совершенство… Mazda находилась в плену этих иллюзий аж до 2012 года, когда была снята с производства последняя модель с роторным двигателем - RX-8.

История создания роторного двигателя

Второе имя роторного двигателя (РПД) - ванкель (этакий аналог дизеля). Именно Феликсу Ванкелю сегодня приписываются лавры изобретателя роторно-поршневого двигателя и даже рассказывается трогательная история о том, как Ванкель шел к поставленной цели тогда же, когда Гитлер шел к своей.

На самом деле все было чуточку иначе: талантливый инженер, Феликс Ванкель действительно трудился над разработкой нового, простого двигателя внутреннего сгорания, но это был другой двигатель, основанный на совместном вращении роторов.

После войны Ванкель был привлечен немецкой фирмой NSU, занимавшейся в основном выпуском мотоциклов, в одну из рабочих групп, трудившихся над созданием роторного двигателя под руководством Вальтера Фройде.

Вклад Ванкеля - это обширные исследования уплотнений вращающихся клапанов. Базовая схема и инженерная концепция принадлежат Фройде. Хотя у Ванкеля был патент на двойственное вращение.

Первый двигатель имел вращающуюся камеру и неподвижный ротор. Неудобство конструкции навело на мысль поменять схему местами.

Первый двигатель с вращающимся ротором начал работу в середине 1958 года. Он мало отличался от своего потомка наших дней - разве что свечи пришлось перенести на корпус.

Феликс Ванкель и его первый роторный двигатель

Вскоре фирма объявила о том, что ей удалось создать новый и очень перспективный двигатель. Почти сотня компаний, занимающихся производством автомобилей, закупила лицензии на выпуск этого мотора. Треть лицензий оказалась в Японии.

РПД в СССР

А вот Советский Союз лицензию не покупал вовсе. Разработки собственного роторного двигателя начались с того, что в Союз привезли и разобрали немецкий автомобиль Ro-80, производство которого NSU начала в 1967 году.

Через семь лет после этого на заводе ВАЗ появилось конструкторское бюро, разрабатывающее исключительно роторно-поршневые двигатели. Его трудами в 1976 году возник двигатель ВАЗ-311. Но первый блин получился комом, и его дорабатывали еще шесть лет.

Первый советский серийный автомобиль с роторным двигателем - это ВАЗ-21018, представленный в 1982 году. К сожалению, уже в опытной партии у всех машин вышли из строя моторы. Дорабатывали еще год, после чего появился ВАЗ-411 и ВАЗ 413, которые были взяты на вооружение силовыми ведомствами СССР. Там не особо переживали за расход топлива и малый ресурс мотора, зато нуждались в быстрых, мощных, но неприметных авто, способных угнаться за иномаркой.

ВАЗ с роторным двигателем (ГАИ)

РПД на Западе

На Западе роторный двигатель не произвел бума, а конец его разработкам в США и Европе положил топливный кризис 1973 года, когда цены на бензин резко взлетели, и покупатели машин стали прицениваться к моделям с экономным расходованием топлива.

Если учесть, что роторный двигатель съедал до 20 литров бензина на сотню км, продажи его во время кризиса упали до предела.

Единственной страной на Востоке, не утратившей веру, стала Япония. Но и там производители довольно быстро охладели к двигателю, который никак не желал совершенствоваться. И в конце концов там остался один стойкий оловянный солдатик - компания Mazda. В СССР топливный кризис не ощущался. Производство машин с РПД продолжалось и после распада Союза. ВАЗ прекратил заниматься РПД только в 2004 году. Mazda смирилась только в 2012.

Особенности роторного мотора

В основу конструкции положен ротор треугольной формы, каждая из граней которого имеет выпуклость (треугольник Рёло). Ротор вращается по планетарному типу вокруг центральной оси - статора. Вершины треугольника при этом описывают сложную кривую, именуемую эпитрохоидой. Форма этой кривой обуславливает форму капсулы, внутри которой вращается ротор.



У роторного мотора те же четыре такта рабочего цикла, что и у его конкурента - поршневого мотора.

Камеры образуются между гранями ротора и стенками капсулы, их форма - переменная серповидная, что является причиной некоторых существенных недостатков конструкции. Для изоляции камер друг от друга используются уплотнители - радиальные и торцевые пластины.

Если сравнивать роторный ДВС с поршневым, то первым бросается в глаза то, что за один оборот ротора рабочий ход происходит три раза, а выходной вал при этом вращается в три раза быстрее, чем сам ротор.

У РПД отсутствует система газораспределения, что весьма упрощает его конструкцию. А высокая удельная мощность при малом размере и весе агрегата являются следствием отсутствия коленвала, шатунов и других сопряжений между камерами.

Достоинства и недостатки роторных двигателей

Преимущества

  • Роторный двигатель хорош тем, что состоит из куда меньшего числа деталей, чем его конкурент - процентов на 35-40.

  • Два двигателя одинаковой мощности - роторный и поршневый - будут сильно отличаться габаритами. Поршневый в два раза больше.

  • Роторный мотор

    не испытывает большой нагрузки на высоких оборотах даже в том случае, если на низкой передаче разгонять машину до скорости более 100 км/ч.

  • Автомобиль, на котором стоит роторный двигатель, проще уравновесить, что дает повышенную устойчивость машины на дороге.

  • Даже самые легкие из транспортных средств не страдают от вибрации, потому что РПД вибрирует куда меньше, чем «поршневик». Это происходит в силу большей сбалансированности РПД.

Недостатки

  • Главным недостатком роторного двигателя автомобилисты назвали бы его малый ресурс, который является прямым следствием его конструкции. Уплотнители изнашиваются крайне быстро, так как их рабочий угол постоянно меняется.

  • Мотор испытывает перепады температур через каждый такт, что также способствует износу материала. Добавьте к этому давление, которое оказывается на трущиеся поверхности, что лечится только впрыскиванием масла непосредственно в коллектор.

  • Износ уплотнителей становится причиной утечки между камерами, перепады давления между которыми слишком велики. Из-за этого КПД двигателя падает, а вред экологии растет.

  • Серповидная форма камер не способствует полноте сгорания топлива, а скорость вращения ротора и малая длина рабочего хода - причина выталкивания еще слишком горячих, не до конца сгоревших газов на выхлоп. Помимо продуктов сгорания бензина там еще присутствует масло, что в совокупности делает выхлоп весьма токсическим. Поршневый - приносит меньше вреда экологии.

  • Непомерные аппетиты двигателя на бензин уже упоминались, а масло он "жрет" до 1 литр на 1000 км. Причем стоит раз забыть про масло и можно попасть на крупный ремонт, если не замену двигателя.

  • Высокая стоимость - из-за того, что для изготовления мотора нужно высокоточное оборудование и очень качественные материалы.


Как видите, недостатков у роторного двигателя полно, но и поршневый мотор несовершенен, поэтому состязание между ними не прекращалось так долго. Закончилось ли оно навсегда? Время покажет.

Рассказываем как устроен и работает роторный двигатель

Устройство автомобиля. Как работает роторный двигатель

Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя. Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Далее мы расскажем о строении роторного двигателя, но, прежде всего, рассмотрим некоторые автомобили с таким типом двигателя.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя

Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск

Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт - с дросселем.

Выходной вал

Выходной вал (обратите внимание на эксцентриковые кулачки) Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей.

Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта) Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта - по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:
  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Роторный двигатель. Устройство, принцип работы. Плюсы и минусы ротора.

Изобретение двигателя внутреннего сгорания дало толчок к производству автомобилей, передвигающихся на жидком виде топлива. Двигатели эти на протяжении всей истории автомобилестроения эволюционировали: появлялись различные конструкции моторов. Одной из прогрессивных, но так и не получивших распространение конструкций двигателей стал роторно-поршневой агрегат. Об особенностях этого типа двигателя, его достоинствах и недостатках мы поговорим в сегодняшнем материале.

История

Разработчиком роторно-поршневого двигателя стал дуэт инженеров компании NSU – Феликс Ванкель и Вальтер Фройде. И хотя основная роль в создании роторного двигателя принадлежит именно Фройде (второй участник проекта в это время работал над конструкцией иного двигателя), в автомобильной среде силовой агрегат известен как мотор Ванкеля.

Феликс Ванкель и роторный двигатель

Эта силовая установка была собрана и испытана в 1957 году. Первым автомобилем, на который установили роторно-поршневой двигатель, стал спорткар NSU Spider, который развивал скорость 150 км/час при мощности мотора 57 лошадиных сил. Производилась эта модель на протяжении трех лет (1964-1967 годы).

NSU Spider

По настоящему массовым автомобилем с роторным двигателем стало второе детище компании NSU – седан Ro-80.

NSU Ro-80

В названии автомобиля указывалось, что модель оснащается роторным агрегатом. Впоследствии роторные двигатели устанавливались на автомобили Citroen (GS Birotor), Mercedes-Benz (С111), Chevrolet (Corvette), ВАЗ (21018) и так далее. Но самый массовый выпуск моделей с роторным двигателем был налажен японской компанией Mazda. Начиная с 1964 года, компания произвела несколько автомобилей с подобным типом силовой установки, а пионером в этом деле стала модель Cosmo Sport. Самая известная модель с роторно-поршневым двигателем, которая выпускалась этим производителем – RX (Rotor-eXperiment). Производство последней модели из этого семейства, Mazda RX8 в специальной версии Spirit R, было свернуто в середине 2012 года. Впрочем, не все экземпляры роторной «восьмерки» еще распроданы – официальный дилер Mazda в Индонезии еще продает эти автомобили.

Mazda RX-8

Устройство

Особенностью роторно-поршневого двигателя внутреннего сгорания стало присутствие в его конструкции трехгранного ротора – поршня. Он вращается в цилиндре, который имеет специальную форму. Ротор насажен на вал, и соединен с зубчатым колесом, которое, в свою очередь, имеет сцепление со статором – шестерней. Ротор вращается вокруг статора по так называемой эпитрохоидальной кривой, его лопасти попеременно перекрывают камеры цилиндра, в которых происходит сгорание топлива.

Роторный двигатель

В конструкции роторного двигателя отсутствует газораспределительный механизм – его функцию выполняет сам ротор, который при помощи своих лопастей распределяет поступающую горючую смесь и выпускает отработанные в цилиндре газы. Подобная конструкция двигателя позволяет обойтись без множества узлов, крайне необходимых для простого поршневого двигателя (например, коленчатый вал, шатуны), что, во-первых, позволяет уменьшить размер и массу силового агрегата, а во-вторых – уменьшить стоимость его производства.

Достоинства и недостатки

Роторно-поршневой двигатель не зря привлек внимание многих именитых автомобильных компаний. Его конструкция и принцип действия позволяли получить несколько довольно весомых преимуществ перед обычными двигателями.

Во-первых, роторно-поршневой мотор в силу своей конструкции обладал лучшей среди остальных типов силовых установок сбалансированностью, и был подвержен минимальным вибрациям.

Во-вторых, у этой силовой установки отмечались отменные динамические характеристики: без существенной нагрузки на двигатель, авто с роторно-поршневым мотором легко можно разогнать до 100 км/час и более на низкой передаче при высоких оборотах двигателя.

роторный двигатель Мазда RX-8

В-третьих, роторный двигатель компактнее и легче, чем стандартный поршневой силовой агрегат. Эта особенность позволяла конструкторам добиться практически идеальной развесовки по осям, что влияло на устойчивость автомобиля на дороге.

В-четвертых, в нем используется намного меньшее количество узлов и агрегатов, чем в обычном двигателе.

Наконец, в-пятых, роторный двигатель обладает высокой удельной мощностью.

Недостатки

К минусам роторно-поршневого двигателя, из-за которых он так и не смог получить массового применения и не используется сегодня в автомобилях всех брендов, относится, во-первых, большой расход топлива на низких оборотах. На некоторых моделях он достигает 20 литров на 100 км пробега, что, согласитесь, совсем не экономично и бьет по карману владельца авто с роторным двигателем.

Во-вторых, недостатком этого типа двигателей является сложность изготовления его деталей: чтобы ротор правильно прошел эпитрохоидальную кривую, необходима высокая геометрическая точность при создании как самого ротора, так и цилиндра. Для этого производители роторных двигателей используют высокоточное и дорогостоящее оборудование, а стоимость производства закладывают в цену автомобиля.

В-третьих, роторный двигатель склонен к перегреву из-за особенности конструкции камеры сгорания: она имеет линзовидную форму, а не сферическую, как у обычных поршневых моторов. Топливная смесь, сгорая в такой камере, превращается в тепловую энергию, которая расходуется в большей части неэффективно – ее избыток нагревает цилиндр, что в конечном итоге приводит к износу и выходу его из строя.

В-четвертых, высокий износ уплотнителей между форсунками ротора из-за перепадов давления в камерах сгорания двигателя. Именно поэтому ресурс таких двигателей составляет 100-150 тысяч км, после чего, как правило, требуется капитальный ремонт силового агрегата.

В-пятых, роторно-поршневой двигатель нуждается в своевременной и четко соблюдаемой процедуре смены моторного масла: мотор потребляет примерно 600 мл моторного масла на 1000 км, так что менять его приходится раз в 5000 км пробега. Если его вовремя не заменить, это чревато выходом из строя узлов и агрегатов мотора, что повлечет за собой дорогостоящий ремонт. То есть, к эксплуатации и обслуживанию роторно-поршневых двигателей следует подходить более ответственно, чем к обслуживанию обычных моторов, вовремя проводя их техническое обслуживание и капитальный ремонт.

Роторный двигатель на автомобиль.

Роторный двигатель внутреннего сгорания (или как его ещё называют роторно-поршневым, так как сам ротор выполняет роль поршня) был изобретён ещё в 1957 году прошлого века талантливыми инженерами Феликсом Ванкелем и Вальтером Фройде. Этот двигатель существенно отличается от обычного двигателя внутреннего сгорания. В этой статье мы подробно рассмотрим эти основные отличия, а так же преимущества и недостатки роторного двигателя перед обычным мотором, и почему всё таки РПД не так распространён, как обычный ДВС.

Основное отличие роторно-поршневого двигателя перед обычным поршневым, это отсутствие цилиндропоршневой группы, то есть поршней с кольцами, шатунов и цилиндров. Ну и самое главное — это отсутствие множества деталей механизма газораспределения, что позволило сэкономить на производстве около тысячи деталей!

 

 

 

 

 

 

Основная деталь такого двигателя — это ротор, имеющий форму треугольника (cм. фотографии и рисунок). И этот ротор, с помощью зубьев шестерни, входит в зацепление с шестерней другой детали, но неподвижной — статором. Принцип работы роторного двигателя можно посмотреть на видеоролике чуть ниже и он основан на том, что вершины треугольного ротора, при его вращении трутся по эпитрохоидальной (имеющей форму восьмёрки) и полированной внутренней поверхности картера (статора).

И при этом ротор своими гранями вершин отсекает при вращении переменные объёмы трёх камер (трёх камер потому, что у ротора три вершины, бывает и другое число, но три — самый распространённый вариант). Камеры образуются отсеканием вершинами ротора внутренней поверхности статора (при вращении ротора).

При вращении ротора получается, что ротор играет роль и поршня и клапанов при работе мотора. И такая уникальная конструкция позволяет осуществлять любой четырёхтактный цикл Отто, Стерлинга или Дизеля, и при этом не нужен отдельный механизм газораспределения с множеством деталей, который имеется в головке цилиндров обычного и хорошо известного нам ДВС.

А герметичность пар в роторном двигателе, достигается торцевыми и радиальными уплотнителями (пластинами), которые при работе ещё лучше прижимаются давлением газов, центробежной силой, а так же специальными плоскими пружинами.

К тому же благодаря отсутствию головки цилиндров с механизмом ГРМ, а так же отсутствию кривошипно-шатунного механизма (коленвала, шатунов) и самих цилиндров, роторно-поршневой двигатель получается очень компактным (см фото слева) и не занимает много места под капотом. Так ещё и кроме своей компактности, такие моторы имеют бóльшую мощность, чем обычные двигатели.

 

 

 

 

 

 

И у такого мотора гораздо меньше деталей, чем у привычного нам ДВС. Это хорошо видно на фото слева. И это далеко не все преимущества и подробнее о преимуществах РПД написано ниже.

 

 

 

Преимущества роторного двигателя.

  • Меньшие габаритные размеры, чем у обыччного ДВС (примерно в полтора и даже в два раза). Это позволяет сделать машину более просторной и удобной для обслуживания.
  • Бóльшая удельная мощность, при меньшем объёме камеры сгорания, чем у обычного ДВС. Это достигается благодаря тому, что однороторный мотор выдаёт мощность в течении трёх четвертей каждого оборота вала. А на знакомом нам обычном моторе, мощность выдаётся только в течении одной четверти оборота коленвала.
  • Меньшее количество деталей (примерно около тридцати), а у обычного ДВС несколько сотен деталей.
  • Способность развить большие обороты при отсутствии вибрации, так как нет кривошипно-шатунного механизма, который преобразует возвратно-поступательное движение поршней в вращательное.
  • Низкий уровень вибрации, и мотор хорошо уравновешен.
  • Отличные динамические показатели автомобиля с РПД, и на низкой передаче можно легко разогнаться более сотни км/ч.
  • Ну и главный плюс, который я считаю вернёт эти моторы на дороги в будущем — это меньшая склонность к детонации, по сравнению с обычным ДВС. А значит можно использовать в качестве топлива не только бензин, но и водород — топливо будущего.

Так почему же такой двигатель не стал популярен у производителей автомобилей (исключение фирма Мазда) и до сих пор распространены обычные двигатели?. Чтобы ответить на этот вопрос, рассмотрим недостатки роторного-поршневого двигателя (РПД).

Недостатки роторного двигателя.

Кроме множества преимуществ, у РПД имеется ряд недостатков, из-за которых он не получил широкого распространения:

  • Повышенный расход топлива, особенно на низких оборотах, по сравнению с обычным двигателем.
  • Сложность производства, так как требуется очень большая точность изготовления трущихся пар и очень качественные сплавы (легированные стали). К тому же на производстве должны быть очень дорогие, сложные и точные металлообрабатывающие станки, так как фреза должна при обработке (например внутренней поверхности статора) следовать очень сложной траектории.
  • Быстрый износ уплотнителей, так как площадь пятна контакта маленькая а обороты вала большие. А при износе уплотнителей, из-за прорыва газов повышается токсичность, резко теряется коэффициент полезного действия (КПД) двигателя и потеря мощности.
  • Бóльшая склонность к перегреву, чем обычный ДВС. Из-за повышенного перегрева, даже бывают проблемы с воспламенением смеси в камере и чтобы улучшить воспламенение, на такие моторы устанавливают по две свечи зажигания на камеру. Две свечи ставят ещё и потому, что камера сгорания имеет вытянутую плоскую форму, и одной свечи в ней недостаточно.
  • В большинстве регионов не возможность ремонта таких двигателей, так как нет ни адекватных специалистов, ни запасных частей.
  • Более частая замена моторного масла, из-за того, что ротор соединяется с выходным валом через эксцентриковый механизм и получается большое давление между трущимися деталями. В добавок к этому ещё и большая температура приводит к быстрому износу двигателя, особенно если вовремя не поменять масло, а менять как я уже говорил, его надо чаще. Если же вовремя менять масло, уплотнители и делать капремонт, то ресурс РПД будет достаточно большим. А у некоторых двигателях японской фирмы Мазда, проработать РПД без поломок может около трёхсот тысяч км.

Устройство и более подробный принцип работы роторно-поршневого двигателя.

В роторном двигателе, как и в обычном ДВС вращение выходного вала (работа двигателя) происходит за счёт сгорания топливно-воздушной смеси. И так же как в привычном нам обычном двигателе, РПД имеет впускной канал, через который впрыскивается рабочая смесь, и имеет выпускной канал, через который выбрасываются отработавшие газы.

Но основное отличие состоит в том, что газы, образуемые при сгорании топлива, давят не на поршень (поршни), а на ротор, и от этого ротор передаёт вращение через зубья шестерни и эксцентрики на приводной вал. При этом сам ротор при этом выполняет и роль газораспределителя (как в двухтактном моторе, но не совсем), и делит внутренний объём картера на три отдельных камеры.

 

 

И в каждой камере в определённый момент происходит всасывание рабочей смеси, её сжатие, вспышка рабочей смеси и сам рабочий ход от расширения газов, ну и выпуск отработанных газов (четыре такта). Подробно это показано на рисунке слева и описано ниже.

 

 

 

 

  1. Такт впуска. Всасывание рабочей смеси происходит в тот момент, когда соответствующая вершина ротора проходит через впускное отверстие в картере двигателя. А при дальнейшем движении ротора, объём соответствующей камеры увеличиваетс и создаётся разряжение, при котором рабочая смесь засасывается в камеру.
  2. Такт сжатия. Далее при вращении ротора, впускное отверстие отсекается кромкой другой (следующей) вершины ротора, и одновременно объём камеры уменьшается, таким образом рабочая смесь сжимается и давление в камере увеличивается. Пик сжатия (наибольшего давления смеси) достигается в районе свечей зажигания.
  3. Такт рабочий ход. В этот момент происходит разряд на двух свечах зажигания и соответственно вспышка сжатой рабочей смеси. От вспышки происходит сгорание и расширение продуктов горения, которые с силой толкают ротор, и от этого он проворачивается и вращает выходной вал.
  4. Такт выпуска. Далее, при вращении ротора, кромка одной из вершин ротора проходит выпускное отверстие в картере, открывая его, и через это выпускное отверстие под давлением выходят отработанные газы. Далее первый ротор благодаря силе инерции, а так же благодаря действию второго ротора, работающего асинхронно первому ротору, продолжает своё вращение и подходит опять кромкой к впускному отверстию, для нового такта впуска, и всё повторяется заново.

Но как понял читатель из выше описанного, чтобы лучше сбалансировать РПД, а так же уменьшить вибрацию и предотвратить детонацию, применяют не один а два ротора (см. фото выше, где показан РПД в разобранном виде). А сам ротор (роторы) немного смещён (эксцентричен) от выходного вала, ось которого расположена строго по центру и передаёт вращение на вал как бы обкатывая его по кругу.

Передача вращения происходит воздействием шестерни ротора на шестерню вала (а шестерня вала находится внутри шестерни ротора), а передаточное число рассчитано так, что за один оборот ротора, вал совершает три оборота.

Основные детали роторно-поршневого двигателя. Главная деталь РПД это ротор, имеющий форму треугольника. Причем на каждой из трёх немного выпуклых плоскостей ротора, имеются выборки (углубления — см. фото), которые делаются на заводе для того, чтобы немного увеличить рабочий объём двигателя.

На каждой из трёх вершин ротора, вставлены уплотнительные пластинки, которые уплотняют сам ротор относительно внутренней поверхности картера двигателя, и делят внутреннюю полость картера на три камеры. Пластинки трутся о внутреннюю поверхность картера с большой скоростью и разумеется постепенно изнашиваются. Поэтому они вставлены в вершину ротора так, что бы по необходимости их можно было заменить новыми, взамен изношенных.

Так же с каждой стороны ротора (ближе к центру — см. фото) установлены уплотнительные кольца, которые герметизируют (отделяют) полость камер от картера. Ну и в самом центре ротора жёстко вмонтирована кольцевая шестерня (зубчатый венец), которая как бы обкатывается вокруг меньшей шестерни, закреплённой на валу двигателя, и передаётся вращение выходному валу.

Сам ротор (роторы) помещён в картер, а картер состоит из нескольких плит, которые плотно соединяются между собой, образуя несколько отсеков и разделяющие их стенки. Как правило разделительная стенка делит двигатель на две основные части (полости), в каждой их которых работает свой отдельный ротор (обычно в моторе два ротора).

Каждая полость имеет впускной и выпускной каналы, и сложную форму в виде восьмёрки, которую не так то просто выполнить при производстве. К тому же стенки должны быть изготовлены из очень твёрдого материала, иначе они быстро износятся, и от этого давление в камерах упадёт, и соответственно упадёт и мощность мотора.

Сам картер имеет с наружи двойную стенку (как блок обычного ДВС) для циркуляции между стенками охлаждающей жидкости системы охлаждения. А в центре картера имеются отверстия, в которые запрессованы подшипники, на которых висит вал мотора.

Вал роторного двигателя с виду похож на распределительный вал обычного ДВС (см. фото), так как имеет эксцентрики, похожие на кулачки распредвала обычного мотора. Вал изготовлен так, что эксцентрики расположены на нём в противоположных сторонах вала. И когда на эти эксцентрики при сборке будет насажены два ротора (насажены на подшипники скольжения), то роторы будут работать в противофазе, помогая друг другу в работе.

То есть работа двух роторов будет подобна работе двух поршней четвёртого и второго цилиндров обычного четырёхцилиндрового мотора — один из них в начальной стадии впуска рабочей смеси, а другой в стадии выпуска отработавших газов. И именно из-за того, что роторы сидят на эксцентриках вала, при вращении роторов в противофазе будет вращаться и вал РПД, передавая вращение на трансмиссию.

Ну а как же применение роторно-поршневого двигателя на автомобилях — есть ли смысл?

Первым автопроизводителем, который установил РПД на свой автомобиль ещё в конце 60-х годов прошлого века, была компания NSU (о их машине, двигателе и о машинах Мазда, смотрите интересный видеоролик под статьёй). А авто-производитель, которому удалось поставить такие двигатели на поток, применяя их на своих автомобилях — является всем известная японская Мазда.

РПД установленный на некоторые её машины, при рабочем объёме всего в 1,3 литра, способен развить мощность в 250 лошадей. Но и это ещё не всё, благодаря постоянному совершенствованию своих роторных моторов, им удалось существенно снизить расход топлива и масла, а главное снизить токсичность. Это позволило вывести автомобили с РПД на европейский рынок, который наиболее жёсткий к экологическим нормам.

К тому же в 1995 году был разработан новейший РПД, который назвали RENESIS, что означает новая жизнь роторного мотора. Этот мотор был впервые установлен на новый маздовский концепткар «Mazda RX-01″ и показал отличную динамику разгона. А улучшенный вариант такого мотора был установлен в 1999 году на спортивный концепткар «RX-EVOLV». Этот двигатель планируют устанавливать серийно на автомобиль «Mazda RX-8″.

Большая экономичность нового двигателя была достигнута за счёт применения более совершенных форсунок и использования боковых окон для выпуска отработанных газов. Так же были установлены усовершенствованные свечи зажигания, которые существенно улучшили полноту сгорания топлива.

К тому же выпускной коллектор был изготовлен с двойной стенкой, позволяющей повысить температуру выпускных газов и быстро прогревать каталитический нейтрализатор, даже при минусовой температуре окружающего воздуха. Ну и была усовершенствована система смазки с мокрым картером, и количество масла в картере было уменьшено вдвое, по сравнению с обычными РПД.Ну и кроме идеальной плавности работы нового мотора, был улучшен и звук выхлопа, который не описать, это нужно слышать.

Многие могут сказать, что несмотря на многие преимущества, технология производства таких двигателей довольно сложна и требует новейшего оборудования. Но ведь многие высокотехнологические детали, которые имеются сейчас на многих серийных машинах, когда то казались сложными и не практичными, и применялись только на спортивных машинах.

Например когда то и никасилевое покрытие цилиндров серийного двигателя, или вентилируемые тормозные диски, казались сложными, дорогими и трудновыполнимыми, а сейчас на большинстве серийных машин это обычное явление.

Сейчас ведутся работы по применению на таких двигателях водородного топлива, ведь роторный двигатель не склонен к детонации и способен работать на водороде, и скорей всего за РПД будущее, поживём — увидим.

Принцип работы роторного двигателя, плюсы и минусы системы

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

Содержание статьи:

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторного двигателя

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Роторный двигатель в разрезе Ротор роторного двигателя Камера роторного двигателя

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень. Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси. На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера двигателя приблизительно овальной формы (но если быть точным — это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа. В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал роторного двигателя

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества роторного двигателя

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-х цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-х цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Малые габариты + высокая мощность

Компактность системы вместе с высоким КПД (сравнительно с обычным ДВС) позволяет из миниатюрного 1,3-литрового мотора выдавать порядка 200-250 л.с. Правда, вместе с главным недостатком конструкции в виде высокого расхода топлива.

Недостатки роторных моторов

Самые главные проблемы при производстве роторных двигателей:

  • Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.
  • Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.
  • Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.
  • Роторные двигатели в силу конструкции ограничены в ресурсе — в среднем это порядка 60-80 тыс. км

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л.с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб, однако проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Разные конструкции и разработки роторных двигателей

Двигатель Ванкеля

Двигатель Желтышева

Двигатель Зуева

Принцип работы роторного двигателя

Как известно, принцип работы роторного двигателя основан на высоких оборотах и отсутствии движений, которыми отличается ДВС. Это и отличает агрегат от обычного поршневого двигателя. РПД называют ещё двигателем Ванкеля, и сегодня мы рассмотрим его работу и явные достоинства.

Ротор такого двигателя находится в цилиндре. Сам корпус не круглого типа, а овального, чтобы ротор треугольной геометрии нормально в нём помещался. У РПД не бывает коленчатого вала и шатунов, а также отсутствуют в нём другие детали, что делает его конструкцию намного проще. Если говорить другими словами, то примерно около тысячи деталей обычного двигателя внутреннего сгорания в РПД нет.

Работа классического РПД основана на простом движении ротора внутри овального корпуса. В процессе движения ротора по окружности статора создаются свободные полости, в которых и происходят процессы запуска агрегата.

Почему этот вариант не прижился

Удивительно, но роторный агрегат представляет собой некий парадокс. В чём он заключается? А в том, что он имеет гениально простую конструкцию, которая почему-то не прижилась. А вот более сложный поршневой вариант стал популярным и повсюду используется.

На видео показано строение и принцип работы роторного двигателя:

Конечно же, если бы у роторного мотора не было недостатков, то он обязательно бы применялся на современных автомобилях. Возможно даже, что, если бы роторный двигатель был безгрешен, мы и не узнали бы про двигатель поршневой, ведь роторный создали раньше. Затем человеческий гений, пытаясь усовершенствовать агрегат, и создал современный поршневой вариант мотора.

Но к сожалению, минусы у роторного двигателя имеются. К таким вот явным ляпам этого агрегата можно отнести герметизацию камеры сгорания. А в частности, это объясняется недостаточно хорошим контактом самого ротора со стенками цилиндра. При трении со стенками цилиндра металл ротора нагревается и в результате этого расширяется. И сам овальный цилиндр тоже нагревается, и того хуже — нагревание происходит неравномерно.

Если в камере сгорания температура бывает выше, чем в системе впуска/выпуска, цилиндр должен быть выполнен из высокотехнологичного материала, устанавливаемого в разных местах корпуса.

Для того чтобы такой двигатель запустился, используются всего две свечи зажигания. Больше не рекомендуется ввиду особенностей камеры сгорания. РПД наделён бывает совершенно иной камерой сгорания и выдаёт мощность три четверти рабочего времени ДВС, а коэффициент полезного действия составляет целых сорок процентов. По сравнению: у поршневого мотора этот же показатель составляет 20%.

Преимущества ротора, или Как японцы взялись за дело

На видео показан принцип работы роторного двигателя Ахриевых:

Но имеются у РПД и преимущества. В частности, к ним можно отнести особую динамику агрегата. Расход у роторного двигателя очень большой, а кроме этого, у такого агрегата очень маленький ресурс — всего шестьдесят тысяч километров — что делает его непригодным для езды в условиях города. Если объём роторного двигателя будет равен 1,3 л, то он способен будет потреблять до двадцати литров топлива.

Кстати, большой расход бензина также является причиной того, что роторный двигатель не обрёл популярности. Дело в том, что в 1973 году, когда роторные двигатели только вышли, на Аравийском полуострове накалилась обстановка. Там проходили настоящие военные действия, а как известно, арабские страны до сих пор остаются основными поставщиками топлива. В связи с этим делом, цена на бензин резко поднимается. А роторный двигатель пожирал его просто как вечно голодный чревоугодник. Вот и получилось, что он стал лишним.

Зато такой агрегат при этом будет выдавать целых 250 л. с, оставаясь малогабаритным.

На видео показано строение и принцип работы роторного двигателя Ванкеля:

Такая ситуация просто вынуждает причислять роторные двигатели к спортивным моделям автомобилей. Да и не только. Приверженцы роторного двигателя сегодня нашлись. Это известный автопроизводитель Мазда, вставший на путь самурая и продолживший исследования мастера Ванкеля. Если вспомнить ту же ситуацию с Субару, то становится понятен успех японских производителей, цепляющихся, казалось бы, за всё старое и отброшенное западниками как ненужное. А на деле японцам удаётся создавать новое из старого. То же тогда произошло с оппозитными двигателями, являющимися на сегодняшний день «фишкой» Субару. В те же времена использование подобных двигателей считалось чуть ли не преступлением.

Работа роторного двигателя также заинтересовала японских инженеров, которые на этот раз взялись за усовершенствование Мазды. Они создали роторный двигатель 13b-REW и наделили его системой твин-турбо. Теперь Мазда могла спокойно поспорить с немецкими моделями, так как открывала целых 350 лошадок, но грешила опять же большим расходом топлива.

Пришлось идти на крайние меры. Очередная модель Мазда RX-8 с роторным двигателем уже выходит с 200 лошадками, что позволяет сократить расход топлива. Но не это главное. Заслуживает уважения другое. Оказалось, что до этого никто, кроме японцев, не догадался использовать невероятную компактность роторного двигателя. Ведь мощность в 200 л. с. Мазда RX-8 открывала с двигателем объёмом 1,3 литра. Одним словом, новая Мазда выходит уже на другой уровень, где способна конкурировать с западными моделями, беря не только мощностью мотора, но и другими параметрами, в том числе и низким расходом топлива.

На видео рассмотрено устройство и принцип работы роторного двигателя Желтышева:

Удивительно, но РПД пытались ввести в работу и у нас в стране. Такой двигатель был разработан для установки его на ВАЗ 21079, предназначенный как транспортное средство для спецслужб. Но проект, к сожалению, не прижился. Как всегда, не хватило бюджетных денег государства, которые чудесным образом из казны выкачиваются.

Зато это удалось сделать японцам. И они на достигнутом результате останавливаться не желают. По последним данным, производитель Мазда усовершенствует двигатель и в скором времени выйдет новая Мазда, уже с совершенно другим агрегатом.

Заглянем внутрь РПД

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

На видео показан принцип работы роторно-поршневого двигателя Зуева:

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом. В первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается.

После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Кроме того, японским инженерам удалось усовершенствовать роторный двигатель. Сегодня роторные двигатели Мазда имеют не один, а два и даже три ротора, что в значительной мере повышает производительность, тем более если сравнить его с обычным двигателем внутреннего сгорания. Для сравнения: двухроторный РПД сравним с шестицилиндровым ДВС, а 3-роторный с двенадцатицилиндровым. Вот и получается, что японцы оказались такими дальновидными и преимущества роторного мотора сразу распознали.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Принцип работы роторно-поршневого двигателя заставил в своё время многих талантливых инженеров удивлённо вскинуть бровями. И сегодня талантливые инженеры компании Мазда заслуживают всяческих похвал и одобрения. Шутка ли, поверить в производительность, казалось бы, похороненного двигателя и дать ему вторую жизнь, да ещё какую!

Преимущества и недостатки роторного двигателя

Gear and Tech: 29 января 2009 г.

Что, черт возьми, такое роторный двигатель? Что это за роторы и NO PISTONS !? Богохульство! На самом деле все очень просто. В отличие от поршневого двигателя, который имеет фазы сжатия и зажигания для каждого цилиндра, Rotary делает все это за один оборот ротора треугольной формы.

Преимущества

Роторный двигатель очень прост.В конструкции двигателя используется гораздо меньше движущихся частей, чем в его поршневом аналоге. 13B-MSP Renesis (от RX8) имеет самую высокую мощность на рабочий объем среди всех безнаддувных двигателей, произведенных на заводе в Америке. Для своего размера роторный инструмент обладает мощным ударом. Для справки: 13B от RX8 имеет объем 1,3 литра и выдает 232 лошадиных сил. Это равняется смехотворным 178 лошадиных сил на литра. Теоретически это было бы эквивалентно 6,0-литровому LS2 (от Corvette) , производящему 1068 лошадиных сил на заводе.

В отличие от поршневых двигателей, роторные двигатели почти не подвержены катастрофическим отказам. В поршневом двигателе поршень может заедать и вызывать всевозможные повреждения, но в роторном двигателе, когда двигатель теряет мощность, он будет продолжать вырабатывать ограниченное количество мощности до тех пор, пока не умрет.

Роторные двигатели также полетят на Луну и по-прежнему будут производить энергию. Например, RX8 имеет красную отметку 9k , и именно здесь он также обеспечивает пиковую мощность. Излишне говорить, что Rotary любит оставаться на высоких оборотах.

Недостатки

Некоторые основные жалобы на Rotary - расход топлива и сжигание масла. Одним из наиболее распространенных заблуждений является то, что роторный двигатель сжигает масло из-за неисправности, это не всегда так. В Rotary используются масляные распылители, которые собирают небольшое количество масла и смешивают его с топливом для смазки уплотнений. Расход бензина очень Меххххх в середине 20-х годов (предположительно… намного меньше в действительности.)

Роторы также имеют тенденцию производить примерно такой же крутящий момент, как отвертка , и уплотнения через некоторое время становятся большой проблемой, если вы живете в более холодном климате.Детали, как правило, дорогие, и, поскольку это роторный двигатель, вы должны отнести его к механику или в дилерский центр, чтобы он отремонтировал, когда что-то пойдет не так.

У роторных машин

также иногда возникают проблемы с заливкой топливом при холодном пуске. Обычно это происходит только со старыми 13B, поэтому необходимо , чтобы дать двигателю прогреться до рабочей температуры, прежде чем вы решите взлететь.

В целом у ротора есть свои взлеты и падения, как и у всего остального.Ничто не может сравниться со звуком 26B, который звучит как огромный V8 с кулачками на холостом ходу, а затем набирает обороты, как стритбайк. Надеюсь, эта статья была информативной и прояснила некоторые заблуждения. Ротари могут быть разными, но они всегда будут в моем сердце.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели. Но в роторном двигателе это делается совершенно по-другому.

Этот контент несовместим с этим устройством.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя - это ротор. Это примерно эквивалент поршней в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа на лебедке, давая ротору рычаг, необходимый для поворота выходного вала.Когда ротор вращается внутри корпуса, он толкает лопасть по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие.В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается.К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор перемещаться в направлении увеличения объема камеры.Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газы сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла - за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один такт сгорания.

Что такое роторные двигатели и в каких автомобилях они есть?

Роторные двигатели могут звучать как что-то из ушедшей эпохи, и это потому, что в целом так оно и есть.Когда-то считавшиеся самыми эффективными и элегантными двигателями, они были заменены поршневыми двигателями несколько десятилетий назад, главным образом по экономическим и экологическим причинам. Но с новостями о том, что Mazda разрабатывает новый роторный двигатель для своих гибридных моделей, может ли этот тип двигателя вернуться?

Чтобы выяснить это, мы подробно рассмотрим роторные двигатели, включая то, как они работают, каковы их преимущества и какие автомобили работают с этим типом двигателей. Используйте приведенные ниже ссылки для навигации по руководству.

Быстрые ссылки

Что такое роторный двигатель?

Роторный двигатель - это тип двигателя внутреннего сгорания, который используется для питания всех видов транспортных средств, от легковых и грузовых автомобилей до лодок и самолетов. Роторные двигатели существуют уже несколько десятилетий и были одним из наиболее широко используемых типов двигателей примерно до 1920-х годов.

Так же, как и обычный поршневой двигатель, роторные двигатели выполняют четыре функции для привода транспортного средства: впуск, сжатие, сгорание и выпуск.Однако они работают совершенно иначе, чем стандартные движки, к которым мы привыкли.

Итак, как же работают роторные двигатели? Вот пошаговый взгляд на то, как выглядит цикл сгорания в роторном двигателе:

  • Впуск - как и в стандартном поршневом двигателе, воздух втягивается в двигатель через впускной клапан, прежде чем попасть в салон. камера через впускной канал.
  • Компрессия - ротор треугольной формы внутри камеры создает три газонепроницаемых уплотнения; они эффективно выполняют ту же работу, что и поршни в обычном двигателе.Когда ротор вращается, его уникальная форма означает, что эти три объема газа расширяются и сжимаются, втягивая в систему больше воздуха и топлива.
  • Горение - при пике давления внутри каждой из трех газовых камер смесь топлива и воздуха воспламеняется, производя мощность, которая передается на трансмиссию через выходной вал.
  • Выхлоп - выхлопное отверстие в корпусе двигателя отводит газы, где они выходят через стандартную выхлопную трубу.

Как и в стандартном поршневом двигателе, температура роторных двигателей поддерживается системой охлаждения с проходами для охлаждающей жидкости, выстилающими внешнюю оболочку картера сгорания.Масло также циркулирует по аналогичным каналам, смазывая движущиеся части ротора, выходного вала и клапанов.

Компоненты роторного двигателя

Роторные двигатели могут показаться сложными, но на самом деле они не имеют такого количества движущихся частей и компонентов, как поршневой двигатель. Ниже мы рассмотрим основные компоненты роторного двигателя, чтобы вы лучше поняли, как все работает.

Ротор

Ротор представляет собой трехсторонний компонент с вогнутыми сторонами, которые обеспечивают газонепроницаемое уплотнение при нажатии на боковую часть корпуса.На каждой стороне ротора есть впускное отверстие или карман, который позволяет большему объему газа внутри корпуса, эффективно увеличивая скорость перемещения двигателя.

Ротор вращается на паре шестерен, которые прикреплены к валу в центре корпуса. Эти шестерни позволяют ему вращаться таким образом, что край каждой стороны ротора всегда находится в контакте с корпусом, сохраняя три отдельных кармана сгорания. Думайте об этом как о спирографе с ротором, вращающимся с небольшим смещением.

Корпус

Корпус является основным корпусом роторного двигателя. Его овальная форма предназначена для максимального увеличения рабочего объема двигателя, позволяя ротору вращаться так, чтобы его края находились в постоянном контакте с внутренней стенкой корпуса.

Когда ротор вращается внутри корпуса, каждый из газовых карманов проходит через четыре части цикла сгорания: от впуска до сжатия, от сгорания до выпуска. Свечи зажигания и топливные форсунки вставляются непосредственно через стенку корпуса, а внешние каналы пропускают масло и охлаждающую жидкость через систему, сохраняя ее целостность и температуру.

Выходной вал

Выходной вал передает энергию, генерируемую сжатием и сгоранием, трансмиссии, передавая мощность на колеса. Сам вал снабжен круглыми выступами, которые контактируют с ротором, заставляя вал вращаться.

Есть ли преимущества роторных двигателей в автомобилях?

Роторные двигатели встречаются редко, большинство производителей автомобилей используют обычные поршневые двигатели с 1920-х годов. Это потому, что они считаются менее экономичными, чем их поршневые аналоги, в основном потому, что они предлагают более низкий термодинамический КПД из-за размера камеры сгорания и низкой степени сжатия.

Однако роторный двигатель имеет некоторые преимущества по сравнению с поршневым двигателем, в том числе:

  • Плавный и тихий - роторный двигатель работает более плавно, чем движение поршней, что приводит к более тихой и четкой работе. почувствовать себя на дороге. Противовесы на внешней стороне вращающегося корпуса предназначены для гашения вибрации и обеспечения плавной работы.
  • Меньше движущихся частей - роторные двигатели имеют меньше движущихся частей, чем обычные двигатели.Это не только повышает надежность, но и делает техническое обслуживание более доступным в долгосрочной перспективе.
  • Более медленное внутреннее движение - поршневые двигатели требуют быстрого и интенсивного движения вверх и вниз для создания необходимой степени сжатия для привода автомобиля. Это означает, что их внутренние части подвергаются чрезмерной нагрузке, что может привести к преждевременной деградации без регулярного обслуживания. Роторные двигатели работают медленнее, с одним движением в одном направлении, что означает, что их части испытывают меньшую нагрузку, и это повышает долговременную надежность.

Какие автомобили имеют роторный двигатель?

Очень немногие современные автомобили имеют роторный двигатель. Из-за недостатков, связанных с их экономичностью, а также относительной дороговизной их производства, большинство автопроизводителей придерживаются поршневых двигателей. Но не каждый из них.

Японский автомобильный бренд Mazda экспериментирует с роторными двигателями с 1960-х годов. Его первым успехом стало Cosmo Coupé 1967 года, которое прославилось своим эффективным и сверхгладким роторным двигателем.С тех пор было разработано несколько других моделей с роторным двигателем, включая RX-7, RX-8 и роторную версию Mazda 2, выпущенную еще в 2013 году.

А теперь Mazda объявила о планах построить Совершенно новый роторный двигатель, который будет использоваться вместе с электродвигателем в качестве расширителя диапазона его гибридно-электрических транспортных средств. Бренд считает, что роторный агрегат идеально подходит для гибридного автомобиля, обеспечивая надежную работу с гораздо большим совершенством, чем стандартный поршневой двигатель.

Не только это, но и роторные двигатели, как считается, очень хорошо работают с топливом следующего поколения, особенно с водородом. Более длительный период впуска воздуха, предлагаемый роторным двигателем, очень эффективен при смешивании воздуха и топлива, поэтому можно впрыскивать большее количество водорода для правильного топливно-воздушного смешения, повышая эффективность и производительность.

С новой инновацией Mazda, возможно, последуют и другие марки автомобилей, которые помогут выполнить нормативные требования по выбросам. Ожидается, что роторный двигатель получит новый облик 21 века.

Мы надеемся, что вам понравилась эта статья, в которой подробно рассказывается о роторных двигателях. Хотели бы вы, чтобы на дорогах было больше автомобилей с роторными двигателями? Присоединяйтесь к разговору в Redex Club и дайте нам знать. Или же, чтобы узнать о наших инновационных топливных присадках и очистителях системы, посетите домашнюю страницу сегодня .

Чем роторные двигатели отличаются от обычных двигателей?

Большинство автомобилей, которые вы видите на дороге, имеют под капотом традиционный поршневой двигатель.Однако у небольшого количества есть явное отличие: они используют роторный двигатель без поршня или роторный двигатель. Вместо цилиндрических поршней, используемых в большинстве двигателей, они используют трехсторонние роторы в продолговатом корпусе для создания сгорания.

Что такое роторный двигатель?

Роторный двигатель, который знаком большинству американских потребителей, также называется двигателем Ванкеля, названным в честь немецкого инженера Феликса Ванкеля, который разработал эту конфигурацию в 1960-х годах. Некоторые бренды приняли поворотную конфигурацию из-за репутации конструкции, обеспечивающей впечатляющую мощность за счет небольшого рабочего объема.Благодаря легкому весу и компактным размерам соотношение мощности и веса является одним из лучших среди двигателей внутреннего сгорания.

Хотя это двигатель внутреннего сгорания, он работает иначе, чем традиционные поршневые двигатели. В типичном поршневом двигателе каждый такт выполняет четыре разные задачи: впуск, сжатие, сгорание и выпуск. Роторные двигатели выполняют те же четыре задачи, но выполняются в отдельном секторе кожуха двигателя. По сути, это более эффективный способ завершить четырехтактный процесс; аналогично наличию специального цилиндра внутри одной камеры.

Меньше подвижных частей

Роторный двигатель не имеет такого количества движущихся компонентов, как поршневой двигатель. В типичном двигателе внутреннего сгорания имеется более 40 отдельных компонентов, таких как шатуны, распределительный вал, клапаны, коромысла, зубчатый ремень, зубчатые колеса, коленчатый вал и, конечно же, поршни, которые должны работать вместе для четырехтактного двигателя. цикл, чтобы завершить один оборот.

С другой стороны, в типичном двухроторном роторном двигателе всего три движущихся части.Два из них являются роторами, а третий - выходным валом. Нет такого клапана, как в поршневом двигателе. Ротор улавливает воздушно-топливную смесь, когда она вращается мимо впускного отверстия, затем сжимает ее, когда она проходит мимо зоны сгорания, и позволяет сгоревшей смеси выйти, когда она вращается мимо выпускного отверстия, прежде чем снова запустить цикл. Преимуществом меньшего количества движущихся частей является меньшее количество изнашиваемых частей, меньший вес и отсутствие необходимости замены масла.

Более плавное движение

Детали в традиционном поршневом двигателе меняют направление при вращении, в то время как детали в роторном двигателе постоянно перемещаются в одном и том же направлении.Они также оснащены противовесами, которые устраняют вибрации, возникающие в поршневых двигателях.

Это помогает сделать роторный двигатель более плавным, чем поршневой. Он имеет три оборота выходного вала за один оборот ротора. В поршневом двигателе сгорание происходит каждые два оборота и четверть каждого оборота коленчатого вала. Роторы роторного двигателя движутся медленнее, чем поршневого двигателя, что является еще одним фактором, увеличивающим срок службы.

Известные проблемы

Одним из отрицательных побочных эффектов роторного двигателя является сам процесс сгорания.Хотя сами двигатели работают более эффективно с точки зрения создания мощности, топливная эффективность не так хороша. Фактически, типичный двигатель внутреннего сгорания с поршневым приводом сжигает примерно 80 процентов топливовоздушной смеси в камере сгорания, в то время как роторный двигатель обычно сжигает только 70 процентов. Кроме того, проблемы с поддержанием герметичности уплотнений делают роторные двигатели склонными к расходу масла. Эти факторы делают их менее топливосберегающими и более загрязняющими.

Более того, хотя роторные двигатели создают большую мощность на высоких оборотах, они не создают такой же крутящий момент, как поршневые двигатели, особенно на низких оборотах.Это делает их хорошим вариантом для гоночной трассы, но менее идеальным для повседневной езды по городу.

Роторные двигатели не используются во многих транспортных средствах, особенно в США, из-за требований норм выбросов и надежности. Однако японский автопроизводитель Mazda добился определенного успеха с двигателем Ванкеля. Их четырехроторный гоночный автомобиль 787 выиграл престижную гонку «24 часа Ле-Мана» в 1991 году, а такие спортивные автомобили, как RX-7 и RX-8, стали культовыми среди автолюбителей.Несмотря на это, Mazda не производила роторные двигатели с 2012 года. Хотя компания утверждает, что они по-прежнему занимаются исследованиями и улучшением роторных двигателей, с сегодняшними постоянно ужесточающимися правилами выбросов, кажется маловероятным, что они вернутся. Автолюбители могут только надеяться когда-нибудь в будущем почувствовать плавность вращения и высокую мощность нового роторного автомобиля.

Роторный двигатель - Energy Education

Рисунок 1. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [1]

Роторные двигатели или Двигатели Ванкеля - это тип двигателя внутреннего сгорания, наиболее часто используемый в Mazda RX-7, который преобразует тепло от сгорания топливовоздушной смеси под высоким давлением в полезную работу для остальной части машина. Его уникальной особенностью является треугольный ротор, который выполняет те же задачи, что и поршень поршневого двигателя, но совсем другим образом. [2]

Ротор заключен в корпус овальной формы и выполняет обычный четырехтактный цикл двигателя внутреннего сгорания, как показано на рисунке 1.Ротор соединен с выходным валом, который вращается в 3 раза быстрее, чем ротор (внутренний круг обозначен буквой «B» на рисунке). Этот цикл описан ниже и повторяется 3 раза по для каждого вращения ротора: [2]

  1. Впуск : Это инициируется, когда кончик ротора проходит через впускной канал. В этот момент камера имеет самый маленький размер, и по мере вращения камера расширяется, втягивая топливно-воздушную смесь. Как только конец ротора проходит через впускной канал, он переходит к стадии сжатия, а следующая поверхность ротора начинает этот шаг заново.
  2. Сжатие : По мере того как ротор продолжает вращаться, топливно-воздушная смесь сжимается, поскольку камера уменьшается в размерах. Это необходимо для следующей детали, которая воспламеняет эту смесь.
  3. Зажигание : Сжатая смесь воспламеняется свечами зажигания, и значительное увеличение давления заставляет ротор расширяться. Это силовой ход, обеспечивающий полезную работу. Часто необходимы две свечи зажигания, чтобы обеспечить равномерное зажигание по всей камере.Выхлопной газ расширяется в камеру, пока кончик ротора не пройдет через выхлопное отверстие.
  4. Выхлоп : Как только наконечник проходит через это отверстие, выхлопные газы под высоким давлением могут проходить через выпускное отверстие. Ротор продолжает вращаться, пока конец его поверхности не пройдет через выпускное отверстие, а кончик не пройдет через впускное отверстие, и цикл повторяется.

Интересная часть этого цикла состоит в том, что : каждый шаг выполняется одновременно, , только в разных камерах.Это дает три рабочих хода на каждый оборот ротора.

Отличия от поршневого двигателя

Помимо различных методов завершения четырехтактного цикла, роторные двигатели имеют другие преимущества и недостатки по сравнению с более распространенными поршневыми двигателями: [2]

  • Меньше движущихся частей : Двухроторный роторный двигатель имеет три движущихся части - два ротора и выходной вал, в то время как обычные поршневые двигатели имеют не менее 40.Это повышает надежность роторных двигателей.
  • Более плавный : Ротор постоянно вращается в одном направлении, в отличие от поршневых двигателей, поршни которых резко меняют направление. Они также уравновешены грузами, которые уменьшают внутренние вибрации. Подача мощности также более непрерывна из-за трех тактов на каждый оборот ротора.
  • Медленнее : Ротор вращается со скоростью, равной одной трети скорости выходного вала, поэтому основные движущиеся части движутся медленнее, чем в поршневом двигателе.Это повышает надежность.

Недостатки

Затраты на производство могут быть выше из-за меньшей популярности этих двигателей. Они также обычно потребляют больше топлива, чем другие двигатели, из-за их низкой степени сжатия и, следовательно, имеют более низкий термический КПД, что затрудняет соблюдение ими норм выбросов.

Для дальнейшего чтения

Список литературы

Проблема с роторными двигателями: инженерное объяснение

Высокая мощность в крошечном, простом и легком корпусе.В роторном двигателе Ванкеля есть что полюбить, но недостаточно, чтобы поддерживать его жизнь. Давайте посмотрим, что пошло не так

Они компактные, мощные и производят потрясающий шум. Так почему же роторные двигатели так и не стали популярными, и почему от этой концепции почти отказался один производитель, который ее отстаивал? Давайте проведем вас через это.

NSU Spider 1964 года был первым серийным автомобилем в мире, у которого задние колеса плавились под действием роторного двигателя Ванкеля. Автомобильный дебют Ванкеля готовился десятилетиями, хотя срок его службы был относительно коротким, и он закончился выпуском Mazda RX-8 2011 года. Это приводит нас к нескольким вопросам:

  1. Как работает роторный двигатель?
  2. Какие преимущества у этого двигателя? (Зачем это было сделано?)
  3. Какие недостатки есть у двигателя? (Почему он умер?)

1.Как работает роторный двигатель?

Процесс роторного двигателя очень похож на то, что происходит в традиционном поршневом цилиндровом двигателе. Отличие в том, что вместо поршней здесь ротор треугольной формы, а вместо цилиндров - корпус, напоминающий овал.

Всасывание

По мере того, как ротор перемещается внутри корпуса, небольшой воздушный карман расширяется в больший, создавая тем самым вакуум.Этот вакуум поступает во впускные каналы, из которых воздух и топливо затем всасываются в камеру сгорания.

Сжатие

Ротор продолжает вращаться, сжимая топливовоздушную смесь по плоской стороне корпуса ротора.

1 МБ

Благодарю Итана Смейла за эпический GIF!

Мощность

Две свечи зажигания используются для воспламенения топливовоздушной смеси, помогая ускорить процесс сгорания и обеспечить сгорание большей части топлива, и это заставляет ротор продолжать вращаться.

Выхлоп

Подобно такту впуска, ротор перемещается до тех пор, пока не станут доступны выпускные отверстия, а затем выхлопные газы под высоким давлением вытесняются наружу, когда ротор закрывается из корпуса.

Важно понимать, что в отличие от поршневого цилиндрового двигателя в одном корпусе ротора все эти события происходят почти одновременно. Это означает, что при всасывании одной части ротора также происходит рабочий такт, что приводит к очень плавной подаче мощности и большому количеству мощности в небольшом корпусе.

2. Какие преимущества дает двигатель Ванкеля?

Удельная масса

Одним из самых больших преимуществ роторного двигателя был его размер.Двигатель 13B Mazda RX-7 занимал около одного кубического фута объема, но вырабатывал значительную мощность для своих небольших размеров.

Меньше движущихся частей

Часто в инженерии самое простое решение оказывается одним из лучших. Роторный двигатель резко сокращает количество деталей, необходимых для сгорания, при этом всего три основных компонента вращаются в двухроторном двигателе.

Плавная и высокая частота вращения

Роторный двигатель не имеет возвратно-поступательной массы, как клапаны или поршни в традиционном двигателе.Это приводит к невероятно сбалансированному двигателю с плавной подачей мощности и способности развивать высокие обороты, не беспокоясь о таких вещах, как поплавок клапана.

3. Почему умер роторный двигатель?

Mazda RX-8 2011 года стала последним серийным автомобилем с ротором Ванкеля 1.3-х литровый Ренезис. Независимо от того, соответствовал ли RX-8 названию роторного двигателя, мы все прослезились из-за потери этого инновационного и уникального подхода к внутреннему сгоранию. Что нанесло последний удар? RX-8 не соответствовал нормам выбросов Евро 5, и поэтому после 2010 года он больше не мог продаваться в Европе. Несмотря на то, что в штатах он оставался законным, продажи значительно упали, поскольку модель существует с 2004 года.

Какие недостатки у поворотной конструкции?

Всего три основных движущихся части в двухроторном двигателе Ванкеля

Низкий тепловой КПД

Из-за длинной камеры сгорания и уникальной формы тепловой КПД двигателя был относительно ниже по сравнению с поршневыми аналогами.Это также часто приводило к выходу несгоревшего топлива из выхлопных газов (отсюда тенденция роторных двигателей к обратному воспламенению, что, очевидно, столь же круто, сколь и неэффективно).

Берн Бэби Берн

Роторный двигатель по своей конструкции сжигает масло. Во впускном коллекторе есть масляные распылители, а также форсунки для распыления масла непосредственно в камеру сгорания. Это не только означает, что водитель должен регулярно проверять уровни масла, чтобы поддерживать надлежащую смазку ротора, но также означает, что из выхлопной трубы выходит больше вредных веществ.А окружающая среда ненавидит плохое.

Это отверстие в корпусе - это то место, куда непосредственно впрыскивается масло во время впускного «такта» двигателя.

Уплотнение ротора

Еще одна проблема, которая также может повлиять на выбросы: сложно герметизировать ротор, когда он находится в очень разных температурах.Помните, что всасывание и сгорание происходят одновременно, но в очень разных местах корпуса. Это означает, что верхняя часть корпуса относительно холодная, а нижняя часть намного горячее. С точки зрения герметичности это проблематично, поскольку вы пытаетесь создать уплотнение «металл-металл» с металлами, которые работают при существенно разных температурах. Использование рубашек для охлаждающей жидкости, чтобы помочь выровнять тепловую нагрузку, эту проблему можно уменьшить, но никогда полностью не уменьшить.

Выбросы

Если сложить все вместе, выбросы убивают ротор. Сочетание неэффективного сгорания, внутреннего сгорания масла и проблем с герметизацией приводит к тому, что двигатель не может конкурировать с сегодняшними стандартами по выбросам или экономии топлива.

Чем отличается RX-8 от конкурентов?

Печально известное верхнее уплотнение ротора RX-7 13B

В моем видео, описывающем недостатки RX-8, зрители справедливо отметили, что я сравнивал автомобили 2015 модельного года с моделью 2011 года с точки зрения экономии топлива, что было несправедливо со стороны Mazda.Давайте исправим это неправильно, используя RX-8 первого года выпуска.

Автомобиль Объем двигателя Вес Мощность MPG Комбинированный рейтинг
2004 Mazda RX-8 1.3л Ванкель 3053 фунта (1385 кг) 197-238 л.с. (авто / человек) 18 миль на галлон (13 л / 100 км)
2004 VW GTI 1,8 л I4 2934 (1330 кг) 180 л.с. 9,8 л / 100 км (24 миль на галлон)
2004 Корвет 5,7 л V8 3214 фунтов (1458 кг) 350 л.с. 20 миль на галлон (11.8 л / 100 км)

Как вы можете видеть выше, RX-8 не очень хорош с точки зрения экономии топлива. Corvette со значительно более мощным двигателем, мощностью на 47 процентов и массой на 5 процентов по-прежнему обеспечивает меньшую экономию топлива на 11 процентов. Также стоит упомянуть, что это был первый модельный год для RX-8, в то время как двигатели Corvette и GTI использовались с предыдущих лет.Проще говоря, о RX-8 нельзя сказать ничего хорошего с точки зрения экономии топлива. Хотя покупатель не обязательно может рассматривать это как отрицательный момент, без учета выбросов нет автомобиля, который можно было бы купить.

Стоит отметить, что с момента первой публикации этой статьи Mazda объявила, что вернет роторные двигатели, но только в качестве небольших расширителей запаса хода в электромобилях. Другими словами, ничего, что не взорвется.

Роторные двигатели

- обзор

7.3.1 Проблема с водородом

В целом водород является идеальным решением. Это также хорошее топливо для двигателей внутреннего сгорания (ВС), и его выбросы в основном связаны с водой. По этой причине BMW пропагандирует это решение как альтернативу топливным элементам. Он считает, что двигатели внутреннего сгорания составляют свое основное технологическое преимущество, и не хочет идти на компромисс, что неизбежно произошло бы, если бы топливные элементы были повсеместно приняты автопроизводителями. BMW утверждает, что водородные двигатели IC дают те же экологические преимущества, что и водородные топливные элементы.На практике выделяются очень низкие уровни углеводородов из-за смазочного масла, которое все еще требуется двигателю внутреннего сгорания, хотя это, вероятно, незначительно.

Более важно то, что если кислород, используемый для сжигания водорода, получен из окружающего воздуха, более высокая температура сгорания водорода неизбежно приведет к более высоким выбросам NOx, а также к более высоким тепловым потерям (Keolian, 1997: 87). Эта проблема не возникнет в топливных элементах, которые работают при гораздо более низких температурах, а также с более высоким КПД.Водород можно сжигать в существующих двигателях внутреннего сгорания с небольшими модификациями, поэтому массовый отход от существующих технологий двигателей и производственных мощностей не потребуется. BMW также предлагает использовать пустынные районы для крупномасштабного производства водорода на солнечной энергии. Однако BMW была одной из первых, кто разработал топливный элемент для питания бортовых электрических систем в своих автомобилях. Mazda сообщила в начале 1990-х годов, что ее роторные двигатели IC Ванкеля также особенно подходят для работы на водороде (Hege, 2001: 161).

Новая потребность в водороде хорошо согласуется с желанием некоторых стран перейти к «водородной экономике», которая в большинстве случаев представляет собой экономику, основанную на водороде как средстве хранения энергии, генерируемом из возобновляемых источников энергии, а не на ископаемом топливе . Тогда это приведет к созданию экономики, основанной на изобилии энергии, но без каких-либо побочных эффектов, таких как загрязнение окружающей среды, войны на Ближнем Востоке или глобальное потепление. Исландия, изобилующая геотермальной энергией, объявила, что идет к достижению этой цели в течение нескольких десятилетий.Канада считает, что может использовать гидроэлектроэнергию для производства водорода. Другие предлагали использовать ядерную энергию. Президент США Джордж Буш также стал сторонником принципа водородной экономики, поскольку он рассматривает его как способ снижения зависимости от импортируемой нефти и сокращения производства C0 2 при сохранении энергоемкого образа жизни в США. Его инициатива Freedom Car, пришедшая на смену Партнерству Клинтона по созданию автомобилей нового поколения (PNGV), является частью стратегии реализации.

Однако, независимо от того, выбираете ли вы топливные элементы или водородные двигатели внутреннего сгорания, есть некоторые проблемы, в основном связанные с производством водорода. Водород (химическая формула: H 2 ) не встречается на Земле в чистом виде в природе и обычно производится из воды или углеводородного топлива, такого как метанол. Этот процесс может быть довольно энергоемким, поэтому возникает вопрос, какой источник энергии использовать для производства водорода. Этот процесс сам по себе может загрязнять окружающую среду, особенно если используется ископаемое топливо.В настоящее время большая часть водорода производится из природного газа путем переработки пласта, и Keolian et al. (1997: 86) указывают, что эффективность этого процесса составляет 70–75%. Финансовые затраты в два-три раза превышают затраты на сырье, хотя и на уровне цен в США. Электролиз воды может иметь эффективность 75%, хотя и требует больших затрат энергии, тогда как газификация угля с эффективностью 60–65% является самой низкой стоимостью в США. В связи с этим привлекательность недорогих природных источников энергии, таких как тепловая или гидроэнергетика, очевидна.С другой стороны, как Burns et al. (2002: 49) указывает, что, поскольку автомобили на топливных элементах, вероятно, будут почти в два раза эффективнее автомобилей с бензиновым двигателем, можно допустить значительную надбавку за водород, поскольку стоимость одной мили будет ключом к успеху.

Водород также представляет проблемы с хранением. Существующие системы хранения, такие как резервуары со сжатым водородом или металлогидридом, громоздки, и экспериментальные водородные автомобили часто были фургонами, которые могли их перевозить. Проблема в том, что водород имеет только одну четверть плотности энергии бензина, поэтому для преодоления такого же расстояния требуется больше энергии (Таблица 7.2). К концу 1990-х одно направление мышления, таким образом, больше сдвинулось в сторону выработки водорода на борту транспортного средства из углеводородного топлива, такого как метанол или даже бензин. Это бортовое преобразование, при котором водород извлекается переработчиком по мере необходимости из топлива, с которым легче обращаться и хранить в автомобиле, как в двигателях внутреннего сгорания. Споры о том, что лучше - метанол или бензин, все еще продолжаются. Последний был продвинут Chrysler среди других в 1990-х годах, поскольку он позволяет сохранить существующую бензиновую инфраструктуру.Однако это не решает проблему нашей чрезмерной зависимости от скудных запасов нефти.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Двигател