Роторный двигатель как работает: Принципы работы, плюсы и минусы роторного двигателя — особенности роторно-поршневого ДВС — журнал За рулем

Содержание

Устройство роторного двигателя

После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.

Роторный двигатель

Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.

Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.

В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.

У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Ротор

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором.

Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Устройство двигателя

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него.

При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Принцип работы

Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:

  • впуск — в цилиндр подается горючая смесь;
  • сжатие — увеличение давления в цилиндре за счет уменьшения объема;
  • рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
  • выпуск — из цилиндра выводятся отработанные газы;

Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.

Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы.

В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.

Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.

Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.

Принцип работы

Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.

Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.

Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.

Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.

Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.

В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.

Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.

После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.

Такты двигателя

Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.

Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.

Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.

А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.

Достоинства и недостатки

Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.

Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.

Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.

Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.

Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.

Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.

При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.

Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.

То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.

Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.

В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.

Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.

Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.

Как работает роторный двигатель.

» Хабстаб

Так как роторный двигатель — двигатель внутреннего сгорания, его работа , как и поршневого состоит из четырёх тактов. Пространство двигателя разделено на четыре части и в определённой части выполняется определённый такт. Таким образом, за один оборот ротора, двигатель проходит все 4 такта. Роторный двигатель (изначально задуман и разработан доктором Феликсом Ванкелем) иногда его ещё называют двигатель Ванкеля, или роторный двигатель Ванкеля.
 
Принцип работы.
Как и поршневой двигатель, роторный двигатель использует энергию, которая возникает при сгорании топливовоздушной смеси. В поршневом двигателе, давление, возникающее при сгорании топлива, толкает поршень, соединённый через шатун с коленвалом, таким образом, поступательное движение преобразуется во вращательное, необходимое для вращения колес автомобиля. В роторном двигателе сгорание происходит в камере, образованной частью корпуса и треугольным ротором. Он движется по траектории, которую можно описать с помощью спирографа. Ротор разделяет корпус на три камеры. Поскольку ротор перемещается по кругу, объём каждой из трёх камер то увеличивается, то уменьшается. При увеличении одной из камер происходит всасывание топливовоздушной смеси в двигатель, затем идёт сжатие, смесь взрывается, расширяясь, толкает ротор и, наконец, отработавшие газы, инерции ротора, выталкиваются наружу.

 
Давайте рассмотрим современный автомобиль с роторным двигателем.
Mazda была пионером в разработке серийных автомобилей, которые используют роторные двигатели. RX-7, который поступил в продажу в 1978 году, был самым успешным автомобилем с роторным двигателем. Но этому предшествовал ряд легковых автомобилей с роторным — двигателем, грузовиков и даже автобусов начиная с Cosmo Sport 1967 года. Mazda RX-8, новый автомобиль от Mazda, на котором стоит новый роторный двигатель — RENESIS.
Этот атмосферный двух роторный двигатель появился в 2003 году, мощность его около 250 лошадиных сил.
 
Части роторного двигателя.
У роторного двигателя система зажигания и система подачи топлива похожа на поршневой двигатель.

Ротор имеет три выпуклые части, каждая из которых действует как поршень. В каждой гране ротора имеется углубление, увеличивающее количество смеси, которую можно поджечь. Вершина каждой грани представляет собой металлическое лезвие, которое образует уплотнение с внутренней поверхностью камеры сгорания. Внутри ротора располагается зубчатое колесо, вырезанное в центре одной из сторон.

Корпус примерно овальной формы. Форма корпуса разработана таким образом, что три кончика ротора всегда соприкасаются со стенками корпуса, образуя три запечатанных объёма газа. В каждой части корпуса происходит только один процесс: всасывание, сжатие, сгорание, выпуск. Впускной и выпускной каналы расположены в корпусе их не закрывают клапана, как в поршневом двигателе. Выпускной канал соединён непосредственно с выхлопной трубой, а впускной с дроссельной заслонкой.

На валу эксцентрично расположены четыре лепестка, то есть смещённые относительно оси вала. Каждый ротор надевается на один из этих лепестков. Это подобие коленвала, в поршневом двигателе. Так как лепестки расположены эксцентрично, ротор, вращаясь, толкает лепестки. Во время работы роторный двигатель греется, охлаждающая жидкость циркулирует по всему корпусу, забирая тепло у двигателя.
 
Работа роторного двигателя.
Цикл работы роторного двигателя, состоит из четырёх тактов. Давайте рассмотрим подробнее каждый такт.
 
Впускной такт.
Впускной такт начинается когда кончик ротора проходит впускное отверстие. По мере вращенья, объём впускной камеры увеличивается, происходит всасывание топливовоздушной смеси. Когда следующий кончик ротора проходит впускное отверстие, смесь запечатывается и начинается такт сжатия.
 
Такт сжатия.
Форма статора сделана таким образом, что при дальнейшем вращении топливновоздушная смесь сжимается. К тому моменту когда смесь находится в контакте со свечами зажигания, объём камеры сгорания минимальный.
 
Такт горения.
У большинства роторных двигателей две свечи зажигания. Камера сгорания имеет вытянутую форму и с одной свечой смесь горит очень медленно. Давление, которое образуется при сгорании, заставляет ротор двигаться в том же направлении пока один из кончиков ротора не достигнет выпускного отверстия.
 
Выпускной такт.
После того как кончик ротора проходит выпускное отверстие, продукты сгорания удаляются в выхлопную систему. Статор сделан такой формы, что камера где находились выхлопные газы сжимается, выталкивая все отработавшие газы. На этом цикл заканчивается.
Таким образом, за один оборот ротора происходит один рабочий цикл.

Некоторые характеристики, которые отличают роторный двигатель от типичного поршневого.
Меньше движущихся частей.
В роторном двигателе гораздо меньше движущихся частей, чем в поршневом. Двухроторный двигатель имеет всего 3 движущиеся части: два ротора и выходной вал. Даже самый простой четырёхцилиндровый поршневой двигатель, имеет как минимум 40 движущихся частей, поршни, шатуны, распредвал, клапана, пружины клапанов, рокера, ремень ГРМ, зубчатые шестерни и коленвал. Эта минимизация движущихся частей может обеспечить более высокую надёжность. Вот почему некоторые производители самолётов, используют роторные двигатели вместо поршневых.
Все части в роторном двигателе вращаются непрерывно в одну сторону и не изменяют резко направление, как поршень в поршневом двигателе. 

Проектирование роторного двигателя сложнее чем поршневого, а затраты на его производство очень высоки, потому что они не производятся массово. Как правило, роторные двигатели потребляют больше топлива, чем поршневые, это происходит из-за снижения термодинамического коэффициента за счёт удлинения камеры сгорания и низкой степени сжатия.

Роторный двигатель: принцип работы

Как работает роторный двигатель. Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

Роторный двигатель, как и традиционный поршневой, является двигателем внутреннего сгорания, но работает он совершенно иначе. В поршневом двигателе, в одном и том же объеме пространства (в цилиндре) попеременно происходят четыре различные работы - впуск, сжатие, сгорание и выпуск (такты).

Роторный двигатель делает эти четыре такта в одном и том же объеме(камере), но каждый из этих тактов происходит в своей отдельной части этой камеры. Как будто для каждого цикла используется отдельный цилиндр, а поршень перемещается от одного цилиндра к другому.

В этой статье мы подробно расскажем, как работает роторный двигатель. Давайте начнем с основных принципов его работы.

Принцип работы роторного двигателя.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания содержится в камере, образованной частью объема камеры закрытой стороной треугольного ротора, который используется в данном случае вместо поршней.

Роторный двигатель

Ротор и корпус роторного двигателя от Mazda RX-7: Эти детали заменяют поршни, цилиндры, клапаны, шатуны и распредвалы в поршневых двигателях.

Ротор соединен со стенками камеры каждой из трех своих вершин, создавая три отдельных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Цепная реакция всасывает воздух и топливо в рабочую камеру, сжимает смесь, она расширяясь делает полезную работу, затем выхлопные газы выталкиваются, новая порция воздуха и топлива всасывается, и так далее.

Мы заглянем внутрь роторного двигателя, чтобы познакомится с его устройством, но сначала давайте взглянем на новые модели автомобилей с роторным двигателем.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей, использующих роторные двигатели. Спорткар RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторной силовой установкой, начиная с Cosmo Sport выпуска 1967 года.

Однако RX-7 не продается с 1995 года, но идея роторного двигателя не умерла. Mazda RX-8, последний спорткар от Mazda, имеет у себя под капотом новейший роторный двигатель под названием RENESIS. Названный лучшим двигателем 2003 года, этот атмосферный двух-роторный двигатель производит около 250 лошадиных сил.

Строение роторного двигателя.

Роторный двигатель имеет систему зажигания и систему впрыска топлива, весьма похожие на те, что установлены на поршневых двигателях. Однако, если вы никогда не видели внутренности роторного двигателя, то будьте готовы удивиться, потому что вы не увидите ничего знакомого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых действует как поршень.
Каждая сторона ротора имеет углубление в ней, что повышает скорость вращения ротора в целом, предоставляя больше пространства для топливо-воздушной смеси.

На вершине каждой грани находится по металлической пластине, которые и формируют камеры, в которых происходят такты двигателя. Два металлических кольца на каждой стороне ротора формируют стенки этих камер. В середине ротора находится круг, в котором имеется множество зубьев. Они соединены с приводом, который крепится к выходному валу. Это соединение определяет путь и направление, по которому ротор движется внутри камеры.

Камера

Камера двигателя приблизительно овальной формы (но если быть точным - это Эпитрохоида, которая в свою очередь представляет собой удлиненную или укороченную эпициклоиду, которая является плоской кривой, образуемой фиксированной точкой окружности, катящейся по другой окружности). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три закрытых объемах газа.

В каждой части камеры происходит один из четырех тактов:

  • Впуск
  • Сжатие
  • Сгорание
  • Выпуск

Отверстия для впуска и выпуска находятся в стенках камеры, и на них отсутствуют клапаны. Выхлопное отверстие соединено непосредственно с выхлопной трубой, а впускное напрямую подключено к газу.

Выходной вал

Выходной вал имеет полукруглые выступы-кулачки, размещенные несимметрично относительно центра, что означает, что они смещены от осевой линии вала. Каждый ротор надевается на один из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. Каждый ротор движется внутри камеры и толкает свой кулачок.

Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.
Теперь давайте посмотрим, как эти части взаимодействуют.

Строение роторного двигателя

Роторный двигатель состоит из слоев. Двухроторный двигателя состоят из пяти основных слоев, которые удерживаются вместе благодаря длинным болтам, расположенным по кругу. Охлаждающая жидкость протекает через все части конструкции.

Два крайних слоя закрыты и содержат подшипники для выходного вала. Они также запечатаны в основных разделах камеры, где содержатся роторы. Внутренняя поверхность этих частей очень гладкая и помогает роторам в работе. Отдел подачи топлива расположен на конце каждой из этих частей.

Следующий слой содержит в себе непосредственно сам ротор и выхлопную часть.

Центр состоит из двух камер подачи топлива, по одной для каждого ротора. Он также разделяет эти два ротора, поэтому его внешняя поверхность очень гладкая.

В центре каждого ротора крепится две большие шестерни, которые вращаются вокруг более маленьких шестерней и крепятся к корпусу двигателя. Это и является орбитой для вращения ротора.

Мощность роторного двигателя

Роторные двигатели используют четырехтактный цикл сгорания, как и в обычном поршневом. Но в роторном это происходит совсем по-другому.

Сердце роторного двигателя - это ротор. Он чем-то эквивалентен поршню в поршневом двигателе. Ротор установлен на большой округлом лепестке на выходном вале. Этот лепесток смещается от осевой линии вала и действует как заводная ручка на лебедку, давая ротору пространство для поворота выходного вала. Пока ротор вращается внутри корпуса, он толкает лепесток внутри жестких кругов, вращаясь 3 раза за каждый оборот ротора.

В то время как ротор вращается в корпусе, три отсека внутри изменяют свой размер. Изменение размера этих камер создает давление. Давайте пройдем по всем 4 отсекам двигателя.

Подача

Первая фаза начинается тогда, когда вершина ротора находится на уровне отсека подачи. В момент когда камера подачи открыта для основного отсека, объем этой камеры близок к минимуму. Как только ротор проходит мимо камеры подачи, объем камеры расширяется и вливает воздух/топливо в основной отсек. Как только ротор проходит камеру подачи, отсек становится полностью изолированным и начинается компрессия.

Компрессия

В то время как ротор продолжает свое движение по основному отсеку, пространство в отсеке становится меньше, смесь из воздуха/топлива сжимается. Как только ротор проходит отсек со свечами зажигания, объем камеры снова сводится к минимуму. В это время происходит возгорание смеси.

Возгорание

Большинство роторных двигателей имеет две свечи зажигания. Камера возгорания достаточно длинная, поэтому одной свечи будет недостаточно. Как только свечи воспламеняет топливно-воздушную смесь, давление в отсеке сильно увеличится, приводя ротор в движение. Давление в камере возгорания продолжает расти, заставляя ротор двигаться, а отсек расти в объеме. Газы от возгорания продолжают расширяться, перемещая ротор и создавая мощность, до того момента, пока ротор не пройдет выхлопной отсек.

Выхлоп

После того, как ротор проходит выхлопной отсек, высокое давление газа сгорания свободно выходит в выхлопную трубу. Так как ротор продолжает движение, камера начинает сжиматься, выдавливая оставшиеся выхлопные газы в свободный отсек. К тому времени объем камеры опять падает к минимуму и цикл начинается сначала.

Разница и Проблемы

У роторного двигателя достаточно много различий с обычным поршневым двигателем.

Меньше движущихся частей

Роторный двигатель имеет намного меньше частей, чем скажем 4-ех цилиндровый поршневой движок. Двух роторный двигатель имеет три главные движущиеся части: два ротора и выходной вал. Даже самый простой 4-ех цилиндровый поршневой двигатель имеет как минимум 40 движущихся частей, включая поршни, шатуны, стержень, клапаны, рокеры, клапанные пружины, зубчатые ремни и коленчатый вал. Минимизация движущихся частей позволяет получить роторным двигателям более высокую надежность. Именно поэтому некоторые производители самолетов (к примеру Skycar) используют роторные двигатели вместо поршневых.

Мягкость

Все части в роторном двигателе непрерывно вращаются в одном направлении, в отличие от постоянно изменяющих направление поршней в обычном двигателе. Роторный движок использует сбалансированные крутящиеся противовесы, служащие для подавления любых вибраций. Подача мощности в роторном двигателе также более мягкая. Каждый цикл сгорания происходит за одни оборот ротора в 90 градусов, выходной вал прокручивается три раза на каждое прокручивание ротора, каждый цикл сгорания проходит за 270 градусов за которые проворачивается выходной вал. Это значит, что одно роторный двигатель вырабатывает мощность в три четверти . Если сравнивать с одно-цилиндровым поршневым двигателем, в котором сгорание происходит каждые 180 градусов каждого оборота, или только четверти оборота коленчатого вала.

Неспешность

В связи с тем, что роторы вращаются на одну треть вращения выходного вала, основные части двигателя вращаются медленней, чем части в обычном поршневом двигателе. Это также помогает и в надежности.

Проблемы

Самые главные проблемы при производстве роторных двигателей:

Достаточно сложно (но не невозможно) подстроиться под регламент выброса CO2 в окружающую среду, особенно в США.

Производство может стоить намного дороже, в большинстве случаев из-за небольшого серийного производства, по сравнению с поршневыми двигателями.

Они потребляют больше топлива, так как термодинамическое КПД поршневого двигателя снижается в длинной камере сгорания, а также благодаря низкой степени сжатия.

Источник: Авто Релиз.ру.

Как работает роторный двигатель

Что такое роторный двигатель? Как при малом объеме он развивает высокую мощность? Почему роторные двигатели так редко встречаются? Сейчас во всем разберемся!

Двигатель роторного типа или ванкель, был разработан еще в 1957 году Феликсом Ванкелем и Вальтером Фройде. Первое время двигатель активно использовался на различных автомобилях, а затем даже на мотоциклах, но со временем стал появляться все реже.

Что такое роторный двигатель?

Роторный двигатель — это 4-х тактный двигатель внутреннего сгорания. Однако, его строение очень сильно отличается от привычного нам поршневого движка. В виду отсутствия множества элементов, роторный двигатель конструктивно проще поршневого.

Hercules W-2000. Объем 294 см3. Мощность до 32 л.с.

В момент, когда вершина ротора находится на уровне впускного отверстия, открывается впускной клапан, и благодаря вращению ротора происходит заполнение камеры "впуска". Такт работы двигателя проходит в отдельном "цилиндре". Чтобы разобраться как устроен двигатель, нужно рассмотреть его принцип работы.

Принцип работы.

1 такт - подача топлива.

В момент, когда вершина ротора находится на уровне впускного отверстия, открывается впускной клапан, и, благодаря вращению ротора, происходит заполнение камеры "впуска".

2 такт - сжатие.

Благодаря форме ротора и "цилиндра", рабочая смесь попадает в камеру "сжатия", где она прижимается ротором к стенке "цилиндра".

3 такт - рабочий (воспламенение).

Когда рабочая смесь находится в максимально сжатом состоянии происходит воспламенение (обычно посредствам 2-х свечей). Высвобождающаяся энергия от воспламенения вращает ротор на 1-й такт.

4 такт - выпуск.

После воспламенения отработанная смесь высвобождается через выпускное отверстие.

Как при малом объеме достигается высокая мощность?

Высокая мощность двигателей роторного типа обусловлена тем, что на выходе каждый такт идет как рабочий. Так как ротор заменяет собой минимум 4 поршня, используя малый объем и возможность развивать высокие обороты, двигатели роторного типа имеют преимущество примерно в 2-3 раза над поршневыми ДВС.

К тому же у роторного двигателя есть еще несколько плюсов:

  • двигатель отлично сбалансирован, как следствие практически нет вибрации;
  • компактность и малый вес, как следствие возможность добиться оптимального расположения и разрисовки по осям;
  • простота конструкции.

Почему роторные двигатели настолько редкие?

Причин здесь несколько:

Сложность конструкции. Производство двигателя роторного типа требует больших затрат. Это обусловлено необходимостью использовать специальное высокоточное оборудование и качественные износостойкие материалы.

Маленький ресурс и неремонтопригодность. Для качественной работы двигателя необходима точная подгонка всех элементов, а так как в процессе использования двигателя происходит износ комплектующих (особенно ротора и корпуса-цилиндра), то не только снижается КПД, но и в разы повышается расход масла.

Локальный перегрев. Роторный двигатель очень боится перегрева. Причиной этому служит малое пятно контакта цилиндра и ротора, которое и является причиной частого перегрева этих моторов.

А на сегодня все!


Роторный двигатель (принцип работы, достоинства, недостатки, перспективы)

 Роторный двигатель изобрел доктор Феликс Ванкель, вернее он был соавтором совместно с Вальтером Фройде. В 1957 году они разрабатывали две модели аналогичных роторных двигателей, но двигатель Ванкеля нашел более широкое применение. Именно поэтому этот двигатель часто также называют двигателем Ванкеля или роторным двигателем Ванкеля.
 Роторный двигатель, как и двигатель в вашей машине является двигателем внутреннего сгорания, но принцип его работы совершенно другой, в отличии от обычного поршневого двигателя.

 Если в поршневом двигателе, существует несколько (в зависимости от цилиндров) рабочих объемов (цилиндр и поршень),  поочередно выполняющих свои стандартные циклы – забор смеси, сжатие, зажигание и выхлоп, то в роторном, поршни заменены ротором. (рабочий треугольный орган в форме эпитрохоида), который в зависимости от угла поворота поочередно, совместно с корпусом, участвует все в тех же циклах перечисленных ранее (забор, сжатие, зажигание, выброс)
 В этой статье мы узнаем о том, как работает роторный двигатель, о его особенностях и интересных фактах связанных с ним, о достоинствах и недостатках. Давайте начнем наше знакомство с роторным двигателем, с принципа его работы.

Принцип работы роторно-поршневого  двигателя

Как и поршневой двигатель, роторный двигатель использует давление, создаваемое при сгорании топливно-воздушной смеси. Как и в поршневом двигателе, входное отверстие сообщается с дроссельной заслонкой, а выпускное с выхлопной системой. Если в поршневом двигателе это давление образуется в цилиндрах, а затем посредством поршней, шатунов передается на коленчатый вал, то в роторном двигателе передаточные звенья отсутствуют. Треугольный ротор в роторном двигателе является своеобразным поршнем, вращающимся по кругу и передающим крутящий момент на выходной вал.
 Фактически ротор при вращении делит общую камеру на три изолированных, в объеме каждой из этих условных камер происходит свой цикл (забор, сжатие, зажигание, выброс). Как и в случае с поршневым двигателем, роторные двигатели имеют всего 4 такта.
 Как правило, даже в самом простом роторном двигателе применяют два ротора. Такая конструкция позволяет уменьшить детонацию, увеличить стабильность работы двигателя. Если вы внимательно посмотрите на картинку, то увидите, что один полный оборот ротора, соответствует 3 оборотом вала.
 Сердцем роторного двигателя является ротор. Ротор в данном случае эквивалентен поршням в обычном двигателе. Ротор установлен на вал с неким эксцентриситетом. Фактически такое смещение можно сравнить с рукояткой на лебедке. Подобная установка ротора, позволяет передавать крутящий момент от него на вал.
 Как мы уже говорили, двигатель имеет 4 такта, они меняются в зависимости от угла поворота ротора. Сейчас мы кратко рассмотрим каждый из данных тактов в роторном двигателе. 

Забор топливно-воздушной смеси в роторном двигателе

Забор смеси начинается в тот момент, когда одна из вершин ротора проходит впускной клапан в корпусе. В это время, объем камеры расширяется, вовлекая в свое увеличивающееся пространство топливно-воздушную смесь. В тот момент, когда следующая вершина ротора проходит впускной канал, начинается следующий такт.
Сжатие топливно-воздушной смеси в роторном двигателе
Во время поворота ротора, объем смеси захваченной ротором уменьшается, что приводит к повышению давления. Максимальное давление образуется в тот момент, когда топливно-воздушная смесь находится в зоне свечей.

Сжигание топливно-воздушной смеси

Для зажигания смеси, как и в поршневом двигателе, используются свечи. Они зажигают смесь одновременно, то есть срабатывают синхронно. Обычно для роторного двигателя применяют две свечи зажигания. Применение двух свечей зажигания связано с особенностями рабочего объема. Он как бы вытянут по стенке корпуса, именно поэтому, эффективней использовать две свечи, чтобы смесь сгорала более быстро и равномерно. В случае с одной свечкой, смесь будет сгорать дольше, если можно так сказать постепенно, что значительно понизит пиковое давление во время взрыва при зажигании топливно-воздушной смеси.
 В итоге, от образовавшегося давления взрывной волны, получается рабочее усилие, проворачивающее ротор на эксцентрике вала. Крутящий момент передается на выходной вал. Ротор проворачивается до отверстия выпуска выхлопных газов.

Выброс отработавших выхлопных газов

Как только ротор одной из своих вершин пересекает границу выпускного отверстия, начинается выброс выхлопных газов. Ротор по инерции, а также посредством второго ротора, работающего асинхронно, продолжает менять свой угол и перемещается вершиной до впускного отверстия. Здесь все происходит заново от такта забора до такта выброса.

Узлы (детали) роторного двигателя

Далее мы расскажем о составляющих частях роторного двигателя, что также отчасти поможет вам в более точном понимании работы двигателя. Роторный двигатель имеет в своем составе систему зажигания, систему питания, систему охлаждения, которые похожи на те, что применяются в поршневых двигателях. А теперь о уникальных деталях.

Ротор роторного двигателя

Ротор имеет три выпуклых поверхности с фразированными углублениями. Углубление позволяют несколько увеличить рабочий объем.  На вершинах (углах) ротора имеются уплотнительные, однонаправленные пластинки. Именно они учувствуют в герметизации между ротором и корпусом. Есть также металлические кольца на каждой из сторон ротора, которые отделяют рабочую камеру от картера двигателя.  Кроме того, ротор имеет в центре с одной стороны зубчатый венец. Этот венец жестко закреплен с ротором. Именно через данную зубчатую передачу передается рабочий крутящий момент от двигателя.

Корпус роторного двигателя

 

Корпус роторного двигателя, словно многослойный пирог. Он имеет свои крышки, рабочие камеры, разделительные стенки. Лучше всего понять конструкцию корпуса можно будет взглянув на картинку.
Из нее видно, что двигатель имеет две камеры, разделенные стенкой и крышки с двух сторон. Все остальное конечно тоже имеет значение, но первостепенно именно то, что мы перечислили.
 А теперь мы расскажем о рабочих камерах корпуса роторного двигателя. 

  Внутренняя полость корпуса представляет из себя сложную форму, напоминающую овал. На самом деле овал имеет определенные компенсирующие отливы, которые обеспечивают герметизацию всех трех камер разделенных ротором, вне зависимости от угла его поворота и происходящего цикла. Для каждого цикла, в корпусе роторного двигателя, отведено свое место. В зависимости от угла поворота ротора выполняется соответствующий цикл, который повторяется с периодичностью через каждые 360 градусов поворота ротора
 Выпускные отверстия для выброса сгоревших газов, находятся также в корпусе рабочей камеры. Промежуточная стенка между камерами (на фото ниже)

удерживает вал в совеем центральном отверстии, уплотняется с роторами по боковым стенкам, имеет элементы системы охлаждения, инжекционные порты, направляющие втулки.

Выходной вал роторного двигателя

 Выходной вал имеет эксцентрики, в данном случае их два, так как на вал устанавливается два ротора, которые работают в противофазе, когда один в цикле выброса отработавших газов, второй в цикле забора смеси. Применение двух роторов позволяют скомпенсировать биения во время работы двигателя и соответственно уменьшить детонацию. За счет смещения эксцентрика и перемещения каждого из роторов по стенкам в корпусе двигателя, они стараются провернуть вал. В итоге, на нем образуется рабочий крутящий момент.

Достоинства роторного двигателя

Как мы уже упоминали, главным достоинством роторного двигателя является отсутствие передающих звеньев, а именно шатунов. Кроме того, для роторного двигателя не требуется  клапанов, пружин клапанов, распределительного вала, ремня ГРМ и т. д. Все это в итоге сказывается на габаритах и массе двигателя. Именно поэтому многие производители самолетов (например Skycar, Schleicher), предпочитают поршневым двигателям роторные.
 К плюсам роторного двигателя, как мы уже тоже говорили, можно отнести и очень хорошую сбалансированность деталей в нем. Его можно сравнить с оппозитным 4 поршневым двигателем.
 роторный двигатель более длительное время, по сравнению с поршневым, выдает крутящий момент на выходной вал. Если для роторного двигателя выход мощности на вал длится порядка ¾ оборота (270 градусов), то для поршневого двигателя крутящий момент передается только в течении ½ оборота (180 градусов)
 Так как ротор вращается всего один раз за три оборота вала, это также сказывается на ресурсе ротора, в отличии от поршневых двигателей, где поршень делает полный цикл за оборот вала. У японский моделей автомобилей, ресурс двигателя может достигать 300 т. км.

Недостатки роторных двигателей

 Так в современном мире роторные двигатели массово не применяются вследствие низкой экологичности.
 Роторные двигатели потребляют большее количество топлива, вследствие низких рабочих давлений в камере сгорания.
 Роторные двигатели не так распространены, что может стать проблемой при их ремонте и эксплуатации.
 В двигателе фактически нет системы смазки. Определенное количество смазки (моторного масла) постоянно выбрасывается в корпус к ротору. В итоге у двигателя имеется значительный расход масла. Кроме того, это должно быть высококачественное минеральное масло без присадок, так как «синтетика» выгорая, образует на стенках корпуса нагар.
 Двигатели намного сильнее нагреваются чем поршневые двигатели.

Всемирно известные автомобили, выпускающиеся с роторными двигателями

(На фото Mazda Cosmo Sport и Mazda RX8)

 Японская компания Mazda была пионером в разработке серийных автомобилей с роторным двигателем. Так первая Мазда Cosmo Sport увидела свет в далеком 1967 году. Следующее поколение - Mazda RX-7 поступила в продажу в 1978 году. Пожалуй, это была одна из самых удачных машин с роторным двигателем.   И последнее поколение автомобилей с роторным двигателем это Мазда RX-8.
 И в итоге, самым мощным без турбонаддува двигателем внутреннего сгорания стал двигатель «Renesis» от Мазда, объёмом всего 1,3 л. Именно у него рекордный показатель мощности к рабочему объему двигателя, а именно 250 л. с.
 В последние годы компании Мазда удалось значительно улучшить характеристики роторных двигателей. Двигатели стали более экологичны, и не требуют такого объема масла для смазки.
Выпускались автомобили с роторным двигателем и другими авопроизводителями: Audi, Mercedes.
  В СССР на АвтоВАЗе также выпускали ряд роторных двигателей. Роторные двигатели ставились на автомобиль 21079 (1,3 л 140 л.с.) и планировались к эксплуатации в спецслужбах.
 В 90 годах, в Научно-техническом центре ВАЗ были созданы следующие роторные двигатели ВАЗ-416, ВАЗ-426, ВАЗ-526.

Перспективы роторных двигателей

Основные перспективы роторных двигателей связаны с переходом на водородное топливо. Во-первых сразу решается проблема экологичности, а во-вторых, роторные двигатели практически не подвержены детонации при работе с этим видом топлива.

Роторный двигатель - устройство, особенности и принцип работы

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков — Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство роторных моторов стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. Роторный двигатель внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели — это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация роторных моторов следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. Двигатель Ванкеля относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и принцип работы роторного двигателя на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Достоинства

Недостатки

Хорошая сбалансированность Высокий расход топлива, особенно на малых оборотах
Минимальные вибрации Нарушение герметичности из-за перегрева
Быстрый разгон Требует частой замены масла (каждые 5 тысяч км)
Компактные размеры Быстрый износ уплотнителей
Высокая мощность Дороговизна производства некоторых деталей
Небольшое количество основных деталей Повышенный уровень выброса CO2

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

устройство, принцип работы, преимущества и недостатки

Роторный двигатель (РПД или роторно-поршневой двигатель), в отличие от традиционного поршневого ДВС, проще в плане конструкции. Также данный тип силовой установки имеет более высокий КПД. Соответственно, даже при небольшом рабочем объеме «отдача» от такого мотора достаточно высокая. 

При этом РПД не получил широкого распространения в автомобильной индустрии. К сожалению, даже с учетом всех преимуществ, агрегат также имеет целый ряд недостатков. Далее мы рассмотрим, как устроен и работает роторный мотор, а также его сильные и слабые стороны.

Содержание статьи

Роторный двигатель: устройство и принцип работы РПД

Итак, роторный двигатель, который также называют двигатель Ванкеля в честь его создателя, представляет собой достаточно обособленный тип ДВС. При этом данный вид двигателей устанавливался на разные авто (например, роторный двигатель ВАЗ, роторный двигатель Мазда и т.д.), однако в большей степени популяризировали агрегат именно Mazda благодаря спорткару Мазда RX‑8 с роторным двигателем 13B-MSP.

Если коротко, в обычном поршневом моторе энергию от сгорания топлива в цилиндрах преобразует в возвратно-поступательное движение громоздкая поршневая группа, после чего происходит дальнейшее преобразование во вращательное движение (вращение коленвала).

В свою очередь, в роторном моторе нет ЦПГ, преобразование энергии происходит фактически «напрямую», то есть практически без потерь. Само собой, на Мазда роторный двигатель стал достаточно мощным «сердцем» с выдающимися характеристиками.

Примечательно то, что бензиновый атмосферный роторный мотор с рабочим объемом всего лишь 1.3 литра (13B-MSP) с 2  роторами в виде секций выдавал 192 лошадиных силы. В то же время его форсированная версия позволяла снять уже 231 «лошадку».

  • Если рассматривать конструкцию, двигатель получил 5 корпусов, в результате чего были образованы 2 камеры. Указанные камеры, подобно цилиндрам, предназначены для сгорания топливно-воздушной смеси. Энергия сгорания топлива вращает роторы, которые закреплены на эксцентриковом валу, который напоминает коленвал обычного ДВС.

При этом движение ротора сложное, так как ротор не вращается, а фактически «обкатывается» своей внутренней шестерней вокруг стационарной шестерни, которая прикреплена в центре одной из боковых стенок камеры. Сам эксцентриковый вал проходит через все корпуса и стационарные шестерни. Вращение ротора, точнее, его вращательное движение происходит так, что на 1 его оборот приходится 3 оборота эксцентрикового вала.

Еще примечательно то, что хотя в роторном моторе также есть циклы впуска, сжатия, рабочего такта и выпуска, механизм ГРМ максимально упрощен. Отсутствует привод газораспределительного механизма, нет распределительных валов, а также и самих клапанов.

Все необходимые функции реализованы счет впускных и выпускных окон,  которые выполнены в боковых стенках. На деле, ротор во время вращения открывает, а также закрывает эти окна. Чтобы было понятно, давайте рассмотрим принцип работы роторного двигателя на примере агрегата с одной секцией.

  • Итак, боковые стороны ротора вместе со стенками корпусов формируют рабочую полость. Кода ротор двигателя находится в начальном положении, по объему полость небольшая (это начало такта впуска). Далее, вращаясь, ротор, открывает впускные окна, в результате в камеру попадает рабочая топливная смесь. Когда полость достигает максимального объема, ротор перекроет впускные окна, после чего начнется такт сжатия (полость начнет уменьшаться).

В момент, когда объем полости снова минимален, за счет искры от свечи произойдет воспламенение смеси и начнется рабочий такт. Далее энергия сгорания топлива вращает ротор, после чего ротор перейдет в положение, при котором открываются выпускные окна (осуществляется выпуск отработавших газов). После выпуска весь цикл повторяется.

Другие полости будут работать точно так же. С учетом того, что полостей 3, за один оборот ротора произойдет 3 рабочих такта. Более того, эксцентриковый вал вращается быстрее ротора в 3 раза. Результат — по одному рабочему такту на один оборот вала мотора с одной секцией. Вполне очевидно, что поршневой четырехтактный ДВС с одним цилиндром имеет соотношение в 2 раза ниже по сравнению с роторным.

Получается, если сопоставить число рабочих тактов на оборот вала, тогда двухсекционный 13B-MSP напоминает обычный поршневой мотор на 4 цилиндра, однако при объеме 1.3 л двигатель такой же мощный, как и поршневой агрегат с объемом чуть более 2.5 литров. Еще добавим, что роторный мотор  имеет намного более высокую детонационную стойкость, что позволяет превратить этот мотор в двигатель на водороде.

Конструктивные особенности роторного мотора

Хотя роторный мотор конструктивно имеет меньше деталей, его принцип работы несколько сложнее. Также в устройстве роторного двигателя применены элементы из разных материалов (чугун, алюминий). Еще имеются особые покрытия (например, хром).

Статоры (корпусы роторов) имеют металлические вставки из особой стали, интегрированные в алюминиевый корпус. На деле, статор больше похож на цилиндр с хонингованной гильзой. В свою очередь, боковые корпусы выполнены из чугуна, в них сделаны впускные и выпускные окна. На крайних статорах крепятся шестерни.

Сам ротор является поршнем и шатуном, сделан из облегченного чугуна. Н каждой стороне ротора есть камера сгорания и уплотнители для сохранения герметичности. Во внутренней части ротора стоит роторный подшипник, напоминающий вкладыш коленвала.

  • На обычном поршне традиционного ДВС поршень имеет 3 кольца – пара компрессионных и маслосъемное кольцо. В свою очередь, ротор имеет апексы (уплотнители вершин ротора). Апексы играют роль компрессионных колец. Указанные элементы прижимаются к стенке статора пружиной, а также они прижаты за счет центробежной силы.

Функцию второго пояса компрессионных колец выполняют боковые, а также угловые уплотнения. Они тоже прижимаются пружинами. Эти боковые уплотнители выполнены из металлокерамики, в то же время  угловые уплотнители чугунные. Дополнительно имеются  уплотнения для изоляции, чтобы отработавшие газы не попадали во впускные окна через зазоры, которые образуются между самим ротором и боковым корпусом соответственно.

Еще с двух сторон ротора имеются особые масляные уплотнения (по аналогии с маслосъемными кольцами), которые удерживают масло, поступающее во внутреннюю полость ротора для охлаждения.

Кстати, система смазки роторного ДВС сложная, включает в себя радиатор охлаждения масла, а также целую группу из нескольких типов масляных форсунок. Форсунки интегрированы в эксцентриковый вал для охлаждения роторов, также они установлены в статоры.

Еще масло подается и в рабочую полость, смешиваясь с горючей смесью и выгорая вместе с топливным зарядом. На деле, роторный мотор весьма требователен к качеству масла. Если заливать неподходящую смазку, агрегат коксуется, возникает детонация и т.д.

Также добавим, что система питания простая, есть несколько форсунок (пара форсунок перед впускными окнами, а также во впускном коллекторе). Что касается зажигания, использованы две свечи на один ротор. Это сделано по причине того, что камеры сгорания сами по себе получились длинными. В результате, чтобы добиться равномерного и полноценного сгорания смеси,  используют две свечи, причем их электроды отличаются. При замене свечей важно обращать на это внимание.

Недостатки роторного двигателя

На старте продаж роторная Мазда пользовалась активным спросом, так как автомобиль привлекал автолюбителей своим  необычным и мощным двигателем (особенно форсированные версии с мощностью около 500 л.с.). Однако немного позже владельцы уже на относительно небольших пробегах столкнулись с первыми проблемами и минусами данного типа ДВС.    

Основные недостатки — большой расход топлива и относительно низкий ресурс роторного двигателя 13B-MSP. В идеальных условиях силовая установка данного типа способна выходить около 100 тыс. км пробега. Что касается реальной эксплуатации, часто моторы приходили в негодность уже к 50-60 тыс. км. пробега.

Обычно первыми выходят из строя уплотнения ротора. Причина вполне очевидна, так как уплотнения находятся под высокими нагрузками и сильно нагреваются. Также дает о себе знать и детонация, износ подшипников эксцентрикового вала, роторов и т.д.

  • Примечательно то, что первыми сдаются апексы (уплотнения на торцах), тогда как боковые уплотнители ходят намного дольше. В результате износа апексов, а также их установочных мест на роторе, в двигателе падает компрессия, углы уплотнителей могут отваливаться, повреждая поверхности статора.

Также следует отметить быстрый выход из строя коренных вкладышей эксцентрикового вала. С учетом того, что вал осуществляет вращение в 3 раза быстрее роторов, роторы несколько смещаются по отношению к стенкам статора, причем вершины роторов должны всегда быть удалены на одно расстояние от стенок.

Рекомендуем также прочитать статью о том, что такое гибридный двигатель автомобиля. Из этой статьи вы узнаете, как устроен и работает двигатель гибрид, а также что нужно знать о гибридном двигателе перед покупкой автомобиля с силовой установкой данного типа.

В результате, когда углы апексов выпадают, на поверхности статора неизбежно появляются задиры. При этом диагностика роторного двигателя сильно затруднена, так как, в отличие от обычного мотора, роторный двигатель не стучит в случае износа вкладышей.

Параллельно отметим, что на версиях данного мотора с наддувом работа агрегата на обедненной смеси приводит к перегреву апекса. Далее пружина, прижимающая апекс, просто гнет его и компрессия сильно снижается. Еще форсированные (роторные двигатели с наддувом) отличаются неравномерным нагревом корпуса.

В верхней части ДВС, где происходят такты впуска и сжатия, более холодные. В то же время нижняя часть, где протекает процесс сгорания смеси и выпуска раскаленных газов, нагревается намного сильнее. Результат – деформация корпуса форсированных версий.

  • Также отметим, что отдельно проявились и проблемы системы смазки. На практике, масляные форсунки в статоре часто загрязняются и перестают работать. При этом промыть клапаны форсунок не получается, то есть нужна замена. Если же вовремя проблема не была установлена, масляное голодание становится причиной сильного износа целого ряда элементов роторного двигателя.

При этом во всех случаях и независимо от причины, статор на практике восстановить практически не представляется возможным, а также следует отметить отсутствие ремонтных запчастей. Это значит, что если статор поврежден, восстановить двигатель очень сложно и дорого. То же самое касается и ротора. Если пазы под апексы повреждены, отремонтировать деталь практически невозможно.

Все это означает, что мотор фактически «одноразовый» и качественно его отремонтировать нет возможности. Единственный выход – покупка и установка нового двигателя, так как контрактные варианты в большинстве случаев тоже будут изношены и долго не прослужат. Само собой, купить роторный двигатель без пробега можно, но цена роторного двигателя будет высокой.   

Советы и рекомендации

Прежде всего, роторный двигатель необходимо «кормить» только качественным высокооктановым бензином (не ниже АИ-98). Только качественное топливо позволяет избежать детонации, а также замедляет процесс накопления нагара на электродах свечей зажигания.

Еще следует помнить, что этот мотор предельно чувствителен не только к качеству, но и типу масла. Например, не рекомендуется лить синтетику, так как быстро скапливается нагар на апексах, компрессия падает. Заливать в такой мотор следует исключительно рекомендуемое самим производителем масло или подходящую по всем допускам «минералку».

Также замену масла нужно производить часто, масло в роторном моторе меняют каждые 4-5 тыс. км.  Еще важно своевременно менять воздушный фильтр двигателя, так как его загрязнение может привести к закоксовке масляных форсунок системы смазки. Что касается свечей зажигания, лучше производить их замену каждые 10-15 тыс. км.

  • Как правило, основным признаком проблем роторного мотора является потеря компрессии, которая проявляется в затрудненном холодном пуске. Далее неполадки прогрессируют, мотор начинает плохо заводиться как на «холодную», так и на «горячую». Обычно в таком случае очевиден износ апексов, скопление отложений на электродах свечей зажигания и т.д.

В подобной ситуации необходимо срочно отправляться на диагностику к специалистам по ремонту ДВС данного типа. На практике, хотя ремонт сложный и дорогой, в последнее время  в СНГ появилось  несколько центров, специализирующихся на дефектовке и ремонте роторного двигателя  с гарантией.

Как правило, в рамках ремонта выполняется замена статоров, уплотнений роторов, самих роторов и т.д. Конечно, ремонт не дешевый, но однозначно более доступный по сравнению с покупкой нового силового агрегата.

Напоследок отметим, как и поршневой двигатель, роторный мотор нуждается в прогреве перед поездкой. При этом пока мотор не выйдет на рабочие температуры, нагружать агрегат не следует. При таком подходе, а также в сочетании с качественным бензином и маслом, а также своевременном обслуживании, есть все шансы, что роторный двигатель Mazda RX-8 пройдет без ремонта около 80 или даже 100 тыс. км.

Подведем итоги

С учетом приведенной выше информации становится понятно, почему роторный двигатель не получил широкого распространения даже с учетом целого ряда преимуществ. Прежде всего, небольшой ресурс,  необходимость частого и затратного облуживания, а также сложность ремонта РПД являются серьезными недостатками силовых установок данного типа.

Рекомендуем также прочитать статью о том, что такое двигатель на водороде. Из этой статьи вы узнаете, какие особенности имеет водородный двигатель, а также какие перспективы имеет двигатель на водороде.

По этой причине следует отдельно изучить все нюансы, рассмотренные выше, особенно если к покупке рассматривается автомобиль с роторным двигателем. Например, Мазда RX-8 на вторичном рынке может показаться  отличным вариантом, так как данные авто продаются по привлекательной цене на фоне конкурентов с аналогичными характеристиками.

Однако на практике такой автомобиль может требовать замены или серьезного и дорогостоящего ремонта силового агрегата. Более того, даже если с двигателем все в порядке, не стоит рассчитывать на большой ресурс, а также потенциальным владельцам следует готовиться к более высоким расходам на плановое обслуживание роторного двигателя по сравнению с форсированными поршневыми ДВС (как атмосферными, так и с наддувом).  

Как работает роторный двигатель?

► Как работает двигатель Ванкеля
► Чем они отличаются от 4-тактного
► Почему они возвращаются

Подобно более обычным бензиновым двигателям, роторный двигатель использует топливо, воспламеняемое искрой для выработки энергии, но, помимо этого, он во многом отличается от обычного автомобильного двигателя; в первую очередь, как он берет расширяющиеся газы и тепло сгорания и превращает их в движение, чтобы толкать вашу машину.

Как работает роторный двигатель?

В нормальном двигателе сгорание действует на набор поршней, которые производят линейное движение внутри цилиндров двигателя. Поршни поднимаются и опускаются, как ноги велосипедиста-толкателя, и прикреплены к коленчатому валу, который является компонентом, преобразующим это движение вверх и вниз в круговое движение, приводящее в движение колеса.

В роторном двигателе все основные внутренние компоненты вращаются в основном круговыми движениями, поэтому это более простой и эффективный способ передачи энергии от сжигания бензина до вращения колес.Таким образом, роторный двигатель имеет меньше движущихся частей, он меньше, легче и мощнее для своей вместимости.

В то время как Mazda, без сомнения, является чемпионом по роторным двигателям, японский бренд - не единственный производитель, который баловался этой идеей.

Также, как и в обычных поршневых двигателях, роторный двигатель может быть продублирован для увеличения мощности и мощности. Большинство роторных моделей было «сдвоенным» ротором, но Mazda создала версии с тремя и четырьмя роторами.

Однако, как и следовало ожидать, у этой гениальной идеи есть недостатки.

Запечатанная судьба

Во-первых, изнашиваются специальные уплотнения (их можно услышать, называемые торцевыми, концевыми или верхними уплотнениями), которые помогают создавать сжатие, необходимое для горения. Когда это происходит, роторные двигатели начинают терять мощность и могут сжигать масло. Замена уплотнителей - большая работа.

Выбросы и экономия

В то время как характеристики мощности роторного двигателя очень хороши, они не так хороши, когда дело доходит до экономии топлива, и их влияние на выбросы также отрицательное.Турбонаддув и каталитические нейтрализаторы в последних разработках помогли в некоторой степени, но не настолько, чтобы сохранить принцип с сегодняшними строгими правилами.

Абсолютная мощность

Несмотря на то, что роторный двигатель со свободными оборотами делает автомобили, приводимые в движение им, увлекательными и увлекательными, это достигается за счет низкой мощности и особенно крутящего момента. Эта уникальная производительность ограничивает двигатель для конкретных применений и в основном для спортивных автомобилей.

Многие автопроизводители возились с роторными двигателями, но только Mazda начала их массовое производство.А когда это произошло в 1960-х и 70-х годах, низкая надежность роторного двигателя чуть не поставила компанию на колени. Но современные технологии и материалы означают, что у роторного двигателя может быть будущее, и если вы когда-либо ездили на нем, вы поймете, насколько они восхитительно плавные и полные характера.

Что дальше?

С тех пор, как Mazda прекратила выпуск RX-8 в 2012 году, автомобили с роторным двигателем долгое время не выпускались, казалось, что так и останется из-за присущих роторным конструктивным недостаткам.

Однако Mazda недавно подтвердила, что возродит культовый роторный двигатель и что она нашла способы решить свои инженерные задачи.

Детали все еще очень легкие, и модель, знаменующая возрождение, еще не объявлена, но вы, возможно, снова сможете путешествовать с помощью этого необычного силового агрегата.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели.Но в роторном двигателе это делается совершенно по-другому.

Этот контент несовместим с этим устройством.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя - это ротор. Это примерно эквивалент поршня в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа на лебедке, давая ротору рычаг, необходимый для поворота выходного вала.Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие.В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается.К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор двигаться в направлении увеличения объема камеры.Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газообразные продукты сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Отличная особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла - за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один такт сгорания.

Как работают роторные двигатели | HowStuffWorks

Роторные двигатели используют четырехтактный цикл сгорания, который является тем же циклом, что и четырехтактные поршневые двигатели.Но в роторном двигателе это делается совершенно по-другому.

Этот контент несовместим с этим устройством.

Если вы посмотрите внимательно, вы увидите, что лепесток смещения на выходном валу вращается три раза за каждый полный оборот ротора.

Сердце роторного двигателя - это ротор. Это примерно эквивалент поршня в поршневом двигателе. Ротор установлен на большом круглом выступе выходного вала. Этот выступ смещен от центральной линии вала и действует как рукоятка кривошипа на лебедке, давая ротору рычаг, необходимый для поворота выходного вала.Когда ротор вращается внутри корпуса, он толкает лепесток по узким кругам, поворачивая три раза на за каждый оборот ротора.

По мере того, как ротор перемещается через корпус, три камеры, создаваемые ротором, меняют размер. Это изменение размера вызывает перекачивающее действие. Давайте рассмотрим каждый из четырех тактов двигателя, глядя на одну сторону ротора.

Впуск

Фаза впуска цикла начинается, когда кончик ротора проходит через впускное отверстие.В момент, когда впускное отверстие выходит в камеру, объем этой камеры близок к своему минимуму. Когда ротор движется мимо впускного отверстия, объем камеры увеличивается, втягивая топливно-воздушную смесь в камеру.

Когда пик ротора проходит через впускной канал, эта камера закрывается и начинается сжатие.

Сжатие

По мере того, как ротор продолжает движение вокруг корпуса, объем камеры становится меньше, и топливно-воздушная смесь сжимается.К тому времени, когда поверхность ротора добралась до свечей зажигания, объем камеры снова близок к своему минимуму. Это когда начинается горение.

Сгорание

Большинство роторных двигателей имеют две свечи зажигания. Камера сгорания длинная, поэтому пламя распространялось бы слишком медленно, если бы была только одна заглушка. Когда свечи зажигания воспламеняют топливно-воздушную смесь, давление быстро растет, заставляя ротор двигаться.

Давление сгорания заставляет ротор двигаться в направлении увеличения объема камеры.Газы сгорания продолжают расширяться, перемещая ротор и создавая мощность, пока пик ротора не пройдет через выхлопное отверстие.

Выхлоп

Как только пик ротора проходит через выхлопное отверстие, газообразные продукты сгорания под высоким давлением могут свободно выходить из выхлопа. По мере того как ротор продолжает двигаться, камера начинает сжиматься, вытесняя оставшийся выхлоп из порта. К тому времени, когда объем камеры приближается к своему минимуму, пик ротора проходит через впускное отверстие, и весь цикл начинается снова.

Отличная особенность роторного двигателя заключается в том, что каждая из трех сторон ротора всегда работает в одной части цикла - за один полный оборот ротора будет три такта сгорания. Но помните, что выходной вал вращается три раза за каждый полный оборот ротора, а это означает, что на каждый оборот выходного вала приходится один такт сгорания.

Роторный двигатель Mazda Wankel | Как работает роторный двигатель

Мы не видели последнего вращающегося треугольника.

Еще в марте Мартин тен Бринк, вице-президент Mazda Motor Europe по продажам и обслуживанию клиентов, повсюду зажигал редукторы, когда он сказал голландскому изданию автомобильных новостей ZERauto, что роторный двигатель Ванкеля вернется в производство.

В частности, тен Бринк сказал, что роторный двигатель может стать расширителем запаса хода для электромобиля в 2019 году, и пока это всего лишь слухи. Mazda Motor of America не будет обсуждать и подтверждать комментарии десяти Бринка, сообщая нам только, что «Mazda не объявила о каких-либо конкретных продуктах с роторным двигателем в настоящее время.Однако Mazda продолжает работать над технологиями роторных двигателей ».

Так что же такого особенного в этом легендарном двигателе, который так взволновал всех своим возвращением? И почему на этот раз все может быть иначе?

Как это работает

Getty Images

Роторный двигатель - это бочкообразный двигатель внутреннего сгорания, в котором отсутствуют многие основные детали, которые можно найти в обычном поршневом двигателе.Во-первых, здесь нет поршней, которые поднимаются и опускаются. Скорее округло-треугольные роторы - чаще всего два, но иногда один или три - вращаются вокруг вала через полый цилиндр.

Топливо и воздух закачиваются в пространства между сторонами роторов и внутренними стенками ствола, где они воспламеняются. Быстрое расширение взрывающихся газов вращает роторы, генерируя таким образом энергию. Роторы выполняют ту же задачу, что и поршни в поршневом двигателе, но с гораздо меньшим количеством движущихся частей, что делает роторный двигатель легче и меньше, чем поршневой двигатель эквивалентного рабочего объема.

Базовая конструкция - вековая. Сам Феликс Ванкель был немецким инженером, который в 1920-х годах придумал свою версию роторного двигателя. Однако, поскольку он был занят разжиганием войны от имени нацистской партии, у него не было возможности развить свое видение слишком далеко до 1951 года, когда немецкий автопроизводитель NSU пригласил его разработать прототип.

Сложная конструкция Ванкеля фактически проиграла более простому прототипу, разработанному инженером Ханнсом Дитером Пашке, которого NSU также пригласил, чтобы попытаться раскрыть оригинальную концепцию Ванкеля.Двигатель Пашке - это двигатель, которым Mazda станет обладать и станет лидером в 21 веке. Таким образом, современный Ванкель - это не совсем Ванкель.

Getty Images

Если оставить в стороне проблемы, Ванкель является наиболее распространенной и успешной конструкцией роторного двигателя, и единственной, которая была запущена в серийное производство. Еще в начале 60-х у NSU и Mazda было дружеское совместное соревнование по продаже первого автомобиля с двигателем Ванкеля, поскольку они исправляли недостатки незрелого дизайна.NSU был первым, кто вышел на рынок в 1964 году, но в течение следующего десятилетия он разрушил свою репутацию, поскольку частые отказы двигателей снова и снова отправляли владельцев в магазин. Вскоре нередко можно было найти NSU Spider или Ro 80 с тремя или более двигателями.

Проблема заключалась в уплотнении на вершине - тонких полосах металла между концами вращающихся роторов и корпусами ротора. НГУ сделало их из трех слоев, что привело к неравномерному износу, сделавшему их гранатометами. Mazda придумала уплотнения вершины, сделав их из одного слоя, и представила свой Wankel в роскошном спортивном автомобиле Cosmo 1967 года.

В начале 70-х Mazda представила себе целую линейку автомобилей с двигателями Ванкеля, мечту, которая была разбита нефтяным кризисом 1973 года. Но роторный двигатель стал единственной силовой установкой для трех поколений спортивных Mazda RX-7 с 1978 по 2002 год, когда двигатель Ванкеля почитали и осуждали.

Любят и ненавидят

Популярная механика

Редукторы

любят ротор отчасти потому, что он другой.Автолюбители всегда питали слабость к двигателю, который, если не считать внутреннего сжигания бензина, едва ли похож на обычный поршневой двигатель. Роторный двигатель выдает мощность линейно до 7000 или 8000 об / мин, в зависимости от характеристик двигателя, и этот плоский диапазон мощности отличает его от поршневых двигателей с оптимальным числом оборотов, которые слишком часто расходуют мощность на высоких оборотах, чувствуя себя безжалостно на низких оборотах.

Автопроизводителям также понравился поворотный механизм за его плавность. Роторы, вращающиеся вокруг центральной оси, обеспечивают незначительное отсутствие вибрации по сравнению с поршневым двигателем, у которого движение поршня вверх и вниз является более резким.Но необычный двигатель - незнакомое животное, поэтому поляризующий Ванкель также вызывает свою долю ненависти среди автолюбителей и механиков. Это простой дизайн - без ремня ГРМ, без распределительного вала, без коромысел - но незнакомость порождает недоверие, а у Ванкеля есть причуды, требующие внимания.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

Роторный двигатель сжигает масло по своей конструкции, закачивая небольшое количество моторного масла в камеры сгорания для смазки роторов, создавая обычный поток синего дыма, вырывающийся из выхлопной трубы, когда вы заводите машину.Честно говоря, это пугает людей - синий дым выхлопных газов является сигналом бедствия, когда исходит от поршневого двигателя.

Роторы также предпочитают минеральное масло синтетическому, и их конструкция означает, что вам необходимо периодически доливать масло, потому что двигатель постоянно его потребляет. Эти верхние уплотнения, как правило, не прослужат долго, прежде чем их потребуется заменить. Восстановление Ванкеля на расстоянии 80 000–100 000 миль является обычным делом, и раньше, чем большинство поршневых двигателей, нуждаются в такой кропотливой работе.

Современные водители также наиболее чувствительны к другим недостаткам роторного двигателя, более низким выбросам и экономии топлива из-за тенденции двигателя не полностью сжигать топливно-воздушную смесь перед ее выпуском.В модели RX-8 Mazda решила эти проблемы, разместив выхлопные отверстия по бокам камер сгорания. Выбросы топлива также стали строже с годами. Это одна из причин, по которой RX-8, последний автомобиль с двигателем Ванкеля, поступил в продажу в 2002 году и был снят с производства в 2012 году.

Время для второго поворота

Вернемся к слухам вице-президента Mazda Мартейна тен Бринка о том, что Mazda может использовать какой-нибудь роторный двигатель в качестве расширителя запаса хода для электромобиля. Это имело бы смысл. Еще в 2012 году Mazda арендовала 100 электромобилей Demio EV в Японии, но небольшой запас хода в 124 мили был болезненным моментом.Поэтому в 2013 году Mazda создала прототип, в который был включен поворотный расширитель диапазона, чтобы почти удвоить этот диапазон, и назвала его Mazda2 RE Range Extender (Mazda2 - это то, что Demio называют за пределами Японии). Колеса прототипа приводились в движение электродвигателем, а 0,33-литровый 38-сильный роторный двигатель раскручивался для подзарядки аккумуляторных батарей электродвигателя, если они разряжались, а поблизости негде было подзарядить.

Поскольку роторный двигатель не мог приводить в движение колеса, Mazda2 RE не была гибридом, как Volt или Prius.Ванкель был скорее бортовым генератором, который увеличивал дальность действия автомобиля. Та же компактность и легкий вес, которые сделали Ванкель отличным двигателем для спортивного автомобиля, такого как RX-7, также делают его идеальным в качестве генератора с увеличенным запасом хода на автомобиле, особенно на том, у которого уже есть электродвигатели и батареи, конкурирующие за пространство и Не позволяйте себе набирать лишний вес. Но концепция расширителя запаса хода не попала в серийное производство, а Mazda не продала никаких электромобилей после тех 100 электромобилей Demio.

Тем не менее, роторный двигатель заработал свою репутацию в основном как двигатель спортивного автомобиля, а не как генератор, приводимый в движение электродвигателями. Пока ходят слухи о возрождении роторного двигателя, автолюбители будут мечтать об этом суетливом, причудливом двигателе, который снова будет приводить в движение колеса во время динамичной и веселой езды.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

Как работает роторный двигатель Ванкеля

Одна из проблем обычных автомобилей двигатель дизайн заключается в том, что поршни двигаться по прямой вверх и вниз в своих цилиндры , производить то, что есть известный как возвратно-поступательное движение .

Внутри двухроторного двигателя Ванкеля

В NSU Ro80 и более современных автомобилях Mazda с двигателями Ванкеля используются сдвоенные роторы. Роторы приводят в движение выходной вал, проходящий через их центр.Этот вал соединен с маховиком для сглаживания импульсов мощности двигателя. Преимущество сдвоенных роторов заключается в том, что, когда они настроены на поворот на 180 ° в противофазе друг с другом, один ротор компенсирует любые вибрации, производимые другим ротором, что обеспечивает исключительно плавную работу двигателя.

Но опорные колеса требуют другого движения - вращательное движение . К преобразовать возвратно-поступательное движение во вращательное движение, поршни связаны с коленчатый вал так что, когда поршни поднимаются и опускаются, они заставляют коленчатый вал повернуть.Тогда вращательное движение коленчатого вала может передаваться на дорогу. колеса, чтобы вести их.

Двигатель автомобиля был бы намного проще, если бы поршни могли вращаться, а не движение вверх и вниз, потому что создаваемое таким образом вращательное движение может быть передается непосредственно на опорные колеса (хотя передача все равно будет нужный).

Еще одно преимущество такого роторный двигатель было бы что поршни бы всегда двигаться в одном направлении - по кругу. Ни один из двигателей мощность будет потрачена впустую, остановив поршни в конце их Инсульт а также снова ускоряя их в обратном направлении, как это происходит в Поршневой двигатель.

Емкости Ванкеля

Дизайн Двигатель Ванкеля делает его намного более мощным, чем поршневой двигатель такой же мощности. NSU Wankel Spyder с двигателем объемом 498 куб. См, обеспечивающим максимальную скорость почти 100 миль в час, это один из примеров. Еще совсем недавно купе Mazda RX-7 оснащалось двигателем всего 1308 куб. См (654 куб. См на ротор), но имеет аналогичные рабочие характеристики Porsche 924S объемом 2479 куб. Чтобы уравнять мощности двигателей Ванкеля и поршневых двигателей в с точки зрения производительности, мощность двигателя Ванкеля должна быть увеличена Автор: 1.8. Это означает, что двигатель RX-7 объемом 1308 куб. См имеет такую ​​же выходную мощность, что и поршневой двигатель объемом 2354 куб. см.

Разработка

Несмотря на привлекательность идеи, когда-либо применялся только один тип роторного двигателя. успешно применяется в автомобилях. Это двигатель Ванкеля, разработанный Феликсом. Ванкель.

Он начал исследования роторных компрессоры в 1938 году. После Второй мировой войны он объединился с NSU (немецкий производитель автомобилей, позже ставший частью VW Audi) превратить его компрессоры в практичный двигатель внутреннего сгорания .

К 1957 году Ванкель построил экспериментальный роторный двигатель, работавший на испытательный стенд, и в 1964 году этот двигатель был предложен публике в NSU Wankel Spyder. Этот небольшой спортивный автомобиль с задним расположением двигателя имел двигатель Ванкеля объемом 498 куб. мог развивать 50 л.с. и иметь максимальную скорость 95 миль в час (152 км в час).

Spyder так и не завоевал популярность у публики, и автомобиль, который действительно прославил двигатель Ванкеля NSU R080, который был провозглашен автомобилем Год 1968. Он имеет двухроторный двигатель 995c и может развивать скорость до 110 миль в час. (176км в час).

Внутри Ванкеля

Сердце двигателя Ванкеля - трехсторонний поршень, называемый ротором. вращающийся внутри корпус ротора . На каждой стороне корпуса есть торцевая пластина.

Боковые стороны ротора изогнуты на три лопасти, а корпус ротора имеет в форме большой восьмерки, так что при вращении ротора зазор между каждой стороной ротора и корпусом попеременно увеличивается и меньше. Этот постоянно меняющийся разрыв является ключом к горение процесс.

топливо / воздушная смесь поступает в корпус в момент, когда в ловушке объем между стенкой корпуса и одним из лопастей ротора увеличивается. По мере увеличения этого объема создается вакуум , рисунок в топливно-воздушная смесь через отверстия в корпусе и на концевой пластине.

По мере вращения ротора этот объем начинает сокращаться, сжимая топливно-воздушная смесь. Затем эта смесь проходит через свеча зажигания , установлен в стенка корпуса. В Искра загорается пробка, чтобы воспламенить смесь, в результате чего она развернуть и вращать ротор вокруг его цикл .На данный момент объем между ротор и корпус увеличиваются, чтобы обеспечить расширение газов. Наконец, объем снова уменьшается, вытесняя отработанные газы через выхлопные отверстия.

Таким образом, ротор совершает тот же четырехтактный цикл, что и поршневой двигатель. двигатель - индукция , сжатие , мощность и выхлоп - но каждый из трех лепестки ротора проходят через этот процесс непрерывно, поэтому есть три силовые удары за каждый оборот ротора.

Через центр ротора проходит выходной вал , к которому ротор связан системой планетарные передачи аналогично автоматическому коробка передач (см. Системы 44 и 45).Зубчатая передача позволяет ротору следовать эксцентричный орбите так, чтобы три конца ротора постоянно касались Корпус.

Когда ротор вращается, он вращает этот вал. Вал несет это вращательное движение к коробка передач и так с опорными колесами.

Рабочий цикл роторного двигателя Ванкеля

Индукция

Когда кончик ротора проходит через впускной канал, следующая камера начинает увеличиваться в размерах из-за эксцентрической орбиты ротора.Это приводит к засасыванию топливно-воздушной смеси в камеру.

Сжатие

По мере того как ротор продолжает вращаться, камера начинает уменьшаться в размерах, сжимая топливно-воздушную смесь, готовую к воспламенению.

Зажигание

Когда камера проходит над свечами зажигания, они загораются, чтобы воспламенить смесь. Все современные двигатели Ванкеля имеют две свечи зажигания, обеспечивающие равномерное сгорание топливно-воздушной смеси по всей камере.

Выхлоп

Расширение горящих газов заставляет ротор совершать полный цикл, проходя через выхлопное отверстие, где газы вытесняются из камеры. Этот цикл продолжается во всех трех камерах одновременно.

Отличия

Конструкция двигателя Ванкеля означает, что он не имеет клапаны - топливо / воздух смесь просто входит и выходит из камеры через отверстия в корпусе ротора и торцевую пластину.Поэтому и качелей нет, распредвал или толкатели.

Это означает, что Ванкель имеет примерно половину количества частей Поршневой двигатель. Он также легче и компактнее. Тем не менее, это все еще требует многих из тех же вспомогательных устройств, что и другие двигатели - стартер , генератор , система охлаждения , карбюратор или же впрыск топлива , масляный насос и так далее. Однажды двигатель установлен со всем этим, он теряет большую часть своего преимущества компактность и меньший вес.

Тем не менее, двигатель Ванкеля в Ro80 получил широкую признательность за его плавность хода и отсутствие вибрации.Отчасти это было из-за неисправности двигателя. с двумя роторами, установленными на одной линии друг с другом, но в отдельных корпусах. Каждый вращались примерно на том же выходном валу, но их синхронизация была выставлена ​​на 180 ° наружу, так что любой дисбаланс сила произведенные одним ротором, будут аннулированы тем же сил другого ротора, и чтобы они вместе производили более равномерный поворотное движение.

Ограничения Ванкеля

Хотя проблема уплотнения теперь в значительной степени разобрались, он до сих пор не удалось полностью использовать потенциал двигателя Ванкеля для использования в транспортных средствах из-за ограниченного срока службы компонентов двигателя.Еще одна проблема заключается в том, что двигатель обычного поршневого автомобиля хорошо работает в довольно широком диапазоне скоростей и нагрузок, тогда как Двигатель Ванкеля лучше всего работает только в гораздо более узком диапазоне.

Ранние проблемы

После того, как базовая конструкция Ванкеля была определена, вскоре возникнут проблемы. стало очевидным. Один из них - износ уплотнений. Роторы герметизированы со всех сторон, чтобы следите за тем, чтобы газы не просачивались через наконечники из частей с высокой степенью сжатия корпус к частям с низкой степенью сжатия.Эти уплотнения были подвержены износу и поломка, в результате чего двигатель теряет компрессию и, следовательно, мощность.

На поршневом двигателе это уплотнение частично обеспечивается клапанами и частично за счет поршневые кольца , но уплотнения на двигателе Ванкеля представляли особую проблемы.

Уплотнения наименее эффективны при низких оборотах двигателя, где они должны быть снабжены пружинами, чтобы удерживать их прижатыми к боковой стороне корпуса.

Но при высоких оборотах двигателя комбинация центробежные силы и высокий газ давление плотнее прижмите уплотнения к корпусу.Результирующий трение означало потерю мощности и значительный износ уплотнений, что вскоре сломал.

Ранние Ванкели имели печати, сделанные из углерод , но в более поздних конструкциях были особые чугунные уплотнения, которые оказались более прочными. Для дополнительной защиты внутри корпуса и концевых пластин нанесено износостойкое покрытие.

Вторая серьезная проблема - износ восьмиугольной ходовой поверхности, вызванный "стуком" печатей. Это приводит к гофре на ходу. поверхность и сокращает срок службы двигателя.

Формы камеры

Роторный двигатель Mazda 13B

Схема впуска, двигателя и выхлопа роторного двигателя Mazda 13B. Этот двигатель имеет электронный впрыск топлива с двумя топливными форсунками на ротор. Первичные форсунки работают постоянно, в то время как вторичные форсунки включаются только при повышенных оборотах двигателя или под нагрузкой. Выбросы выхлопных газов сокращаются за счет использования термического реактора для нагрева выходящих газов - тепло подается теплообменником дальше по выхлопной трубе.

Другая проблема с двигателем Ванкеля - это форма горение камера . В типичном поршневом двигателе камера примерно равна полусферический, что обеспечивает равномерное сгорание топливно-воздушной смеси и постепенно. В двигателе Ванкеля камера сгорания неизбежно длинная. и плоская, форма которой значительно затрудняет оптимальное сгорание.

Частичное решение проблемы камеры сгорания заключалось в соответствовать две искры заглушки расположены на небольшом расстоянии друг от друга.Mazda - чей RX-7 теперь единственный Автомобиль с двигателем Ванкеля, который сегодня продается в Великобритании (см. Ниже), взял этот принцип за основу. далее, установив две свечи, одна из которых зажигает доли секунды. позже, чем другой. Для такого расположения требуются два отдельных зажигание системы с двумя катушки .

Отсутствие успеха

Несмотря на мощность и плавность хода Ванкеля, ему пока не удалось завоевать популярность среди подавляющего большинства производителей автомобилей.

Основная причина - высокий расход топлива, вызванный тенденцией топливно-воздушная смесь гореть неравномерно.Неравномерное сгорание в двигателе Ванкеля также создает еще одну проблему - высокий эмиссия уровни частично обгоревшего углеводороды (загрязнение выхлопными газами).

За годы, прошедшие с тех пор, как R080 принес теоретические преимущества Ванкеля двигатель к известности, были различные нефтяные кризисы и продолжающиеся давление со стороны правительств и общественности с целью снижения уровня выбросов выхлопных газов и лучший расход топлива.

Ни одно из этих требований не благоприятствует двигателю Ванкеля, и, кроме того, он означало, что большинству производителей автомобилей пришлось потратить много времени и денег на повышение эффективности существующих двигателей.

Руководство для начинающих: что такое роторный двигатель (и как он работает)?

Роторное и поршневое

PROS
• Характер двигателя означает, что гораздо меньший рабочий объем может производить значительно большую мощность, чем поршневой двигатель сопоставимого размера - Mazda RX-8 технически имеет объем 1,3 литра, но выдает около 230 л.с.

• Двигатели физически намного меньше, легче и имеют меньше движущихся частей, которые могут выйти из строя.

• Из-за характера двигателя они внутренне сбалансированы - роторы действуют как вращающиеся противовесы, поэтапно компенсирующие друг друга.Это означает, что вибрации меньше, поэтому двигатель работает более плавно и будет вращаться до более высоких оборотов (10000 об / мин, конечно, не является чем-то неслыханным) без повреждений.

МИНУСЫ
• Роторные двигатели менее топливосберегающие, чем их эквиваленты с поршневыми двигателями, поскольку они менее эффективны с точки зрения теплового воздействия.

• Выбросы низкие из-за частичного совпадения событий впуска и выпуска, и ни одно из них не соответствует действующим нормам.

• Наконечники ротора, также известные как уплотнения вершины, подвергаются огромным нагрузкам и склонны к выходу из строя - это была огромная проблема для старых моделей Wankels, и ее еще предстоит полностью решить в современных вариантах.

• Высокий расход масла из-за необходимости поддерживать внутреннюю смазку роторов и уплотнений.

• Из-за небольшого эксцентриситета вала по сравнению с ходом коленчатого вала роторные двигатели имеют небольшой крутящий момент по сравнению с обычным двигателем на низких оборотах.

Mazda была крупнейшим производителем роторных двигателей и единственным производителем, который использовал их с конца 1970-х годов. General Motors разрабатывала свою собственную более 40 лет назад, но законы о смоге и первое нефтяное эмбарго в 1973 году заставили их отказаться от нее до того, как она была завершена для производства.NSU и Citroen в Европе продавали автомобили в небольших количествах, а Hercules, Norton и Suzuki производили мотоциклы, но никто не производил столько, сколько Mazda. Mazda Cosmo впервые появилась с роторным двигателем в 1965 году, за ним последовали R100, R130, RX-2, RX-3, RX-7, Luce, Rotary Pickup Truck, RX-7 и, наконец, RX-8, который выпускался до тех пор, пока 2012.

Недавно было проведено исследование производства небольших роторных двигателей для питания генераторной части гибрида, благодаря их компактным размерам и плавности хода.Считается, что, работая на постоянной скорости для выработки энергии, двигатель Ванкеля может, наконец, решить проблемы с топливной экономичностью и выбросами.

Роторный двигатель Mazda | Преимущества и информация

Роторный двигатель: главный продукт Mazda's Heritage

Большинство двигателей внутреннего сгорания, которые вы видите сегодня на дорогах, построены с использованием стандартных принципов поршневых двигателей. Однако это не единственный двигатель внутреннего сгорания. Роторный двигатель - часто называемый двигателем Ванкеля в честь его изобретателя, доктора Р.Феликс Ванкель - мощная альтернатива поршневому двигателю и важная часть фирменного наследия Mazda в области производительности.

Как это работает

Роторный двигатель работает по тому же основному принципу, что и поршневой двигатель: сгорание в силовой установке высвобождает энергию для приведения в действие транспортного средства. Однако система подачи в роторном двигателе полностью уникальна.

Поршневой двигатель выполняет четыре ключевые операции: впуск, сжатие, сгорание и выпуск. Роторный двигатель также выполняет каждую из этих ключевых операций, но делает это совершенно уникальным образом.В случае роторного двигателя каждый из этих ключевых процессов обрабатывается отдельной секцией корпуса силовой установки.

Детали роторного двигателя

Роторный двигатель состоит из нескольких основных компонентов. Когда вы сами увидите роторный двигатель, станет ясно, насколько он отличается от обычного поршневого двигателя.

  • Ротор : три выпуклые поверхности ротора действуют аналогично поршню, но ротор подвижен, перемещаясь по пути через систему подачи корпуса двигателя.
  • Корпус : Корпус имеет овальную форму и состоит из нескольких частей, отвечающих за впуск, сжатие, сгорание и выпуск.
  • Выходной вал : Этот длинный цилиндрический инструмент построен со смещением относительно центральной линии вала.

    Comments |0|

    Legend *) Required fields are marked
    **) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
    Category: Двигател