Установка турбины на бензиновый двигатель: Как установить турбину на бензиновый двигатель?

Содержание

Как установить турбину на бензиновый двигатель?

Ремонт турбин легковых и грузовых автомобилей в Москве

27.02.2019

Для начала, потребуется обзавестись некоторыми деталями, без которых не установить турбокомпрессор на авто. В этот список входят: турбина, интеркулер, коллектор, патрубки, труба к ведущая к глушителю и система, предназначенная для контроля подачи топлива.

Установить турбину можно не на все виды машин. Бывают даже ситуации, когда проще приобрести новое авто с изначально установленной турбиной, чем поставить ее в бензиновый двигатель. Правильно поставить турбину сможет не каждый и поэтому ставить ее рекомендуется мастеру с солидными навыками и опытом. Если ставить турбину в стиле “как получится”, то ее эксплуатационный срок будет крайне мал.

На первом этапе потребуется снять элементы, которые отвечают за вход и выход потока воздуха в системе. Новый коллектор турбины соединяют с входом турбокомпрессора. Турбину надо установить так, чтобы можно было осуществить работы по установке патрубков.

Далее, охлаждающий канал скрепляют с смазочной системой мотора, при помощи масляной трубки. Для более простого подключения, предназначается датчик, который отвечает за давление масла. Система охлаждения присоединяется к водяной помпе.
Чтобы формировалось достаточное количество воздушно-топливной смеси, необходимо установить форсунки с высоким уровнем производительности, которые будут подавать нужный объем топлива для смеси. Чтобы эта система работала, потребуется также заменить старый топливный насос, по причине того, что старый наверняка не сможет предоставить тот объём топлива для новых форсунок, которые требуется.

Все датчики, которые следят за температурой воздуха и охлаждающей жидкости, будут под контролем электронных систем. Чтобы системы работали как “часы”, следует произвести калибровку всех элементов контроля, чтобы ,например топливо впрыскивалось именно в тот момент, когда подается воздух в цилиндры. Такая переделка двигателя является достаточно сложной задачей, и чтобы ее качественно осуществить, необходимы немалые силы и средства, а также умелые руки.

Если со временем, ваша турбина вышла из строя, то сервис компании ТУРБО-ТЕХ Москва проведет диагностику турбины бензинового двигателя. В нашей компании вам восстановят турбину за 4 часа, с гарантией на 3 года! Сервис располагает собственный складом оригинальных запчастей, европейским оборудованием высокого класса и мастерами опыт работы которых, более 12 лет!

НУЖЕН РЕМОНТ ТУРБИНЫ В МОСКВЕ?

ЗВОНИТЕ В ТУРБО-ТЕХ!

8 (495) 488-70-32

Ремонт за 4 часа, гарантия 3 года, экономия до 70%!

Представьтесь

Телефон*

E-mail

Текст сообщения


Нажимая на кнопку «Отправить», вы даете согласие на обработку данных.

Представьтесь

Отзыв

Оцените нас!

rating fields

Нажимая на кнопку «Добавить отзыв», вы даете согласие на обработку данных.

Представьтесь

Ваш телефон*


Нажимая на кнопку «Заказать звонок»,
вы даете согласие на обработку данных.

Установка турбины на атмосферный двигатель, можно ли поставить компрессор на атмосферный двигатель

Установка турбины на атмосферный двигатель

Мотор – это главный механизм в любом транспортном средстве. Все двигатели условно разделяются на 2 группы: турбированные и атмосферные. Атмосферные ДВС бывают газовыми, дизельными и бензиновыми, в зависимости от конструкционных особенностей и типа топлива, которое необходимо для их функционирования. У каждого начинающего автовладельца рано или поздно возникает вопрос: «Можно ли поставить турбину на атмосферный двигатель?». Ответ на этот вопрос можно дать только один – положительный. В этой статье мы расскажем вам, как обычный атмосферный мотор можно сделать турбированным.

Зачем устанавливать турбину

Чтобы разобраться в этом, сначала необходимо обратить внимание на принцип работы атмосферного мотора. Он функционирует таким образом: воздух попадает в него естественным путем, затем смешивается с топливом, переходит в цилиндр и воспламеняется от искры, в результате выделяется энергия, которая приводит в движение автомобиль. Установка турбины делает двигатель более мощным и износостойким, увеличивает крутящий момент и снижает уровень вредности выхлопных газов.

Благодаря турбине топливная смесь становится более насыщенной воздухом, интенсивнее горит. Мощность двигателя увеличивается на 10%, а то и более. Кроме того, он экономичнее расходует топливо.

Работает эта деталь так: в ее корпус попадают выхлопные газы, которые вращают крыльчатку. На одном валу располагается рабочее колесо компрессора. На вход устройства поступает отработавший в двигателе атмосферный воздух, а на выходе получается «надувочный». Поэтому эта процедура известна под названием «турбонаддув». Таким образом, КПД двигателя объемом 1.4 литра, оснащенного системой турбонаддува, вполне сравним с мощностью агрегатов с полезным объемом 1.8 литра. При этом, разумеется, что менее объемный двигатель расходует значительно меньше топлива. Особой популярностью данная технология пользуется у производителей японских и немецких автомобилей. Тем не менее, нередко турбину устанавливают и в постсоветских странах, даже на старые машины.

Элементы, необходимые для установки

Чтобы установить турбину на атмосферный двигатель, вам понадобится подготовить следующие детали:

  1. Саму турбину.
  2. Электронику, которая будет обеспечивать контроль подачи топлива.
  3. Выпускной коллектор.
  4. Высокопроизводительные форсунки.
  5. Интеркуллер для охлаждения воздуха.
  6. Трубу, соединяющую турбину с глушителем (даун-пайп).
  7. Магистраль подачи воздуха, выполненная из нержавейки и алюминиевых трубок.
  8. Трубки, обеспечивающие подачу масла и охлаждающей жидкости.
  9. Силиконовые патрубки, предназначенные для соединения трубок.

Учтите, что вместо обыкновенного коллектора вам понадобится турбоколлектор. Через него выхлопные газы будут выходить, а затем перенаправляться в турбину. Коллектор должен обладать толстыми стенками и большим запасом прочности. Поэтому лучше заказывать его изготовление в автомастерской, а не покупать дешевые готовые детали в Интернет-магазине.

Профессиональный сварщик выполнит деталь так, что на ней не будет трещин, а окалина не попадет внутрь турбины.

Чтобы не допускать перегрева турбины, дополнительно устанавливают охлаждающую систему. В даун-пайп встраивается кислородный датчик. Крыльчатка турбины выполняет очень высокие обороты. Чтобы исключить риск ее преждевременного выхода из строя, к ней подводят масло, которое будет подаваться из двигателя. Лишнее давление будет сбрасываться при помощи клапана, который называется блоу-офф.

Как устанавливается турбина

Вы и сами можете переделать мотор, если умеете выполнять следующие операции:

  • увеличение объемов цилиндров;
  • замена клапана и кулачкового вала;
  • снижение сопротивления ГРС;
  • установка улучшенных воздухофильтров;
  • использование патрубков и увеличение насосной мощности.

В результате мощность силового агрегата увеличится минимум на 30%. Однако вряд ли вы сумеете провести чип-тюнинг, то есть прошивку мотора при помощи специальных компьютерных программ. Это позволяет повысить мощность устройства приблизительно на 15%. Стоит отметить, что стоит это довольно дорого. У экспертов нет однозначного мнения по поводу степени полезности этой процедуры. Одни из них утверждают, что после нее двигатель изнашивается быстрее, а другие убеждены, что перепрошивка наоборот расширяет эксплуатационный ресурс деталей.

После операций по повышению мощности ДВС можно столкнуться с тем, что агрегат начал перегреваться, особенно при жаркой погоде. Чтобы избежать этого, нужно будет установить интеркулер. Это устройство охлаждает надувочный воздух. Стоит отметить, что его можно установить и обычный атмосферный двигатель. Интеркулер сделает так, что в поступающем холодном воздухе будет содержаться больше кислорода. Это обеспечит лучшее сгорание топлива, за счет чего возрастет и КПД двигателя. Поскольку данное устройство является достаточно компактным, его можно устанавливать практически куда угодно.

Большинство автовладельцев отмечает приятные изменения в первые же минуты вождения машины, в которую был вмонтирован интеркулер. Температура воздуха снижается на 15%, что увеличивает мощность ДВС в среднем на 4%. При этом сокращается расход топлива. В отдельных случаях при помощи данного механизма мощность мотора можно повысить даже на 25%.

Может ли быть установлена турбина на атмосферный двигатель вашей машины? Это определяется моделью авто. Иногда проще купить новый автомобиль, чем подбирать необходимые запасные части для старого. Если вы все-таки хотите турбировать мотор, то лучше не пытайтесь делать это самостоятельно, а обратитесь за помощью к профессионалу.

Переоборудование начинается с демонтажа всех деталей, связанных с впуском и выпуском воздуха. Затем коллектор соединяют с турбиной, развернутой таким образом, чтобы работа с присоединением патрубков выполнялась максимально легко.

Турбина вращается очень быстро, поэтому ее подшипники должны постоянно смазываться. Трубку для подачи смазки необходимо подсоединить к тому месту в моторе, в котором масло идет под давлением. Для подключения также может использоваться тройник датчика давления. Второй конец трубки подключают к верхнему сегменту картриджа турбины. Сливаться масло будет под низким давлением, через предназначенный для этого сосок. Система охлаждения подключается с обратной стороны от водяной помпы.

Двигатель будет получать больше воздуха, а значит, ему понадобится большее количество топлива. Для увеличения его подачи устанавливаются форсунки, обладающие высокой производительностью. Также в некоторых случаях имеет смысл установить новый топливный насос. Электроника будет контролировать уровень давления воздуха, не допуская избыточных показателей. К ней подсоединяют датчики температуры. Контроллер нужно откалибровать так, чтобы топливная смесь впрыскивалась точно в нужный момент.

Не забывайте, что прошивкой двигателя обязательно должен заниматься очень опытный специалист. Здесь есть риск сбить заводские настройки, что выведет мотор из строя. Тогда придется тратить дополнительные средства на его ремонт. Установка турбокомпрессора на атмосферный двигатель в значительной степени упрощает его настройку. Тогда двигатель сможет эффективно работать и на высоких, и на низких оборотах.

Если материал был для вас интересен или полезен, опубликуйте его на своей странице в социальной сети:

Добавить комментарий

В начало страницы

Как работают газотурбинные электростанции

Управление Управление ископаемой энергией и выбросами углерода

Изображение

Турбины внутреннего сгорания (газовые), устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном состоят из трех основных секций:

  • нагнетает его и подает в камеру сгорания со скоростью сотни миль в час.
  • Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом. Смесь сгорает при температуре более 2000 градусов по Фаренгейту. В результате сгорания образуется высокотемпературный поток газа под высоким давлением, который входит и расширяется через секцию турбины.
  • Турбина представляет собой сложную систему чередующихся стационарных и вращающихся лопастей с аэродинамическим профилем. Когда горячий дымовой газ расширяется через турбину, он вращает вращающиеся лопасти. Вращающиеся лопасти выполняют двойную функцию: они приводят в действие компрессор, чтобы накачать больше сжатого воздуха в секцию сгорания, и вращают генератор для производства электроэнергии.

Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давления (обычно ниже 20) и, как правило, имеют большие физические размеры. Степень сжатия – это отношение давления нагнетания компрессора к давлению воздуха на входе. Авиационные двигатели произошли от реактивных двигателей, как следует из названия, и работают при очень высокой степени сжатия (обычно более 30). Авиационные двигатели, как правило, очень компактны и полезны там, где требуется меньшая выходная мощность. Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы для достижения низкого уровня выбросов загрязняющих веществ, таких как NOx.

Одним из ключевых факторов эффективности отношения топлива к мощности турбины является температура, при которой она работает. Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной работе. Газ, протекающий через турбину типичной электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только до 1500–1700 градусов по Фаренгейту. Следовательно, воздух из компрессора может использоваться для охлаждения. ключевые компоненты турбины, снижая предельную тепловую эффективность.

Одним из главных достижений программы Министерства энергетики США по созданию усовершенствованных турбин стало преодоление прежних ограничений по температуре турбины за счет сочетания инновационных технологий охлаждения и передовых материалов. Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе в турбину до 2600 градусов по Фаренгейту, что почти на 300 градусов выше, чем в предыдущих турбинах, и достичь эффективности до 60 процентов.

Другим способом повышения эффективности является установка рекуператора или парогенератора-утилизатора (HRSG) для извлечения энергии из выхлопных газов турбины. Рекуператор улавливает отработанное тепло в выхлопной системе турбины для предварительного нагрева нагнетаемого компрессором воздуха перед его подачей в камеру сгорания. Котел-утилизатор вырабатывает пар, улавливая тепло выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, конфигурация которых называется комбинированным циклом.

Газовая турбина простого цикла может достигать эффективности преобразования энергии в диапазоне от 20 до 35 процентов. Благодаря более высоким температурам, достигнутым в программе турбин Министерства энергетики, будущие электростанции с комбинированным циклом, работающие на водороде и сингазе, вероятно, достигнут эффективности 60 процентов или более. Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может достигать 80 процентов.

 

Авиационные газовые турбины и поршневые двигатели

Проверенная производительность

Наше турбинное наследие

Авиационные газовые турбины имеют много преимуществ перед поршневыми двигателями: от более высокой эффективности и более низких затрат до более быстрой, чистой и качественной выработки электроэнергии.

Преимущество аэродинамики над поршневыми

50 лет и больше

Компания GE занимается производством авиационных производных уже 50 лет, наработав более 150 миллионов часов и эксплуатируя более 3000 единиц.

Турбины Aeroderivative можно быстро установить — всего за несколько недель — чтобы избежать частых простоев, что делает их особенно подходящими для коммунального и промышленного применения.

Измерьте разницу

Авиационные производные и поршневые двигатели

У авиационных турбин много преимуществ по сравнению с поршневыми двигателями. Вот лишь некоторые из них, которыми могут воспользоваться независимые поставщики электроэнергии, такие как вы.

Экологичность: Низкий уровень выбросов помогает уменьшить воздействие на окружающую среду на пути к обезуглероживанию.

Быстрая установка: Маленькие и модульные, они могут быть установлены всего за три месяца и занимают меньше места.

Высокая скорость отклика: Они быстро принимают грузы с возможностью их разделения или совместного использования, сохраняя при этом эффективность использования топлива.

Различные варианты топлива: Возможность переключения между природным газом, сжиженным нефтяным газом, изопентаном, этанолом, дизельным топливом и т. д. значительно снижает эксплуатационные расходы.

Высокая доступность: При самой высокой доступности любой теплоэнергетической технологии вы увидите 98+%, тогда как поршневые двигатели в среднем составляют 93%.

Меньше техобслуживания: Они требуют техобслуживания примерно раз в год, что позволяет сэкономить несколько миллионов долларов только на потреблении смазочного масла.

Сравните сами

Эффективность запуска: Они имеют более быстрое время запуска с небольшим или нулевым циклическим сроком службы и модульной конструкцией.

Простая мобилизация: Они не занимают много места для более быстрой установки, демонтажа, замены и перемещения.

Гибкость в эксплуатации: Они быстрее принимают грузы благодаря возможности их разделения или совместного использования, сохраняя при этом топливную экономичность.

Легкая рама: Обладая небольшим энергопотреблением, они вдвое легче благодаря современным материалам и занимают на 30 % меньше места на полу.

Ежегодное техническое обслуживание: Они требуют технического обслуживания только один раз в год, экономя около 13 000 человеко-часов и миллион долларов только на расходах на смазочное масло.

Авиационные двигатели по сравнению с поршневыми: экономия энергии

Более высокий КПД снижает затраты

Снижение затрат на смазочное масло год — в 200 раз меньше, чем у поршневого двигателя. Это может привести к экономии более 1 миллиона долларов США в год на авиационной силовой установке мощностью 100 МВт.

Меньше обслуживания

Авиационные газовые турбины требуют обслуживания только один раз в год или после того, как они проработают 4000 часов. По сравнению с высокоскоростными поршневыми двигателями, которые требуют в 50 раз больше операций по техническому обслуживанию в год, авиационные двигатели экономят более 13 000 человеко-часов в течение 3-летнего цикла технического обслуживания.

Газовые турбины обеспечивают более качественную электроэнергию

Доступность установок и гибкость использования топлива

Высокая доступность

Авиационные газовые турбины имеют самую высокую доступность среди всех теплоэнергетических технологий. Авиационная газовая турбина может быть заменена на электростанции, такой как коммунальное предприятие или электростанция, в течение нескольких дней для капитального осмотра, что означает более высокую доступность — 98,2% по сравнению с мощностью, вырабатываемой поршневыми двигателями, которая в среднем составляет 93%. доступность.

Различные варианты топлива

Возможность работы на широком спектре видов топлива, включая природный газ, сжиженный нефтяной газ (пропан и бутан), изопентан, этанол, дизельное топливо и коксовый газ. переключаться между видами топлива, чтобы сэкономить деньги, без остановки и без снижения мощности. Использование различных источников топлива не только повышает надежность, но и приводит к значительной экономии топлива — от 12 до 43 миллионов долларов США в год — по сравнению с затратами на топливо для высокоскоростного поршневого двигателя* 9.0003

*Диапазон экономии топлива основан на цене на природный газ от 1 до 4 долл./млн БТЕ и цене на дизельное топливо от 6 до 12 долл./млн БТЕ.

Газовые турбины создают более быструю энергию

Подача электроэнергии в сеть, где бы она ни потребовалась

Быстрая установка

Благодаря небольшим размерам и модульности авиационные двигатели можно транспортировать, устанавливать и вводить в эксплуатацию всего за 3 месяца. по сравнению с 12 – 18 месяцами для поршневых двигателей. Они могут быть установлены на открытом воздухе с минимальными требованиями к фундаменту, что делает их выгодным энергетическим решением для любого региона Африки, где требуется быстрая, чистая и надежная энергия.

Высокая скорость отклика

Газовые турбины GE на базе авиационных двигателей оснащены силовой турбиной и валом высокого давления, которые работают вместе, чтобы быстро реагировать на колебания частоты сети, помогая создать более стабильную и надежную сеть, чем у поршневых двигателей.

Производные авиационные двигатели обеспечивают более чистую энергию

Меньше и стабильнее

Меньшие выбросы

Оснащенные лучшими в своем классе системами сгорания, газовые турбины на основе авиационных двигателей могут обеспечивать 15 или 25 ppm NOx без необходимости использования SCR (селективного каталитического восстановления) или использование аммиака.

Использование возобновляемых источников энергии

Авиационные газовые турбины позволяют использовать возобновляемые источники энергии, когда это необходимо, экономя топливо и обслуживание, а также поддерживая стабильную сеть, чтобы обеспечить интеграцию большего количества возобновляемых источников энергии в будущем.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>