Конструкция поршней двс: конструктивные элементы, признаки и причины их износа

Содержание

Поршень ДВС функции,конструкция,виды,применение

Поршень двс

Поршень одна из важных деталей двигателя внутреннего сгорания благодаря которой передается энергия на шатун. В этой статье поговорим про устройство поршня узнаем его назначения и рассмотрим его фото.

Поршень двc на первый взгляд имеет простую конструкцию. Тем не менее не все так просто инженеры постоянно работают над облегчением поршня и увеличением его прочности. Другими словами стараются найти золотую середину. Найти золотую середину бывает не просто, так как поршень постоянно эксплуатируется в экстремальных условиях при высоких температурах и повышенных инерционных нагрузках. Под действием энергии топливно-воздушной смеси поршень отправляется в НМТ ( нижнюю мертвую точку). Поршень в свою очередь передает энергию на коленвал через шатун с которым поршень связан через поршневой палец.

Основные функции поршня двс:

1) Отвод излишков тепла.

2) Благодаря поршню камера сгорания становится герметичной.

3) Передача энергии на коленвал через шатун.

Если сказать кратко задача поршня передать энергию газов на коленвал чтобы последний преобразовал ее в механическую энергию.

Устройство

В последнее время поршень двс изготавливают из алюминия так как этот материал лёгкий и прочный.

Поршни бывают литые и кованные. Литые поршни изготавливаются литьём под давлением. Кованные поршни изготавливают методом штамповки из алюминиевого сплава с небольшим добавлением кремния 15%. Что увеличивает их прочность и износостойкость.

Обсудим основные детали поршня, более подробно устройство поршня можно рассмотреть на схеме.

Днище

Днище поршня может иметь 5 разных видов поверхностей у каждого типа свои преимущества и недостатки.

Плоское. Такой тип поверхности используется довольно часто. Недостаток поршня такого типа, в том что при обрыве ремня поршни гнут клапана.

Вогнутое. Обеспечивает более эффективную работу камеры сгорания. Тем не менее способствует большему образованию отложений при сгорании топлива.

OLYMPUS DIGITAL CAMERA

Выпуклое. Улучшает производительность поршня, но при этом понижает эффективность сгорания топлива.

С циковками. Предотвращают столкновение поршней с клапанами за счёт специальных углублений называемых циковками. Из-за канавок может быть небольшая потеря мощности.

С лужей.Такой тип поршней также оснащен канавками только большего размера. Цель таких поршней понизить степень сжатия. Например они отлично подходят для турбокомпрессора.

Компрессионные кольца

Обычно в двc устанавливается 2 компрессионных кольца и одно маслосъемное. Поршневые кольца изготавливаются из высокопрочного чугуна. Расстояние от днища поршня до первого кольца носит огневой пояс. Функция поршневых колец состоит в том, чтобы поршень плотно прилегал к цилиндру. Для уменьшения трения используется моторное масло.

Одно из важных предназначений поршневых колец заключается в препятствии попадания газов из камеры сгорания в картер. Благодаря добавлению хрома, молибдена, никеля или вольфрама прочность и термостойкость поршневых колец значительно повышается. При износе поршневых колец ресурс поршня понижается.

Маслосъемное кольцо

Маслосъемные кольца служат для того чтобы отводить излишки масла. Маслосъемные кольца обладают дренажными отверстиями.

Юбка

Юбка поршня и есть его тело служит направляющей. Благодаря специальным добавкам в сплав юбка поршня обладает высокой стойкостью к расширению.

Поршневой палец

Поршневой палец соединяет поршень с шатуном. Благодаря стопорному кольцу достигается их прочное соединение.

Ответы на частые вопросы

Для чего в днище поршня дизельного двигателя делают выемку ?

Выемка в поршнях дизельного двигателя называется вихревой камерой( камерой сгорания). Топливо перемешиваясь с воздухом в вихревой камере сгорает более эффективно и быстро.

Температура поршня двс ?

Кратковременно при работе двс поршень может нагреться до 2000 градусов и более. В целом температура поршня при работе может достигать 200 градусов.

Как продлить срок службы поршней ?

Для того чтобы продлить срок службы поршней двс необходимо во время менять масло. Лучше даже немного раньше срока как советуют многие водители.

norfin arcticthe hermitage st petersberg

Поршень двигателя: функции,конструкция,типы,фото,видео

Поршень занимает центральное место в процессе преобразования химической энергии топлива в тепловую и механическую. Поговорим про поршни двигателя внутреннего сгорания, что это такое и основное назначение в работе.

ЧТО ТАКОЕ ПОРШЕНЬ ДВИГАТЕЛЯ?

Поршень двигателя — это деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Изначально поршни для автомобильных двигателей внутреннего сгорания отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. он давал следующие преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.

С тех пор мощность моторов выросла многократно, температура и давление в цилиндрах современных автомобильных двигателей (особенно дизельных моторов) стали такими, что алюминий подошёл к пределу своей прочности. Поэтому в последние годы подобные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.
Помимо прочего, уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре «поршень-цилиндр, что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров и таким образом облегчить двигатель

Поршень выполняет ряд важных функций:

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях – при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы – термостойкие алюминиевые или стальные сплавы. Поршни изготавливаются двумя методами – литьем или штамповкой.

Экстремальные условия обуславливают материал изготовления поршней

Поршень эксплуатируется в экстремальных условиях, характерными чертами которых являются высокие: давление, инерционные нагрузки и температуры. Именно поэтому к основным требованиям, предъявляемым материалам для его изготовления относят:

  • высокую механическую прочность;
  • хорошую теплопроводность;
  • малую плотность;
  • незначительный коэффициент линейного расширения, антифрикционные свойства;
  • хорошую коррозионную устойчивость.

Требуемым параметрам соответствуют специальные алюминиевые сплавы, отличающиеся прочностью, термостойкостью и легкостью. Реже в изготовлении поршней используются серые чугуны и сплавы стали.
Поршни могут быть:

  • литыми;
  • коваными.

В первом варианте их изготовляют путем литья под давлением. Кованые изготовляются методом штамповки из алюминиевого сплава с небольшим добавлением кремния (в среднем, порядка 15 %), что значительно увеличивает их прочность и снижает степень расширения поршня в диапазоне рабочих температур.

Конструкция поршня

Поршень двигателя имеет достаточно простую конструкцию, которая состоит из следующих деталей:

 

  1. Головка поршня ДВС
  2. Поршневой палец
  3. Кольцо стопорное
  4. Бобышка
  5. Шатун
  6. Юбка
  7. Стальная вставка
  8. Компрессионное кольцо первое
  9. Компрессионное кольцо второе
  10. Маслосъемное кольцо

Конструктивные особенности поршня в большинстве случаев зависят от типа двигателя, формы его камеры сгорания и типа топлива, которое используется.

Днище

Днище может иметь различную форму в зависимости от выполняемых им функций – плоскую, вогнутую и выпуклую. Вогнутая форма днища обеспечивает более эффективную работу камеры сгорания, однако это способствует большему образованию отложений при сгорании топлива. Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Поршневые кольца

Ниже днища расположены специальные канавки (борозды) для установки поршневых колец. Расстояние от днища до первого компрессионного кольца носит название огневого пояса.

Поршневые кольца отвечают за надежное соединение цилиндра и поршня. Они обеспечивают надежную герметичность за счет плотного прилегания к стенкам цилиндра, что сопровождается напряженным процессом трения.  Для снижения трения используется моторное масло. Для изготовления поршневых колец применяется чугунный сплав.

Количество поршневых колец, которое может быть установлено в поршне зависит от типа используемого двигателя и его назначения. Зачастую устанавливаются системы с одним маслосъемным кольцом и двумя компрессионными кольцами (первым и вторым).

ТИПЫ ПОРШНЕЙ

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под поршневой палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Отвод излишков тепла от поршня

Наряду со значительными механическими нагрузками поршень также подвергается негативному воздействию экстремально высоких температур. Тепло от поршневой группы отводится:

  • системой охлаждения от стенок цилиндра;
  • внутренней полостью поршня, далее — поршневым пальцем и шатуном, а также маслом, циркулирующим в системе смазки;
  • частично холодной топливовоздушной смесью, подаваемой в цилиндры.

С внутренней поверхности поршня его охлаждение осуществляется с помощью:

  • разбрызгивания масла через специальную форсунку или отверстие в шатуне;
  • масляного тумана в полости цилиндра;
  • впрыскивания масла в зону колец, в специальный канал;
  • циркуляции масла в головке поршня по трубчатому змеевику.

Маслосъемное кольцо и компрессионные кольца

Маслосъемное кольцо обеспечивает своевременное устранение излишков масла с внутренних стенок цилиндра, а компрессионные кольца –  предотвращают попадания газов в картер.

Компрессионное кольцо, расположенное первым, принимает большую часть инерционных нагрузок при работе поршня.

Для уменьшения нагрузок во многих двигателях в кольцевой канавке устанавливается стальная вставка, увеличивающая прочность и степень сжатия кольца. Кольца компрессионного типа могут быть выполнены в форме трапеции, бочки, конуса, с вырезом.

Маслосъемное кольцо в большинстве случаев оснащено множеством отверстий для дренажа масла, иногда – пружинным расширителем.

Поршневой палец

Это трубчатая деталь, которая отвечает за надежное соединение поршня с шатуном. Изготавливается из стального сплава. При установке поршневого пальца в бобышках, он плотно закрепляется специальными стопорными кольцами.

Поршень, поршневой палец и кольца вместе создают так называемую поршневую группу двигателя.

Юбка

Направляющая часть поршневого устройства, которая может быть выполнена в форме конуса или бочки. Юбка поршня оснащается двумя бобышками для соединения с поршневым пальцем.

Для уменьшения потерь при трении, на поверхность юбки наносится тонкий слой антифрикционного вещества (зачастую используется графит или дисульфид молибдена). Нижняя часть юбки оснащена маслосъемным кольцом.

Обязательный процесс работы поршневого устройства – это его охлаждение, которое может быть осуществлено следующими методами:

  • разбрызгиванием масла через отверстия в шатуне или форсункой;
  • движением масла по змеевику в поршневой головке;
  • подачей масла в область колец через кольцевой канал;
  • масляным туманом
Уплотняющая часть

Уплотняющая часть и днище соединяются в форме головки поршня. В этой части устройства расположены кольца поршня – маслосъемное и компрессионные. Каналы для колец имеют небольшие отверстия, через которые отработанное масло попадает на поршень, а затем стекает в картер двигателя.

В целом поршень двигателя внутреннего сгорания является одной из самых тяжело нагруженных деталей, который подвергается сильным динамическим и одновременно тепловым воздействиям. Это накладывает повышенные требования как к материалам, используемым в производстве поршней, так и к качеству их изготовления.

Выхлопная система: описание,фото,назначение,тюнинг
Самостоятельная замена тормозных колодок и тормозных дисков
Поршневой палец: описание,виды,применение,установка,фото,видео.

ПОХОЖИЕ СТАТЬИ:

  • Новый Ford Mustang GT500KR c 900-сильным мотором от Shelby (фото)
  • Лакокрасочное покрытие для авто:виды,производители,дефекты,фото,описание
  • 2018 Mercedes-AMG S63 — видео
  • 7 тягачей, которые побили все рекорды скорости
  • Новый Бмв х6 2020 года
  • Автомобильный аккумулятор: описание,назначение,устройство,признаки и причины неисправностей,фото
  • Обзор лучших видеорегистраторов Xiaomi на 2021 год
  • Opel astra k: технические характеристики,комплектация,цена,фото,дизайн.
  • Может ли банк забрать авто у должника?
  • 5 Преимуществ окрашивания авто летом
  • Зачем применяют ремкомплекты гидроцилиндров экскаваторов: основные цели
  • Cистема смазки двигателя внутреннего сгорания

Поршень двигателя внутреннего сгорания

Поршень — один из основных составных элементов КШМ. Главной задачей детали становится принятие давления активно расширяющихся и сильно разогретых газов, которые образуются в  рабочей камере при сгорании топливно-воздушной смеси. Полученная энергия от воздействия указанных газов на поршень далее передается на шатун. Поршень имеет три части, которые отвечают за реализацию различных функций. К таковым частям относят днище поршня, уплотняющую часть и направляющую часть поршня.

Поршень испытывает значительные тепловые и механические нагрузки в процессе работы двигателя. Основным материалом для изготовления поршня сегодня  выступают алюминиевые сплавы, ранее активно использовался чугун. Поршень совершает возвратно-поступательные движения в гильзе цилиндра, которая размещена в блоке цилиндров ДВС.

Поршень является цельной деталью цилиндрической формы, которую принято делить на головку поршня и юбку поршня. Головка поршня, которая также называется днище поршня, получает в процессе изготовления разную форму, что зависит от особенностей конструкции двигателя.

Головка поршня бывает плоской, выпуклой, может иметь вогнутую форму и т.п. В различных ДВС  форма головки поршня зависит от того, как расположены свечи зажигания, инжекторные форсунки, впускные и выпускные клапаны и т.д. Для бензиновых двигателей камера сгорания выполняется отдельно, но для дизельного мотора данная камера изготовлена прямо в головке поршня.

В зоне головки поршня выполнены специальные канавки. Указанные канавки нарезаются для того, чтобы разместить в них поршневые кольца. Данные кольца выступают уплотняющими элементами. Современные двигатели внутреннего сгорания имеют два типа  поршневых колец:

  • маслосъемные кольца;
  • компрессионные кольца;

Задачей компрессионного кольца становится не допустить того, чтобы газы прорывались в картер мотора. Маслосъемное кольцо служит для того, чтобы удалить излишки моторного масла со стенок цилиндра двигателя. Качественное уплотнение предельно важно для нормальной работы ДВС.

Поршень, шатун и гильза цилиндра образуют цилиндро-поршневую группу (ЦПГ). Одним из основных показателей исправности цилиндропоршневой группы выступает необходимая для того или иного мотора компрессия. Дополнительно состояние ЦПГ оценивают по отсутствию или наличию повышенной дымности выхлопа, а также заметного угара моторного масла в процессе эксплуатации. Исправный ДВС не должен иметь расход масла выше паспортного.  

Юбка поршня представляет собой направляющую часть указанной детали, в которой  выполнена пара бобышек. Бобышки служат для установки поршневого пальца. Поршневой палец выступает соединяющим элементом поршня с шатуном.

Читайте также

Поршень двигателя: строение, принцип работы, неисправности

Поршень двигателя – это деталь цилиндрической формы, которая служит для преобразования энергии сжатой воздушно-топливной смести в энергию поступательного движения. Далее эта энергия при помощи шатунов и коленчатого вала преобразуется в крутящий момент.


Конструкция поршня

Стандартный поршень двигателя состоит из 3 основных частей:

  • Днища: служит для восприятия тепловой нагрузки и газовых сил

  • Уплотняющей части: передает большую часть тепла от поршня к цилиндру и препятствует прорыву газов

  • Направляющей части: поддерживает положение поршня и передает боковую силу на стенку цилиндра

Рассмотрим подробнее каждую из этих частей.

Днище

Форма днища зависит от многих факторов: типа двигателя и смесеобразования, расположения форсунок, свечей и клапанов, метода организации газообмена в цилиндре.

Поршни с выпуклым днищем обладают повышенной прочностью, но камера сгорания при этом имеет линзовидную форму, а теплоотдача выше. В двигателях искрового типа увеличение теплоотдачи позволяет повысить допустимую степень сжатия, что способствует некоторой компенсации механических потерь.

Поршни с вогнутым днищем, напротив, образуют компактную форму камеры сгорания. Они используются в дизельных двигателях, а также в бензиновых агрегатах с высокой степенью сжатия и низким потреблением топлива. Такие детали более склонны к образованию нагара.

Поршни с плоским днищем проще в производстве. Они используются как в бензиновых, так и дизельных двигателях вихрекамерного и предкамерного типа.

Днище поршня принимает на себя основную термонагрузку, в связи с чем имеет большую толщину. Чем оно толще, тем больше масса самого поршня, но меньше нагрев. Стандартная толщина днища составляет 7-9 мм, в турбомоторах – 11 мм, а в дизельных двигателях – 10-16 мм. Существуют также поршни, толщина днища которых меньше стандартной – 5,5-6 мм. Такие применяются, к примеру, в некоторых моделях автомобилей Honda.

Для увеличения прочности, а также снижения вероятности перегрева и прогорания на некоторых видах поршней днище и первая канавка, предназначенная для компрессионного кольца, подвергаются твердому анодированию. То есть верхний тонкий слой алюминия преобразуется в керамическое покрытие толщиной 8-12 мкм.

Уплотняющая часть

В уплотняющую часть входят маслосъемные и компрессионные кольца. Маслосъемные имеют сквозные отверстия по периметру, сквозь которые внутрь поршня поступает масло, удаленное с поверхности цилиндра. Некоторые из них снабжены специальным ободком, выполненным из стойкого к коррозии чугуна, со специальной канавкой для верхнего компрессионного кольца.

В современных двигателях используется всего три кольца – одно маслосъемное и два компрессионных.

Компрессионные кольца предотвращают попадание отработавших газов в картер двигателя из камеры сгорания. По форме они могут быть трапециевидными, коническими и бочкообразными. Некоторые виды таких колец имеют вырез. Наибольшие нагрузки воспринимает первое компрессионное кольцо, поэтому для увеличения ресурса детали ее канавку укрепляют при помощи стальной вставки.

Маслосъемные кольца предназначены для удаления излишков масла из цилиндра. Они также препятствуют попаданию смазки в камеру сгорания, для чего служат сквозные отверстия. Некоторые виды таких колец оснащаются пружинным расширителем.

Диаметр уплотняющая часть меньше, чем диаметр юбки. Это связано с тем, что нагрев в данной части поршня выше. Жаровый пояс имеет еще меньший диаметр, что позволяет избежать задиров на кольцах и их заклинивания в канавках. В отличие от юбки, уплотняющая часть в сечении круглая, а не овальная. Таким образом высоту пояса можно уменьшить.

Наибольшее значение для уплотнения поршня играет качество колец. В этом отношении чугунные маслосъемные кольца намного надежнее составных, так как при их установке возникает меньше всего ошибок. К тому же до 80 % тепла от поршня отводится именно через кольца. Именно поэтому при неплотном прилегании данных элементов потери приходятся на юбку, что влечет за собой появление задиров. Чтобы минимизировать этот процесс, в процессе обкатки двигателя ограничивают его мощность.

При перегреве еще неприработанных колец снижается их упругость, вследствие чего возникает ряд проблем: выброс масла, пропуск газов в картер и т.д. Также при перегреве возможно смыкание стыков, которое ведет к поломке колец, а в некоторых случаях и к обрыву самого поршня.

Направляющая часть

Направляющая (тронковая) часть называется юбкой поршня. С внутренней стороны она имеет бобышки, в которых находится отверстие под поршневой палец. Для фиксации последнего предусмотрены канавки, где размещаются детали, служащие для запирания пальца.

Нижняя кромка юбки предназначена для последующей механической обработки поршня. Для подобных целей она снабжается специальным буртиком. Если вес обработанного поршня больше, чем допускает двигатель, его подгоняют, снимая часть металла с внутренней стороны буртика. В тех местах, где находятся отверстия под поршневой палец, с наружной части юбки вырезают специальные углубления. В результате стенки этих зон не взаимодействуют со стенками цилиндра, образуя так называемые «холодильники».


Стенки юбки поршня также предназначены для восприятия силы бокового давления, что увеличивает трение о стенки цилиндра и усиливает нагрев обеих деталей.

Чтобы обеспечить свободное перемещение поршня в цилиндре, когда двигатель уже прогрет и работает под нагрузкой, между юбкой и стенками цилиндра предусмотрен зазор. Его величина устанавливается в зависимости от линейного расширения металла поршня и цилиндра при нормальной работе двигателя. Если зазор меньше, чем необходимо, при перегреве на поверхностях поршня образуются задиры, детали могут заклинивать в цилиндре. При большом зазоре ухудшаются уплотняющие свойства поршня, детали начинают стучать. Эксплуатировать такой двигатель не допускается.


Принцип работы поршня

Главная задача поршня – восприятие давления газов в цилиндре и передача энергии давления через поршневой палец на шатун. Далее она преобразуется коленчатым валом в крутящий момент двигателя. Подобную задачу невозможно реализовать без надежного уплотнения поршня, который движется в цилиндре. В противном случае произойдет прорыв газов в картер и попадание моторного масла в камеру сгорания из него. Для решения этой проблемы в поршне предусмотрены канавки, в которых установлены компрессионные и маслосъемные кольца. Для отвода масла в поршне находятся специальные отверстия.

В процессе работы днище поршня напрямую контактирует с горячими газами и нагревается. Избыток тепла от днища к стенкам цилиндра отводят поршневые кольца и охлаждающая жидкость. В тяжелонагруженных агрегатах предусмотрено дополнительное масляное охлаждение: масло через форсунки подается на днище и во внутреннюю кольцевую полость поршня.

Чтобы уплотнение полостей поршня было надежным, его вертикальная ось должна совпадать с осью цилиндра. Перекосы недопустимы, так как они вызывают «болтание» поршня в цилиндре, снижают уплотняющие и теплопередающие свойства колец, а также увеличивают шумность работы двигателя. Для исключения подобных проблем служит юбка поршня. Она должна обеспечивать минимальный зазор как на холодном, так и прогретом агрегате.

Коэффициент расширения стенок цилиндра и самого поршня разные. Это обусловлено как разными конструкционными материалами, так и разницей в температуре нагрева. Чтобы нагретый поршень не заклинивало вследствие температурного расширения, существует два решения.

Первое – эллиптическая форма юбки поршня в поперечном сечении, где большая ось перпендикулярная оси пальца, а в продольном – конуса, который сужается к днищу поршня. Благодаря такой форме обеспечивается соответствие юбки нагретого поршня стенке цилиндра, что предотвращает заклинивание. Второе решение – заливка стальных пластин в юбку поршня некоторых моделей. При нагреве расширение металла происходит медленнее, что ограничивает расширение всей юбки.

В качестве конструкционного материала для производства поршней используется алюминий. Это обусловлено тем, что при высоких скоростях работы, которые характерны современным двигателям, нужно обеспечить малую массу движущихся деталей. Поэтому, если использовать более тяжелые металлы, то потребуются и более мощные компоненты: шатун, коленвал и блок с толстыми стенками. Все это сделает увеличит размер и вес силового агрегата.

В конструкции поршня могут быть реализованы и другие инженерные решения. Например, обратный конус, расположенный в нижней части юбки. Он служит для уменьшения шума из-за перекладки элемента в мертвой точке. Для улучшения смазывания юбки используется микропрофиль на рабочей поверхности, который представляет собой маленькие канавки с шагом 0,2-0,5 мм, а для снижения трения применяется антифрикционное покрытие.



В России покрытие для поршней выпускает компания «Моденжи». MODENGY Для деталей ДВС наносится на юбки поршней и другие детали двигателя: коренные подшипники коленчатого вала, втулки пальцев, распредвалов, дроссельную заслонку.

Покрытие способствует снижению трения и износа, предотвращает появление задиров на поверхностях и заклинивание поршня в цилиндре. Материал стоек к длительному воздействию моторного масла и в течение некоторого времени сохраняет работоспособность двигателя в режиме масляного голодания.

Полимеризация покрытия возможна как при комнатной температуре, так и при нагреве. Удобная аэрозольная упаковка упрощает процесс нанесения благодаря тщательно настроенным параметрам сопла распылительной головки.


Причины износа поршня

Поршень, как и любой другой рабочий элемент двигателя подвержен износу и поломке. В случае с двигателем увеличение износа происходит при ежедневной эксплуатации, но до некоторого момента это незаметно и ДВС работает стабильно. 

При выработке ресурса деталей происходит резкое увеличение износа и начинаются всевозможные проблемы:

  • Повышается расход масла

  • Синий дым из выхлопной трубы

  • Нагар на свечах

  • Нестабильная работа ДВС на холостых оборотах, о чем свидетельствует вибрация рычага КПП

  • Увеличение расхода топлива в 2 и более раз

  • Снижение мощности двигателя и т.д.

Все это свидетельствует о некорректной работе двигателя, в том числе и поршневой группы. Например, задиры на головке поршня возникают вследствие перегрева из-за нарушения процесса сгорания, деформации и/или засорения масляной форсунки, установки поршней неправильного размера и параметров, неисправностей в системе охлаждения, уменьшения зазора в верхней части рабочей поверхности.

Следы от ударов на днище поршня свидетельствуют о слишком большом выступе детали, неверной посадке клапана, слишком малом зазоре в клапанном приводе, отложениях масляного нагара на головке поршня, неподходящем уплотнении ГБЦ, некорректно выставленным фазам газораспределения, чрезмерной подгонке торцевой поверхности ГБЦ.

Наплавления металла на поверхностях указывают на неравномерный впрыск топлива, позднее зажигание, недостаточное сжатие смеси, неверный момент начала впрыска, неисправность впрыскивающих форсунок.

Трещины в полости камеры сгорания и днище говорят о недостаточной компрессии в цилиндрах, плохом охлаждении поршня, некорректном моменте начала впрыска, неисправности или непригодности впрыскивающей форсунки. Подобные следы можно обнаружить, если установлены поршни с неподходящей формой полости камеры сгорания или на автомобилях, мощность двигателей которых была повышена искусственно (например, методом чип-тюнинга).

Поршневые кольца повреждаются вследствие неправильной установки поршней, избытка топлива в камере сгорания, при вибрации самих поршневых колец, сильном осевом износе кольцевой канавки и деталей.

Радиальный износ поршня возникает при избыточном количестве топлива в камере сгорания. Это происходит из-за сбоев в процессе приготовления смеси, при нарушении процесса сгорания, недостаточном давлении сжатия, неправильном размере выступа поршня. Осевой износ возникает в результате загрязнения из-за недостаточной фильтрации. Его также вызывают продукты износа, образующиеся во время приработки двигателя и загрязнения, которые не были полностью удалены при ремонте силового агрегата.

Повреждения юбки поршней может возникать по нескольким причинам. Например, вследствие ассиметричного пятна контакта, которое вызвано скручиванием и/или деформацией шатуна, неправильно просверленными отверстиями цилиндра или неправильно установленными отдельными цилиндрами, большим люфтом шатунного подшипника.

Задиры под углом 45° образуются из-за слишком тесной посадки поршней, ошибок при монтаже шатуна горячим прессованием, недостаточной смазки при первом пуске двигателя.

Кроме этого поверхности юбок поршней истираются из-за разбавления масла топливом, неисправного пускового устройства двигателя, недостаточного сжатия смеси, перебоев в зажигании и работе двигателя на переобогащенной воздушно-топливной смеси.

Основной причиной выхода из строя гильз является кавитация. Она вызывается недостатком охлаждения, слишком низкой или высокой температурой, малым начальным давлением в системе охлаждения, применением неподходящей охлаждающей жидкости, неправильной и/или неточной посадки гильз цилиндров, а также использованием неподходящих уплотнительных колец с круглым сечением.

Обнаруженные блестящие места в верхней части цилиндра говорят об отложении масляного нагара на днище цилиндров. Они возникают вследствие избыточного содержания масла в камере сгорания, прорыва газов с проникновением масла во всасывающий тракт, частой езды на короткие дистанции или на холостом ходу, недостаточного отделения масляного тумана от картерных газов.


Иногда вышеописанные проблемы возникают комплексно.

Заключение

Так как поршень является одной из важнейших частей двигателя, в случае возникновения каких-либо неполадок нужно незамедлительно провести диагностику. Промедление грозит либо дорогостоящим ремонтом, либо полной заменой двигателя. Срок службы силового агрегата значительно продлевают качественные смазочные материалы и топливо.

Поршень двигателя: строение, принцип работы, неисправности


В цилиндро-поршневой группе (ЦПГ) происходит один из основных процессов, благодаря чему двигатель внутреннего сгорания функционирует: выделение энергии в результате сжигания топливовоздушной смеси, которая впоследствии преобразуется в механическое действие – вращение коленвала. Основной рабочий компонент ЦПГ — поршень. Благодаря ему создаются необходимые для сгорания смеси условия. Поршень — первый компонент, участвующий в преобразовании получаемой энергии.

Поршень двигателя имеет цилиндрическую форму. Располагается он в гильзе цилиндра двигателя, это подвижный элемент – в процессе работы он совершает возвратно-поступательные движения и выполняет две функции.

  1. При поступательном движении поршень уменьшает объем камеры сгорания, сжимая топливную смесь, что необходимо для процесса сгорания (в дизельных моторах воспламенение смеси и вовсе происходит от ее сильного сжатия).
  2. После воспламенения топливовоздушной смеси в камере сгорания резко возрастает давление. Стремясь увеличить объем, оно выталкивает поршень обратно, и он совершает возвратное движение, передающееся через шатун коленвалу.

Конструкция поршня

Стандартный поршень двигателя состоит из 3 основных частей:

  • Днища: служит для восприятия тепловой нагрузки и газовых сил
  • Уплотняющей части: передает большую часть тепла от поршня к цилиндру и препятствует прорыву газов
  • Направляющей части: поддерживает положение поршня и передает боковую силу на стенку цилиндра

Рассмотрим подробнее каждую из этих частей.

Днище

Форма днища зависит от многих факторов: типа двигателя и смесеобразования, расположения форсунок, свечей и клапанов, метода организации газообмена в цилиндре.

Поршни с выпуклым днищем обладают повышенной прочностью, но камера сгорания при этом имеет линзовидную форму, а теплоотдача выше. В двигателях искрового типа увеличение теплоотдачи позволяет повысить допустимую степень сжатия, что способствует некоторой компенсации механических потерь.

Поршни с вогнутым днищем, напротив, образуют компактную форму камеры сгорания. Они используются в дизельных двигателях, а также в бензиновых агрегатах с высокой степенью сжатия и низким потреблением топлива. Такие детали более склонны к образованию нагара.

Поршни с плоским днищем проще в производстве. Они используются как в бензиновых, так и дизельных двигателях вихрекамерного и предкамерного типа.

Днище поршня принимает на себя основную термонагрузку, в связи с чем имеет большую толщину. Чем оно толще, тем больше масса самого поршня, но меньше нагрев. Стандартная толщина днища составляет 7-9 мм, в турбомоторах – 11 мм, а в дизельных двигателях – 10-16 мм. Существуют также поршни, толщина днища которых меньше стандартной – 5,5-6 мм. Такие применяются, к примеру, в некоторых моделях автомобилей Honda.

Для увеличения прочности, а также снижения вероятности перегрева и прогорания на некоторых видах поршней днище и первая канавка, предназначенная для компрессионного кольца, подвергаются твердому анодированию. То есть верхний тонкий слой алюминия преобразуется в керамическое покрытие толщиной 8-12 мкм.

Уплотняющая часть

В уплотняющую часть входят маслосъемные и компрессионные кольца. Маслосъемные имеют сквозные отверстия по периметру, сквозь которые внутрь поршня поступает масло, удаленное с поверхности цилиндра. Некоторые из них снабжены специальным ободком, выполненным из стойкого к коррозии чугуна, со специальной канавкой для верхнего компрессионного кольца.

В современных двигателях используется всего три кольца – одно маслосъемное и два компрессионных.

Компрессионные кольца предотвращают попадание отработавших газов в картер двигателя из камеры сгорания. По форме они могут быть трапециевидными, коническими и бочкообразными. Некоторые виды таких колец имеют вырез. Наибольшие нагрузки воспринимает первое компрессионное кольцо, поэтому для увеличения ресурса детали ее канавку укрепляют при помощи стальной вставки.

Маслосъемные кольца предназначены для удаления излишков масла из цилиндра. Они также препятствуют попаданию смазки в камеру сгорания, для чего служат сквозные отверстия. Некоторые виды таких колец оснащаются пружинным расширителем.

Диаметр уплотняющая часть меньше, чем диаметр юбки. Это связано с тем, что нагрев в данной части поршня выше. Жаровый пояс имеет еще меньший диаметр, что позволяет избежать задиров на кольцах и их заклинивания в канавках. В отличие от юбки, уплотняющая часть в сечении круглая, а не овальная. Таким образом высоту пояса можно уменьшить.

Наибольшее значение для уплотнения поршня играет качество колец. В этом отношении чугунные маслосъемные кольца намного надежнее составных, так как при их установке возникает меньше всего ошибок. К тому же до 80 % тепла от поршня отводится именно через кольца. Именно поэтому при неплотном прилегании данных элементов потери приходятся на юбку, что влечет за собой появление задиров. Чтобы минимизировать этот процесс, в процессе обкатки двигателя ограничивают его мощность.

При перегреве еще неприработанных колец снижается их упругость, вследствие чего возникает ряд проблем: выброс масла, пропуск газов в картер и т.д. Также при перегреве возможно смыкание стыков, которое ведет к поломке колец, а в некоторых случаях и к обрыву самого поршня.

Направляющая часть

Направляющая (тронковая) часть называется юбкой поршня. С внутренней стороны она имеет бобышки, в которых находится отверстие под поршневой палец. Для фиксации последнего предусмотрены канавки, где размещаются детали, служащие для запирания пальца.

Нижняя кромка юбки предназначена для последующей механической обработки поршня. Для подобных целей она снабжается специальным буртиком. Если вес обработанного поршня больше, чем допускает двигатель, его подгоняют, снимая часть металла с внутренней стороны буртика. В тех местах, где находятся отверстия под поршневой палец, с наружной части юбки вырезают специальные углубления. В результате стенки этих зон не взаимодействуют со стенками цилиндра, образуя так называемые «холодильники».

Стенки юбки поршня также предназначены для восприятия силы бокового давления, что увеличивает трение о стенки цилиндра и усиливает нагрев обеих деталей.

Чтобы обеспечить свободное перемещение поршня в цилиндре, когда двигатель уже прогрет и работает под нагрузкой, между юбкой и стенками цилиндра предусмотрен зазор. Его величина устанавливается в зависимости от линейного расширения металла поршня и цилиндра при нормальной работе двигателя. Если зазор меньше, чем необходимо, при перегреве на поверхностях поршня образуются задиры, детали могут заклинивать в цилиндре. При большом зазоре ухудшаются уплотняющие свойства поршня, детали начинают стучать. Эксплуатировать такой двигатель не допускается.

Методы охлаждения и смазывания цилиндро-поршневой группы

В каждом цикле работы двигателя сгорает большое количество топливно-воздушной смеси. При этом все детали цилиндро-поршневой группы испытывают экстремальные температурные воздействия, поэтому нуждаются в эффективном охлаждении – воздушном или жидкостном.

Наружная поверхность цилиндров ДВС с воздушным охлаждением покрыта множеством ребер, которые обдувает встречный или искусственно созданный воздухозаборниками воздух.

При водяном охлаждении жидкость, циркулирующая в толще блока, омывает нагретые цилиндры, забирая таким образом излишек тепла. Затем жидкость попадает в радиатор, где охлаждается и вновь подается к цилиндрам.

Второй по важности момент после отвода тепла – система смазки цилиндров. Без нее поршни рано или поздно подвергаются заклиниванию, что может привести к поломке двигателя.

Для того чтобы масляная пленка дольше удерживалась на внутренних поверхностях цилиндров, их подвергают хонингованию, т.е. нанесению специальной микросетки. Стабильность слоя масла гарантирует не только максимально низкое трение в паре «поршень-цилиндр», но и способствует отведению лишнего тепла из ЦПГ.

Принцип работы поршня

Главная задача поршня – восприятие давления газов в цилиндре и передача энергии давления через поршневой палец на шатун. Далее она преобразуется коленчатым валом в крутящий момент двигателя. Подобную задачу невозможно реализовать без надежного уплотнения поршня, который движется в цилиндре. В противном случае произойдет прорыв газов в картер и попадание моторного масла в камеру сгорания из него. Для решения этой проблемы в поршне предусмотрены канавки, в которых установлены компрессионные и маслосъемные кольца. Для отвода масла в поршне находятся специальные отверстия.

В процессе работы днище поршня напрямую контактирует с горячими газами и нагревается. Избыток тепла от днища к стенкам цилиндра отводят поршневые кольца и охлаждающая жидкость. В тяжелонагруженных агрегатах предусмотрено дополнительное масляное охлаждение: масло через форсунки подается на днище и во внутреннюю кольцевую полость поршня.

Чтобы уплотнение полостей поршня было надежным, его вертикальная ось должна совпадать с осью цилиндра. Перекосы недопустимы, так как они вызывают «болтание» поршня в цилиндре, снижают уплотняющие и теплопередающие свойства колец, а также увеличивают шумность работы двигателя. Для исключения подобных проблем служит юбка поршня. Она должна обеспечивать минимальный зазор как на холодном, так и прогретом агрегате.

Коэффициент расширения стенок цилиндра и самого поршня разные. Это обусловлено как разными конструкционными материалами, так и разницей в температуре нагрева. Чтобы нагретый поршень не заклинивало вследствие температурного расширения, существует два решения.

Первое – эллиптическая форма юбки поршня в поперечном сечении, где большая ось перпендикулярная оси пальца, а в продольном – конуса, который сужается к днищу поршня. Благодаря такой форме обеспечивается соответствие юбки нагретого поршня стенке цилиндра, что предотвращает заклинивание. Второе решение – заливка стальных пластин в юбку поршня некоторых моделей. При нагреве расширение металла происходит медленнее, что ограничивает расширение всей юбки.

В качестве конструкционного материала для производства поршней используется алюминий. Это обусловлено тем, что при высоких скоростях работы, которые характерны современным двигателям, нужно обеспечить малую массу движущихся деталей. Поэтому, если использовать более тяжелые металлы, то потребуются и более мощные компоненты: шатун, коленвал и блок с толстыми стенками. Все это сделает увеличит размер и вес силового агрегата.

В конструкции поршня могут быть реализованы и другие инженерные решения. Например, обратный конус, расположенный в нижней части юбки. Он служит для уменьшения шума из-за перекладки элемента в мертвой точке. Для улучшения смазывания юбки используется микропрофиль на рабочей поверхности, который представляет собой маленькие канавки с шагом 0,2-0,5 мм, а для снижения трения применяется антифрикционное покрытие.

В России покрытие для поршней выпускает . MODENGY Для деталей ДВС наносится на юбки поршней и другие детали двигателя: коренные подшипники коленчатого вала, втулки пальцев, распредвалов, дроссельную заслонку.

Покрытие способствует снижению трения и износа, предотвращает появление задиров на поверхностях и заклинивание поршня в цилиндре. Материал стоек к длительному воздействию моторного масла и в течение некоторого времени сохраняет работоспособность двигателя в режиме масляного голодания.

Полимеризация покрытия возможна как при комнатной температуре, так и при нагреве. Удобная аэрозольная упаковка упрощает процесс нанесения благодаря тщательно настроенным параметрам сопла распылительной головки.

Цилиндр и поршень: что нужно знать об этих деталях и как продлить срок их службы?

Смотрите также

Цилиндр и поршень – ключевые детали любого двигателя. В замкнутой полости цилиндро-поршневой группы (ЦПГ) происходит сгорание топливно-воздушной смеси. Газы, образующиеся при этом, воздействуют на поршень – он начинает двигаться и заставляет вращаться коленчатый вал.

Цилиндр и поршень обеспечивают оптимальный режим работы двигателя в любых условиях эксплуатации автомобиля.

Рассмотрим эту пару подробнее: конструкцию, функции, условия работы, возможные проблемы при эксплуатации элементов ЦПГ и пути их решения.

Причины износа поршня

Поршень, как и любой другой рабочий элемент двигателя подвержен износу и поломке. В случае с двигателем увеличение износа происходит при ежедневной эксплуатации, но до некоторого момента это незаметно и ДВС работает стабильно.

При выработке ресурса деталей происходит резкое увеличение износа и начинаются всевозможные проблемы:

  • Повышается расход масла
  • Синий дым из выхлопной трубы
  • Нагар на свечах
  • Нестабильная работа ДВС на холостых оборотах, о чем свидетельствует вибрация рычага КПП
  • Увеличение расхода топлива в 2 и более раз
  • Снижение мощности двигателя и т.д.

Все это свидетельствует о некорректной работе двигателя, в том числе и поршневой группы. Например, задиры на головке поршня возникают вследствие перегрева из-за нарушения процесса сгорания, деформации и/или засорения масляной форсунки, установки поршней неправильного размера и параметров, неисправностей в системе охлаждения, уменьшения зазора в верхней части рабочей поверхности.

Следы от ударов на днище поршня свидетельствуют о слишком большом выступе детали, неверной посадке клапана, слишком малом зазоре в клапанном приводе, отложениях масляного нагара на головке поршня, неподходящем уплотнении ГБЦ, некорректно выставленным фазам газораспределения, чрезмерной подгонке торцевой поверхности ГБЦ.

Наплавления металла на поверхностях указывают на неравномерный впрыск топлива, позднее зажигание, недостаточное сжатие смеси, неверный момент начала впрыска, неисправность впрыскивающих форсунок.

Трещины в полости камеры сгорания и днище говорят о недостаточной компрессии в цилиндрах, плохом охлаждении поршня, некорректном моменте начала впрыска, неисправности или непригодности впрыскивающей форсунки. Подобные следы можно обнаружить, если установлены поршни с неподходящей формой полости камеры сгорания или на автомобилях, мощность двигателей которых была повышена искусственно (например, методом чип-тюнинга).

Поршневые кольца повреждаются вследствие неправильной установки поршней, избытка топлива в камере сгорания, при вибрации самих поршневых колец, сильном осевом износе кольцевой канавки и деталей.

Радиальный износ поршня возникает при избыточном количестве топлива в камере сгорания. Это происходит из-за сбоев в процессе приготовления смеси, при нарушении процесса сгорания, недостаточном давлении сжатия, неправильном размере выступа поршня. Осевой износ возникает в результате загрязнения из-за недостаточной фильтрации. Его также вызывают продукты износа, образующиеся во время приработки двигателя и загрязнения, которые не были полностью удалены при ремонте силового агрегата.

Повреждения юбки поршней может возникать по нескольким причинам. Например, вследствие ассиметричного пятна контакта, которое вызвано скручиванием и/или деформацией шатуна, неправильно просверленными отверстиями цилиндра или неправильно установленными отдельными цилиндрами, большим люфтом шатунного подшипника.

Задиры под углом 45° образуются из-за слишком тесной посадки поршней, ошибок при монтаже шатуна горячим прессованием, недостаточной смазки при первом пуске двигателя.

Кроме этого поверхности юбок поршней истираются из-за разбавления масла топливом, неисправного пускового устройства двигателя, недостаточного сжатия смеси, перебоев в зажигании и работе двигателя на переобогащенной воздушно-топливной смеси.

Основной причиной выхода из строя гильз является кавитация. Она вызывается недостатком охлаждения, слишком низкой или высокой температурой, малым начальным давлением в системе охлаждения, применением неподходящей охлаждающей жидкости, неправильной и/или неточной посадки гильз цилиндров, а также использованием неподходящих уплотнительных колец с круглым сечением.

Обнаруженные блестящие места в верхней части цилиндра говорят об отложении масляного нагара на днище цилиндров. Они возникают вследствие избыточного содержания масла в камере сгорания, прорыва газов с проникновением масла во всасывающий тракт, частой езды на короткие дистанции или на холостом ходу, недостаточного отделения масляного тумана от картерных газов.

Иногда вышеописанные проблемы возникают комплексно.

Конструкционные материалы деталей ЦПГ

Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.

В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.

Современные автомобили, особенно с дизельными двигателями, все чаще оснащаются сборными поршнями из стали. Они имеют меньшую компрессионную высоту, чем алюминиевые, поэтому позволяют использовать удлиненные шатуны. В результате боковые нагрузки в паре «поршень-цилиндр» существенно снижаются.

Поршневые кольца, наиболее подверженные износу и деформациям, производят из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем).

Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.

Поршень двигателя внутреннего сгорания: устройство, назначение, принцип работы.

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях — при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы — термостойкие алюминиевые или стальные сплавы. Поршни изготавливаются двумя методами — литьем или штамповкой.

Конструкция поршня

Поршень двигателя имеет достаточно простую конструкцию, которая состоит из следующих деталей:

Volkswagen AG

  1. Головка поршня ДВС
  2. Поршневой палец
  3. Кольцо стопорное
  4. Бобышка
  5. Шатун
  6. Стальная вставка
  7. Компрессионное кольцо первое
  8. Компрессионное кольцо второе
  9. Маслосъемное кольцо

Конструктивные особенности поршня в большинстве случаев зависят от типа двигателя, формы его камеры сгорания и типа топлива , которое используется.

Днище

Днище может иметь различную форму в зависимости от выполняемых им функций — плоскую, вогнутую и выпуклую. Вогнутая форма днища обеспечивает более эффективную работу камеры сгорания, однако это способствует большему образованию отложений при сгорании топлива. Выпуклая форма днища улучшает производительность поршня, но при этом снижает эффективность процесса сгорания топливной смеси в камере.

Поршневые кольца

Ниже днища расположены специальные канавки (борозды) для установки поршневых колец. Расстояние от днища до первого компрессионного кольца носит название огневого пояса.

Поршневые кольца отвечают за надежное соединение цилиндра и поршня. Они обеспечивают надежную герметичность за счет плотного прилегания к стенкам цилиндра, что сопровождается напряженным процессом трения. Для снижения трения используется моторное масло . Для изготовления поршневых колец применяется чугунный сплав.

Количество поршневых колец, которое может быть установлено в поршне зависит от типа используемого двигателя и его назначения. Зачастую устанавливаются системы с одним маслосъемным кольцом и двумя компрессионными кольцами (первым и вторым).

Маслосъемное кольцо и компрессионные кольца

Маслосъемное кольцо обеспечивает своевременное устранение излишков масла с внутренних стенок цилиндра, а компрессионные кольца — предотвращают попадания газов в картер.

Компрессионное кольцо, расположенное первым, принимает большую часть инерционных нагрузок при работе поршня.

Для уменьшения нагрузок во многих двигателях в кольцевой канавке устанавливается стальная вставка, увеличивающая прочность и степень сжатия кольца. Кольца компрессионного типа могут быть выполнены в форме трапеции, бочки, конуса, с вырезом.

Маслосъемное кольцо в большинстве случаев оснащено множеством отверстий для дренажа масла, иногда — пружинным расширителем.

Поршневой палец

Это трубчатая деталь, которая отвечает за надежное соединение поршня с шатуном. Изготавливается из стального сплава. При установке поршневого пальца в бобышках, он плотно закрепляется специальными стопорными кольцами.

Поршень, поршневой палец и кольца вместе создают так называемую поршневую группу двигателя.

Юбка

Направляющая часть поршневого устройства, которая может быть выполнена в форме конуса или бочки. Юбка поршня оснащается двумя бобышками для соединения с поршневым пальцем.

Для уменьшения потерь при трении, на поверхность юбки наносится тонкий слой антифрикционного вещества (зачастую используется графит или дисульфид молибдена). Нижняя часть юбки оснащена маслосъемным кольцом.

Обязательный процесс работы поршневого устройства — это его охлаждение, которое может быть осуществлено следующими методами:

  • разбрызгиванием масла через отверстия в шатуне или форсункой;
  • движением масла по змеевику в поршневой головке;
  • подачей масла в область колец через кольцевой канал;
  • масляным туманом

Уплотняющая часть

Уплотняющая часть и днище соединяются в форме головки поршня. В этой части устройства расположены кольца поршня — маслосъемное и компрессионные. Каналы для колец имеют небольшие отверстия, через которые отработанное масло попадает на поршень, а затем стекает в картер двигателя.

В целом поршень двигателя внутреннего сгорания является одной из самых тяжело нагруженных деталей, который подвергается сильным динамическим и одновременно тепловым воздействиям. Это накладывает повышенные требования как к материалам, используемым в производстве поршней, так и к качеству их изготовления.

Не буду растягивать вступление, кратко расскажу, о чем будет этот большой пост. И так речь идет о типах поршней, четырех тактные бензиновые, дизельные и двух тактные, Основная задача всех рассмотренных типов поршней , это контролировать тепловое расширение и противостоять определенной нагрузке, ниже разберемся как это решается.

Поршни для четырехтактных бензиновых двигателей

В современных бензиновых двигателях используют поршни с симметричной или асимметричной юбкой
с различной толщиной днища и юбки поршня.

Поршни управляемого расширения

Поршни с кольцевой вставкой, которая управляет тепловым расширением.
Вставки выполнены из серого чугуна. Главная цель этого кольца уменьшить тепловое расширение алюминиевого сплава поршня, так как чугун имеет относительно небольшое расширение и малую теплопроводность, вставка тем самым сдерживает металл сохраняя форму. Производство таких поршней более затратное, соответственно и выше цена готового продукта. Основной недостаток, это невозможность изготовления кованного поршня, так необходимого для турбированых двигателей, большая масса поршня. Такой тип поршней больше уходит в далекое прошлое.

Авто термические поршни

Авто термические поршни, имеют разделение(пропил) между кольцевым поясом и юбкой в канавке маслосъемного кольца, юбка держится в районе бобышек. Это позволяет снизить теплопередачу от кольцевого пояса поршня к его юбке, тем самым достигается более стабильная форма юбки. Стальная вставка в районе бобышек, контролирует тепловое расширение и увеличивает прочность. Такие поршни не способны выдерживать огромные нагрузки из-за «пропила», в работе отличаются низким шумом и относятся к более современным типам.

Поршни Autothermatik

Действуют по такому же принципу, как и авто
термические поршни, но не имеют пропила в маслосъемной канавке. Так же имеют стальные пластины в районе бобышек. Более прочные из-за целостности кольцевого пояса и юбки, лучше выдерживают боковые нагрузки по сравнению с первым вариантом. Применяются как в бензиновых, так и частично в дизельных двигателях.

Чем- то похожи на авто термические, но вместо пропила в юбке имеют стальную вставку по всему диаметру. Таким образом ограничивая температурный переход от кольцевого пояса к юбке и контролирую форму по всей окружности.

Этот тип поршней имеет большой холодильник и узкую часто овальную форму юбки. Поршень спроектирован так что при тепловом расширении он меняет свою форму из овальной в правильную круглую.

В дополнение к такому типу поршней еще есть вариант со скошенной юбкой к вершине поршня. имеет более широкую часть юбки снизу сужаясь к кольцевому поясу.

У поршней для двигателей с очень высокой выходной мощностью (больше, чем 100 кВт/л) может быть выполнен охлаждающий канал.

Самый большой потенциал для того, чтобы уменьшить поршневую массу в четырехтактных бензиновых двигателях несут в себе поршни EVOTEC®, в котором прежде всего стоит отметить трапециевидные поддержки бобышек, что позволяет расположить палец особенно глубоко, близко к днищу, сократив всю длину и массу поршня. В посте Масса поршня мы уже говорили о достоинстве такого расположения пальца. Такое расположение стенок юбки позволяет очень хорошо усилить верхнюю часть бобышек имея небольшую толщину перегородок и облегчить нижнюю выполнив поршень асимметричной формы. Юбка достаточно узкая и на краях имеет прочные перегородки, переходящие к бобышкам, это тоже является большим плюсом. Такая компоновка поршня очень хорошо препятствует боковым нагрузкам, мала вероятность деформации юбки, при этом толщина юбки намного меньше чем в обычном поршне, что тоже сокращает общий вес. На всем фоне отмеченных выше достоинств поршень значительно похудел, это позволяет сделать бобышки тоньше, так как инерционная нагрузка на нижние стенки бобышек стала меньше.

Кованные алюминиевые поршни

В двигателях с очень большими удельными нагрузками — такими как турбонадув или впрыск закиси азота используют кованные поршни . Преимуществом несомненно является прочность кованного алюминиевого сплава. Выдерживают более высокую температуру и лучше противостоят детонации. Из недостатков отмечается более высокая цена, невозможность применения некоторых технологий, например, некоторые из тех что описаны выше из-за технологического процесса изготовления.

Кованный поршень для Формулы 1

В следующем посте поговорим о поршнях для двухтактных и дизельных двигателей, где нагрузки и температуры еще больше.

Думаю, любой автомобилист, скорее всего знает как выглядит поршень. Но на этом, как правило, познания о главной детали двигателя и заканчиваются. Поэтому восполним пробел и поговорим о назначении поршня, его конструктивных особенностях и материалах для изготовления.

Как выглядит поршень? Сложная деталь. Это подтверждает такой факт – очень мало автомобилестроителей сами изготавливают поршни, поручая это специализированным производителям.

А еще – это главное звено в процессе превращения химической энергии топлива в тепловую, а затем в механическую.

Поршень, я бы сказал, это красивая деталь цилиндрической формы, она выполняет умопомрачительные возвратно-поступательные движения в цилиндре, принимает на себя высокие температуры и изменения давления газа, превращая все это в механическую работу.

То есть, вот какою работу выполняет поршень:

  • принимает на себя давление газов из камеры сгорания и передает это давление на коленчатый вал двигателя;
  • обеспечивает жесткий процесс микровзрывов в цилиндре, при этом герметично изолируя надпоршневую полость от подпоршневого пространства, предохраняя от попадания газов в кратер, а смазочного масла в камеру сгорания.

Как выглядит поршень. Конструкция

Схема подготовлена по материалам Volkswagen AG

  1. головка поршня;
  2. палец;
  3. стопорное кольцо;
  4. бобышки;
  5. головка шатуна;
  6. юбка; вставка стальная;
  7. трапециевидноекомпрессионное кольцо;
  8. коническое с подрезом компрессионное кольцо;
  9. маслосъемное кольцо с пружинным расширителем

Поршень состоит из днища, уплотняющей части с поршневыми кольцами для создания компрессии и удаления масла, и направляющей части (юбки).

В средней части поршня (зона юбки) находятся бобышки с отверстиями для пальца и стопорных колец.

Рабочее днище

Знаете как выглядит поршень и как называется эта часть? Эта часть детали служит для приема усилия от давления газов в камере сгорания и называется рабочее днище . Ее форма зависит от геометрии этой камеры и размещения клапанов.

В случае, когда днище вогнутое, форма камеры сгорания напоминает сферическую. Это увеличивает ее поверхность, но ведет к возрастанию образования нагара, а прочность вогнутого днища ниже, чем плоского.

Выпуклое днище делает камеру сгорания щелевидной формы, что приводит к ухудшению процесса завихрения смеси и охлаждения самого днища, хотя нагарообразование снижается.

Кроме того, такая форма днища уменьшает массу поршня при достаточной прочности.

Плоское днище по своим показателям промежуточный вариант между двумя предыдущими и чаще используется в карбюраторных двигателях.

В дизельных моторах разнообразие форм днищ еще больше, они изменяются в зависимости от степени сжатия, метода образования смеси, расположения форсунок и многих других факторов.

Уплотнительный сектор

Головка поршня герметизирует подвижное соединение поршня с цилиндром за счёт поршневых колец, которые установлены в специальных канавках. В верхних канавках вставлены компрессионные кольца, а в нижней – маслосъёмное кольцо. В канавке для маслосъёмного кольца есть сквозные отверстия, через них происходит отвод излишков масла во внутреннюю полость поршня.

Направляющая юбка, бобышки

Участок поршня, расположенный ниже маслосъемного кольца, называют юбкой поршня, а еще тронковой или направляющей частью.

Ее функция – удержание поршня в нужном направлении и восприятие боковых нагрузок.

С внутренней стороны на юбке есть приливы – бобышки, в них просверлены отверстия для поршневого пальца. А для его фиксации в отверстиях проточены канавки, для запирания пальца стопорными кольцами.

Что скажут металурги

Так как деталь работает в невыносимых условиях, то к металлам, для его изготовления, предъявляются достаточно жесткие требования:

  • для уменьшения инерционных нагрузок у материала должен бить малый удельный вес при достаточной прочности;
  • малый коэффициент температурного расширения;
  • сохранение физических свойств (прочность) при повышенных температурах;
  • значительная теплопроводность и теплоёмкость;
  • минимальный коэффициент трения в паре с материалом стенки цилиндра;
  • значительная сопротивляемость износу;
  • отсутствие усталостного разрушения материала под воздействием нагрузок;
  • низкая цена, общедоступность и легкость механической и других видов обработки в процессе производства.

Понятно, что металла, полностью соответствующего перечисленным требованиям, просто не существует. Поэтому для массовых автомобильных двигателей поршни изготавливаются в основном из двух материалов – чугуна и сплавов алюминия, а если быть точным, то из силуминовых сплавов, содержащих алюминий и кремний.

Чугунный вариант

У чугуна много плюсов, он твёрд, хорошо переносит повышенные температуры, отличается оптимальной сопротивляемостью к износу, имеет низкий коэффициент трения (пара чугун – чугун). И коэффициент температурного расширения у него ниже чем у алюминиевого поршня.

Но есть и недостатки: низкая теплопроводность, из-за чего температура днища у чугунного поршня больше чем у алюминиевого аналога.

Но основной недостаток чугуна ‒ значительная плотность, а значит вес. Для увеличения мощности и эффективности двигателя конструкторы обычно повышают обороты, но тяжелые чугунные поршни не позволяют это делать по причине высоких инерционных нагрузок.

Поэтому для современных автомобильных двигателей, как бензиновых, так и дизельных, отливают алюминиевые поршни.

Алюминиевый вариант

Алюминий имеет значительно меньший вес нежели чугун, но так как он мягче, толщину стенок поршня приходится увеличивать, в результате вес поршня становится легче всего лишь на 30 – 40 процентов по отношению к чугунному.

Коме того у алюминия повышенный температурный коэффициент расширения, поэтому в тело детали приходится вплавлять термостабилизирующие пластины из стали, и делать увеличенные зазоры.

У алюминия довольно малый коэффициент трения (пара: алюминий – чугун), что хорошо для работы алюминиевых поршней в двигателях с чугунным блоком цилиндров или чугунными гильзами.

На современных двигателях немецких марок – Ауди, Фольксваген, Мерседес нет чугунных гильз. Алюминиевые цилиндры там обработаны специальным способом, так что поверхность стенок получается очень твёрдая и имеет сопротивление износу даже выше чем при установке чугунных гильз.

А чтобы уменьшить трение в паре алюминий – алюминий, проводится железнение поверхности юбки. Таким образом отказ от чугунных гильз намного снижает вес блока цилиндров.

В кремнеалюминиевые сплавы, из которых делают поршни основной массы автомобильных двигателей, для улучшения показателей добавляют медь, никель и другие металлы.

Поршни серийных автомобилей производятся методом литья, а на форсированных двигателях применяют изделия, изготовленные методом горячей штамповки. Это улучшает структуру материала ‒ увеличивается прочность и устойчивость к износу. Правда, в штампованный вариант невозможно вмонтировать стальные терморегулирующие пластины.

Вот пожалуй и всё. Вами получен необходимый минимум знаний, как выглядит поршень, его конструкции и условиях работы.

Осталось поделится этой информацией с друзьями в соц.сетях, пригласить их на рюмочку чая и в домашней, непринужденной обстановке пригласить их пополнить ряды читателей нашего блога.

А еще вам будет интересно знать про и . Дерзайте, жмите на ссылку!

До новых встреч, друзья!

Конструкция поршня ВАЗ

Поршневая группа двигателя включает в себя — поршень, поршневые кольца и поршневой палец. Общая конструкция поршневой группы сложилась еще в период появления первых двигателей внутреннего сгорания. С тех пор ни один из элементов поршневой группы не утратил своего функционального назначения.

Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.

Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуемы. Вот некоторые требования, которым должна соответствовать эта деталь:

Температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С;

После сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя;

Зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.

Изготовление должно быть достаточно дешевым и отвечать условиям массового производства.

Очертания поршня за более стопятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.

В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.

Днище поршня – поверхность, обращенная к камере сгорания. Днище, своим профилем, определяет нижнюю поверхность камеры сгорания.

Форма днища зависит от формы камеры сгорания, расположения клапанов, от особенности подачи топливо-воздушной смеси в камеру сгорания и объема самой камеры.

маркировка поршней

Днища разных моделей применяемых на двигателях ВАЗ приведены на рисунке. Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой.

Маркировка наносится на поверхность рядом с отверстием под поршневой палец.

На поршне ВАЗ 21213 нанесены цифры -«213», на модели ВАЗ 2123 — «23».

На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — «08»,»083″, «10».

Поршень 2108 имеет диаметр 76мм, модели 21083 и 2110 — 82мм.

Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — «12»и «24» и отличаются глубиной выборки под клапана.

Модели 21126 и 11194 отличаются диаметром.

маркировка поршней ваз 2106, подгруппа

Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.

«Жаровым поясом»(огневым) , называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.

Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру. Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведет к его прогоранию.

По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок. Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070мм.

Для второго компрессионного кольца зазор — 0,035-0,060мм, для маслосъемного – 0,025-,0050мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3мм.

Головку поршня образуют днище и уплотняющая часть.

Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня .

«Юбкой », называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности. Юбка обеспечивает соосность положения детали к оси цилиндра блока.

Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий. На поверхность юбки(или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.

Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена. Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.

Одним из факторов определяющих геометрию поршня, является необходимость снижения сил трения. Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.

Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.

В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ. На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова. В разработке последующих конструкций принимают участие немецкие компании.

У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции, основанных на новых научных разработках.

В процессе работы, различные участки поршня нагреваются не равномерно, следовательно, и тепловое расширение будет больше там, где выше температура и больше объем металла.

В связи с этим, на уровне днища размер выполняют меньшим, чем диаметр в средней части. Таким образом, в продольном сечении профиль будет коническим. Нижняя часть юбки тоже может иметь меньший диаметр. Это позволяет, при движении вниз, в пространстве между юбкой и цилиндром, создавать масляный клин, который улучшает центрирование в цилиндре.

Для компенсации тепловых деформаций, в поперечном сечении поршень выполнен виде овала. Это связано с тем, что в районе бобышек под поршневой палец сосредоточен значительный объем металла. При нагреве, в плоскости поршневого пальца, расширение будет осуществляться в большей степени. Овальность и бочкообразность детали в холодном состоянии, позволяет иметь поршень, приближающийся к цилиндрической форме, при работающем двигателе.

Такая форма изделия создает сложности при контроле его диаметра. Фактический диаметр можно определить, только замеряя его в плоскости перпендикулярной оси отверстия под поршневой палец на определенном расстоянии от днища.

При этом, для разных моделей это расстояние будет отличаться. Тепловые нагрузки порождают еще одну проблему. Поршни изготавливают из алюминиевого кремнесодержащего сплава, а для блока цилиндров используют чугун. У этих материалов разная теплопроводность и разный коэффициент теплового расширения. Это приводит к тому, что в начале работы двигателя, поршень нагревается и увеличивается в диаметре быстрее, чем увеличивается внутренний диаметр цилиндра.

При и без того малых зазорах, это может приводить к повышенному износу цилиндров, а в худшем случае, к заклиниванию поршня. Для решения этой проблемы, во время отливки поршня, в тело заготовки внедряют специальные стальные или чугунные элементы, которые сдерживают резкое изменение диаметра. Для уменьшения теплового расширения и отвода тепла, на некоторых типах двигателя, используются системы подачи масла во внутреннюю полость поршня.

Поршневой палец обеспечивает шарнирное соединение поршня и верхней головки шатуна. Во время работы двигателя, на поршневой палец воздействуют значительные переменные силы.

Палец и отверстия под палец должны сопрягаться с минимальным зазором, обеспечивающим смазку. На двигателях ВАЗ используется два типа шарнирного соединения «поршень-палец-шатун». На поршнях моделей 2101, 21011, 2105, 2108, 21083 – палец устанавливается в верхней головке шатуна по плотной посадке, исключающей его вращение. Отверстие в поршне под поршневой палец выполнено с зазором, обеспечивая свободное вращение.

В дальнейшем от этой схемы отказались и перешли на схему с «плавающим» пальцем. На поршнях моделей 21213, 2110, 2112, 21124, 21126, 11194, 21128 – палец устанавливается с минимальным зазором и в головке шатуна, и в отверстиях поршня. Для исключения осевого смещения пальца, в поршне, в отверстиях под поршневой палец устанавливаются стопорные кольца. Во время работы, у пальца есть возможность проворачиваться, обеспечивая равномерный износ поверхностей.

Для обеспечения надежной смазки пальцев, в бобышках предусмотрены специальные отверстия.

По результатам фактического замера отверстия под поршневой палец, поршням присваивается одна из трех категорий(1-я, 2-я, 3-я). Разница в размерах для категорий составляет — 0,004мм. Номер категории клеймится на днище. Для обеспечения необходимого зазора, поршневые пальцы, по наружному диаметру подразделяются на три класса.

Отличие в размерах составляет — 0,004 мм. Маркировка класса производится краской по торцу пальца: синий цвет — первый класс, зеленый — второй, красный — третий класс. При сборке, поршню первой категории должен подбираться палец первого класса и т.д.

Особенностью работы шатунного механизма, является то, что до достижения верхней мертвой точки, поршень прижат к одной стороне цилиндра, а после прохождения ВМТ – к другой стороне цилиндра.

При приближении к верхней мертвой точке, на поршень действует максимальная нагрузка, следовательно растет сила давления на палец. Возростающие силы трения препятствуют повороту поршня на пальце. При таких условиях поворот может происходит скачкообразно, со стуком о стенку цилиндра.

Для того, чтобы снизить динамические нагрузки и шум, применяют поршни со смещенным отверстием под поршневой палец. Ось отверстия смещена в горизонтальной плоскости от оси поршня. В работающем двигателе это приводит к возникновению момента силы, который облегчает преодоление сил трения. Такое конструктивное решение позволяет добиться плавности, при смене точек контакта поршня с цилиндром.

На такие изделия обязательно наносится метка для правильной ориентации при его установке. Однако, чем больше будет износ цилиндров и юбки, тем в большей степени будет проявляться стук в цилиндре.

Существуют поршни, в которых применяется не только горизонтальное смещение оси пальца, но и вертикальное. Такое смещение ведет к уменьшению компрессионной высоты.

Поршни, с дополнительным смещением оси отверстия под палец вверх, применяются для тюнинговой доработки двигателя. В качестве основной характеристики для таких поршней используется величина смещения, указывающая на сколько смещен центр отверстия под палец, по сравнению со стандартным изделием.

На рынке продаж, поршень представлен значительным количеством отечественных и иностранных производителей. Независимо от производителя, они должны соответствовать требованиям, рассчитанным для конкретной модели двигателя. Поршни, входящие в комплект, не должны отличаться по массе более чем на ±2,5 грамм. Это позволит снизить вибрации работающего двигателя. Для розничной сети, в комплекты подбираются поршни одной весовой группы. В случае необходимости можно осуществить подгонку поршня по массе.

Зазор между цилиндром и поверхностью поршня должен соответствовать величине установленной для данной модели двигателя.

Поршни номинального размера по своему диаметру относят к одному из пяти классов. Различие между классами составляет 0,01 мм.

Классы маркируются на днище буквами — (А, В, С, D, Е).

В качестве запасных частей поставляются поршни классов — А, С, Е. Этих размеров достаточно, чтобы осуществить подбор деталей для любого блока цилиндров и обеспечить необходимый зазор.

Поршни ВАЗ 11194 и ВАЗ 21126 имеют только три класса (A, B, C) с размерным шагом — 0,01 мм. Кроме номинальных размеров, изготавливаются поршни 2-х ремонтных размеров, с увеличенным наружным диаметром на 0,4 и 0,8 мм.

Для распознавания, на днищах ремонтных изделий ставится маркировка: символ «треугольник» соответствует первому ремонтному размеру(с увеличением наружного диаметра на 0,4 мм), символ «квадрат» — увеличение диаметра на 0,8 мм. До 1986 г. ремонтные размеры отличались от современных.

Так для двигателя 2101 существовало три ремонтных размера: на 0,2мм., 0,4мм., 0,6 мм; для двигателя 21011 два размера: 0,4 мм. и 0,7 мм.

В качестве материала для изготовления поршней применяются сплавы алюминия. Использование кремния в составе сплава, позволило снизить коэффициент теплового расширения и увеличить износостойкость.

Сплавы, где содержание кремния может достигать 13%, называют – эвтектическими. Сплавы с более высоким содержанием кремния относят к заэвтектическим сплавам. Повышение процента содержания кремния улучшает теплопроводные характеристики, однако приводит к тому, что при охлаждении в сплаве происходит выделение кремния в виде зерен размером 0.5-1.0мм.

Это приводит к ухудшению литейных и механических свойств. Для улучшения физико-механических свойств, в сплавы вводят легирующие добавки меди, марганца, никеля, хрома.

Существует два основных способа получения заготовки поршня. Отливка в кокиль – специальную форму, является более распространенным способом. Другой способ — горячая штамповка(ковка). После этапов механической обработки, изделие подвергают термической обработке для повышения твердости, прочности и износостойкости, а также для снятия остаточных напряжений в металле.

Структура кованого металла позволяет повысить прочностные характеристики изделия. Но есть существенные недостатки кованых изделий классической конструкции(с высокой юбкой)– они получаются более тяжелыми. Кроме того, в кованных деталях, невозможно использовать термокомпенсирующие кольца или пластины. Увеличенный объем металла ведет к увеличенной тепловой деформации и необходимости увеличивать зазор между поршнем и цилиндром.

И как следствие – повышенный шум, износ цилиндров, расход масла. Применение кованых поршней оправдано в тех случаях, когда большую часть времени двигатель автомобиля эксплуатируется на предельных режимах.

В современном конструировании поршней, наблюдаются следующие тенденции: уменьшение веса, использования «тонких» поршневых колец, уменьшение компрессионной высоты, использование коротких поршневых пальцев, применение защитных покрытий.

Все это, нашло свое применение, в конструкции Т-образных поршней. Наименование конструкции обусловлено схожестью профиля детали с буквой «Т». На этих изделиях, юбка уменьшена и по высоте и по площади направляющей части. В качестве материала для изготовления таких поршней используется заэвтектический сплав, с большим содержанием кремния. Поршни Т-образной конструкции практически всегда изготавливаются горячей штамповкой.

Принятие разработчиками решения о применении той или иной конструкции поршня всегда предшествует расчет и глубокий анализ поведения всех узлов шатунно-поршневой группы.

Детали современных двигателей рассчитаны на пределе возможностей конструкции и материалов. В таких расчетах предпочтение отдается конструкциям с минимальной стоимостью обеспечивающих утвержденный ресурс и не более. Поэтому любое отклонение от штатных режимов работы двигателя ведет к сокращению ресурса тех или иных деталей и узлов.

Вопрос-ответ

Для чего выемки на поршнях ваз?

Это выемки под клапана. Для того что бы не погнуло клапана при обрыве.

Поршень занимает центральное место в процессе преобразования энергии топлива в тепловую и механическую. Поговорим про поршни двигателя, что это такое и как они работают.

Что это такое?
Поршень — деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра двигателя. Нужен для изменения давления газа в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления. Т.е. он передаёт на шатун усилие, возникающее от давления газов и обеспечивает протекание всех тактов рабочего цикла. Он имеет вид перевёрнутого стакана и состоит из днища, головки, направляющей части (юбки).

В бензиновых моторах применяются поршни с плоским днищем из-за простоты изготовления и меньшего нагрева при работе. Хотя на некоторых современных авто делают специальные выемки под клапаны. Это нужно, чтобы при обрыве ремня ГРМ поршни и клапана не встретились и не повлекли серьёзный ремонт. Днище поршня дизеля делают с выемкой, которая зависит от степени смесеобразования и расположения клапанов, форсунок. При такой форме днища лучше перемешивается воздух с поступающим в цилиндр топливом.

Поршень подвержен действию высоких температур и давлений. Он движется с высокой скоростью внутри цилиндра. Поэтому изначально для автомобильных двигателей их отливали из чугуна. С развитием технологий стали использовать алюминий, т.к. он давал следующие преимущества: рост оборотов и мощности, меньшие нагрузки на детали, лучшую теплоотдачу.


С тех пор мощность моторов выросла многократно. Температура и давление в цилиндрах современных автомобильных двигателей (особенно дизельных моторов) стали такими, что алюминий подошёл к пределу своей прочности . Поэтому в последние годы подобные моторы оснащаются стальными поршнями, которые уверенно выдерживают возросшие нагрузки. Они легче алюминиевых за счет более тонких стенок и меньшей компрессионной высоты, т.е. расстояния от днища до оси алюминиевого пальца. А еще стальные поршни не литые, а сборные.

Помимо прочего, уменьшение вертикальных габаритов поршня при неизменном блоке цилиндров дает возможность удлинить шатуны. Это позволит снизить боковые нагрузки в паре «поршень-цилиндр, что положительно скажется на расходе топлива и ресурсе двигателя. Или, не меняя шатунов и коленвала, можно укоротить блок цилиндров. Таким образом облегчим мотор.

Какие требования?
  • Поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен быть устойчивым к высокой температуре, давлению газов и надежно уплотнять канал цилиндра.
  • Он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износа.
  • Испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие.
  • Совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.
Основное назначение
Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя . Температура сгоревших газов достигает 2000 градусов. Только часть энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель. То, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Еще раз повторим известный факт, что тепловой поток направлен от более нагретых тел к менее нагретым.


Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Совершенно понятно, что тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть для этого четыре пути.

Итак, первый путь, обеспечивающий наибольший поток , – это поршневые кольца . Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты и к поршневым канавкам, и к стенке цилиндра. Они обеспечивают более 50% теплового потока.

Второй путь менее очевиден. Вторая охлаждающая жидкость в двигателе – масло. Имея доступ к наиболее нагретым местам мотора, масляный туман уносит и отдает в поддон картера значительную часть тепла от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%. Понятно, что, нагружая масло функцией теплоносителя, мы должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свои свойства. Также, чем выше температура масла, тем меньше тепла оно способно перенести.

Третий путь. Часть тепла отбирает на нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое она отберет, зависит от режима работы и степени открытия дросселя. Надо заметить, что тепло, полученное при сгорании, также пропорционально заряду. Поэтому этот путь охлаждения носит импульсный характер; отличается скоротечностью и высокоэффективен благодаря тому, что тепло отбирается с той стороны, с которой поршень нагревается.

В силу большей значимости следует уделить пристальное внимание передаче тепла через поршневые кольца. Понятно, что если этот путь мы перекроем, то маловероятно, что двигатель выдержит сколько-нибудь длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.


Вспомним такую характеристику, как компрессия . Представим, что кольцо не прилегает по всей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это то же самое, как если бы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В тех местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается возможности охлаждаться. Как результат – прогар и выкрашивание части, прилегающей к месту утечки.

Сколько колец нужно для поршня? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. При уменьшении их количества и высоты ухудшаются условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.

Поршень

Поршень — деталь поршневой группы двигателя, находящаяся внутри цилиндра. При помощи шатуна поршень соединен с коленчатым валом. Конструкция спроектирована таким образом, что поршень во время работы двигателя постоянно совершает возвратно-поступательное движение, преобразуя энергию расширяющихся при сгорании газов во вращение коленчатого вала.  

Устройство поршня

Поршень состоит из трех частей, хотя и выполняется из единой заготовки: днища, уплотняющей части и юбки. К коленчатому валу поршень присоединяется при помощи шатуна. Поршень надевается на шатун и закрепляется поршневым пальцем, продетым сквозь деталь. Форма днища поршня двигателя внутреннего сгорания никогда не бывает плоской. В зависимости от конструкции днище может иметь сложную конфигурацию. Сверху над днищем могут быть расположены свечи, форсунки и клапаны.

Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня

Чаще всего в днище поршня можно видеть углубления, предназначенные для того, чтобы двигающиеся над ними клапана не соприкасались с поверхностью поршня. Углубления, как правило, имеют большую глубину с одного края, так как расположенные над ними клапаны установлены под углом. В целом, как правило, общую форму днища делают вогнутой. Это обусловлено тем, что поршень, поднимаясь вверх, является одновременно дном камеры сгорания, а для оптимального распространения пламени вогнутое днище подходит как нельзя лучше. У этой формы есть и свои недостатки — в нижней части впадины быстрее отлагается нагар.

Поршень

Расстояние от днища поршня до первого компрессионного кольца называется огневым поясом поршня. Поскольку поршень работает в условии экстремально высоких температур, огневой пояс имеет строго просчитанную высоту, которая зависит еще и от материала, из которого выполнен поршень. Снижение высоты ниже определенного предела может привести к преждевременному прогоранию поршня.

В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов

Поршень — высокоточная деталь, так как одна из его задач — служить основой для компрессионных колец, уплотняющих камеру сгорания в момент сжатия. Со временем поршень изнашивается и обгорает, что приводит к снижению уплотнения — раскаленные газы начинают просачиваться между телом поршня и кольцом, и попадают в картер, а из картера в камеру сгорания просачивается масло.

Из этого следует, что повышенный расход масла может служить признаком износа поршней. Кроме того, об этом можно судить по появлению дыма в потоке выхлопных газов — дым образуется в результате сгорания попадающего в пространство над поршнем масла.

Поршень и поршневые кольца

Сочетание днища и уплотняющей части (служащей основой для колец) называется головкой поршня. В прошлом поршень выполнялся из стали целиком, но в современных двигателях нередко применяются облегченные поршни из алюминиевых сплавов. Алюминий уступает стали в прочности, поэтому для создания основы для верхнего компрессионного кольца его снабжают ободком из обладающего высокими антикорозионными и прочностными свойствами чугуна. В чугунном ободке, вплавленном в тело поршня, нарезают канавку, в которое и вставляется верхнее компрессионное кольцо. Этот вид чугуна называется нирезистом.

В нижней части головки расположены каналы для маслосъемных колец. Их нарезают на станке и снабжают сквозными отверстиями, через которое снятое с зеркала цилиндра масло по внутренней стенке поршня стекает в поддон картера блока цилиндров.

Поршневой палец

Юбка или направляющая часть поршня снабжена двумя приливами, или бобышками, в которых проделаны отверстия для установки поршневого пальца. Поскольку в месте расположения бобышек поршень имеет наибольшую толщину, в нем чаще всего возникают деформации под воздействием температуры. Для того, чтобы избежать риска деформации, часть метала с бобышек срезают на фрезеровочном станке. Служащие для охлаждения и повышающие интенсивность смазывания поршня углубления именуются на техническом сленге «холодильниками».

Материалы для производства поршней

К материалам, применяемым для изготовления поршней, предъявляются высокие требования. Прежде всего, материал должен обладать высокой механической прочностью при малой плотности и низком коэффициенте линейного расширения, высокой теплопроводностью и корозионной стойкостью, хорошими антифрикционными свойствами. Исходяиз этого, поршни делают либо из серого чугуна, либо из алюминиевого сплава, нередко с вкраплением чугуна.

Чугунные поршни отличаются прочностью и износостойкостью, работают с малыми зазорами. Недостаток чугуна — большой вес. Поэтому чугунные поршни применяются, как правило, в низкооборотистых, хорошо сбалансированных двигателях. У чугуна низкая теплопроводность, поэтому сильно нагревается днище. Это недостаток, так как высокая температура внутри камеры сгорания до зажигания может приводить к некорректному сгоранию топлива, которое называется калильным зажиганием. Особенно остро эта проблема стояла в прежние годы, когда преобладающим устройством впрыска был карбюратор.

Гораздо чаще в современных двигателях применяются поршни из алюминиевого сплава. В числе их достоинств малый вес, высокая теплопроводность (благодаря чему температура днища редко поднимается выше 250 °C). Именно благодаря этому фактору инженерам удалось в свое время найти способ существенно поднять степень сжатия в бензиновых двигателях. Основной недостаток алюминия — большой коэффициент линейного расширения, что заставляет делать большие зазоры, снижая способность поршня к уплотнению. Кроме того, механическая прочность алюминия при нагреве резко (до 50%) падает, чего с чугуном не происходит.  Тем не менее, недостатки не оказались фатальными, так как инженерам удалось придумать способы нивелировать отрицательные свойства материала. Например, чтобы уменьшить потери при сжатии, юбке поршня придают овально-конусную форму. Чтобы не допусать деформации от перегрева, юбку изолируют от головки при помощи материала с низкой теплопроводностью и тп.  

Интересные факты о поршне

Самые «крепкие» поршни — кованые, то есть сделаные из заготовок, полученных методом литья, а впоследствии подвергнутых ковке. Ковка — механическая обработка нагретого до ковочной температуры металла. Для каждого металла существует своя ковочная температура; у алюминия она не высока — всего лишь в районе 500 градусов.

Поршень двигателя — x-engineer.org

Содержание

Обзор

Поршень является составной частью двигателя внутреннего сгорания. Основная функция поршня — преобразовывать давление, создаваемое горящей топливовоздушной смесью, в силу, действующую на коленчатый вал. Легковые автомобили имеют поршни из алюминиевого сплава, в то время как грузовые автомобили также могут иметь поршни из стали и чугуна.

Поршень является частью коленчатого вала (также называемого кривошипно-шатунным механизмом ), который состоит из следующих компонентов:

  • поршень
  • поршневые кольца
  • шатун
  • коленчатый вал

Изображение: Привод коленчатого вала двигателя (кривошипно-шатунный механизм) Авторы и права: Rheinmetall

Поршень также выполняет второстепенные функции двигателя :

  • способствует рассеиванию тепла , образующемуся при сгорании
  • обеспечивает герметичность камеры сгорания, предотвращает утечки газа из нее и проникновение масла в камеру сгорания
  • направляет движение шатуна
  • обеспечивает непрерывную смену газов в камере сгорания
  • создает переменного объема в камере сгорания

Изображение: Kolbenschmidt поршни
Кредит: Kolbenschmidt

Назад

Детали

Форма поршня в основном зависит от типа двигателя внутреннего сгорания.Поршни бензиновых двигателей обычно легче и короче по сравнению с поршнями дизельных двигателей. Геометрия поршня имеет множество тонкостей из-за сложности его рабочей среды, но основными частями поршня являются:

  • поршень головка , также называемая верхняя часть или головка : верхняя часть поршня который вступает в контакт с давлением газа в камере сгорания
  • кольцевой ремень : верхняя средняя часть поршня, когда поршневые кольца расположены
  • выступ штифта : нижняя средняя часть поршня который содержит поршневой палец
  • юбка поршня : область под кольцевым ремнем

Изображение: оси поршневого пальца и юбки

Изображение: Основные части поршня
Кредит: [3]

где:

  1. верхняя часть поршня
  2. верхняя площадка
  3. кольцевой ремень
  4. распорки
  5. фиксатор штифта
  6. выступ штифта
  7. поршневой палец
  8. поршневые кольца
  9. юбка поршня

Поршень соединен с шатуном через поршневой палец (7).Штифт позволяет поршню вращаться вокруг оси штифта. Штифт удерживается в поршне с помощью фиксатора пальца (5).

После днища поршня доходит до кольцевого ремня (также называемого кольцевой зоной) (3). Большинство поршней имеют три кольцевые канавки, в которые устанавливаются поршневые кольца. Верхнее кольцо называется компрессионным кольцом , среднее — скребковым кольцом , а нижнее кольцо масляным регулировочным кольцом . Компрессионное кольцо должно герметизировать камеру сгорания, чтобы предотвратить утечку внутренних газов в блок двигателя.Маслоуправляющее кольцо соскабливает масло со стенок цилиндра, когда поршень находится на рабочем или выпускном такте. Среднее кольцо выполняет комбинированную функцию обеспечения сжатия в цилиндре и удаления излишков масла со стенок цилиндра.

Юбка поршня (8) удерживает поршень в равновесии внутри цилиндра. Обычно он покрывается материалом с низким коэффициентом трения, чтобы уменьшить потери на трение. В отверстии для пальца или втулки (6) поршня находится поршневой палец (7), который соединяет поршень с шатуном.

Вернуться назад

Геометрические характеристики

Поршни должны правильно работать в широком диапазоне температур, от -30 ° C до 300-400 ° C. В то же время он должен быть достаточно легким, чтобы иметь низкую инерцию и обеспечивать высокие обороты двигателя. Ниже представлена ​​пара геометрических характеристик поршня.

Овальность поршня

Из-за процесса сгорания температура внутри цилиндров двигателя достигает сотен градусов Цельсия.Поршень является одним из основных компонентов, который поглощает часть выделяемого тепла и отводит его в моторное масло. Поскольку ось поршневого пальца содержит больше материала, чем ось юбки, тепловое расширение вдоль оси пальца немного выше, чем тепловое расширение вдоль оси юбки. По этой причине поршень имеет овальную форму, диаметр по оси пальца на 0,3-0,8% меньше диаметра по оси юбки [6].

Изображение: Овальность поршня

Коническая форма поршня

Форма поршня не идеальна для цилиндра.При низкой температуре зазор между поршнем и цилиндром двигателя больше по сравнению с высокими температурами. Кроме того, зазор не является постоянным по длине поршня, он меньше вокруг верхней части поршня по сравнению с областью юбки поршня. Это необходимо для большего теплового расширения головки поршня, поскольку она содержит больший объем металла.

Изображение: Зазор поршня (коническая форма)

Изображение: Тепловое расширение поршня (если цилиндрическая форма)

Смещение поршневого пальца

Движение поршня внутри цилиндра имеет 3 градуса свободы, 1 первичный и 2 вторичных:

  • по вертикальной оси цилиндра, между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ) (основная, ось Y)
  • вокруг Ось пальца (вторичная, α — угол)
  • вдоль оси юбки (вторичная, ось x)

Первичное движение создает крутящий момент на коленчатом валу, это желательно с механической точки зрения.Вторичные движения происходят из-за комбинации нескольких факторов: двунаправленного движения шатуна и зазора между поршнем и цилиндром. Оба вторичных движения вызывают трение о стенки цилиндра, а также шум, вибрацию (удар поршня).

Изображение: Осевое усилие поршня и смещение пальца

Когда коленчатый вал вращается по часовой стрелке, левая сторона цилиндра называется осевой стороной (TS) , а противоположная сторона — противоприводной стороной (ATS). .Удары поршня могут происходить с любой стороны цилиндра. Удар поршня возбуждает блок двигателя и проявляется в виде поверхностных вибраций, которые в конечном итоге излучаются в виде шума вблизи двигателя [9]. Еще одно неудобство заключается в том, что когда поршень движется через ВМТ и ВТС, на коленчатый вал создается повышенная нагрузка, поскольку поршень совмещен с центром вращения коленчатого вала.

Смещение поршневого пальца — это несоосность между центром отверстия поршневого пальца и центром коленчатого вала.За счет этого в конструкции улучшаются шумовые характеристики двигателя из-за ударов поршня в ВМТ. Это основная проблема NVH (шумовая вибрация и резкость) для инженеров-технологов, которые хотят устранить тревожные шумы везде, где они могут. Вторая причина — повышение мощности двигателя за счет уменьшения внутреннего трения в TS и ATS.

Смещение пальца снижает механическое напряжение, возникающее в соединительной штанге, когда она достигает ВМТ или НМТ, поскольку шатун не должен хлопать поршнем в противоположном направлении в конце хода.Это смещение заставляет стержень перемещаться по дуге в ВМТ и НМТ.

Вернуться

Механическая нагрузка

Поршень является составной частью двигателя внутреннего сгорания (ДВС) (ДВС) , который должен выдерживать наибольшие механические и термические нагрузки. Из-за поршня мощность ДВС ограничена. В случае очень высокой термической или механической нагрузки поршень выходит из строя первым (по сравнению с блоком цилиндров, клапанами, головкой блока цилиндров). Это связано с тем, что поршень должен быть компромиссом между массой и устойчивостью к механическим и термическим нагрузкам.

Циклическое нагружение поршня из-за [6]:

  • сила газа от давления в цилиндре
  • сила инерции от колебательного движения поршня и
  • поперечная сила от опоры силы газа наклонным шатуном, а сила инерции колеблющегося шатуна

определяет механическую нагрузку .

Вертикальные силы, действующие на поршень, состоят из: сил давления, , создаваемых расширяющимися газами, и сил инерции, , создаваемых собственной массой поршня [10].

\ [F_ {p} = F_ {gas} + F_ {ineria} \]

Силы инерции намного меньше сил давления и имеют наибольшую интенсивность, когда поршень меняет направление, в ВМТ и НМТ.

Изображение: Напряжение поршня по Мизесу и механическая деформация
Кредит: [7]

Изображение: Вертикальные силы поршня зависят от угла поворота коленчатого вала
Кредиты: [7]

Вышеуказанные силы поршня рассчитываются с использованием передовых методов анализа методом конечных элементов для алюминиевого поршня, используемого в легковых автомобилях с дизельным двигателем [7].

Процесс сгорания имеет разные характеристики для дизельного и бензинового ДВС. В дизельном двигателе пиковое давление газа при сгорании может достигать 150–160 бар. В бензиновом двигателе максимальное давление ниже 100 бар. Из-за более высокого давления поршни дизельного двигателя должны выдерживать более высокие механические нагрузки.

Чтобы работать без сбоев в таких суровых условиях, поршни дизельных двигателей конструируются более тяжелыми, прочными и имеют большую массу.Недостатком является более высокая инерция, более высокие динамические силы, поэтому максимальная частота вращения двигателя ниже. Одна из причин, по которой дизельные двигатели имеют более низкую максимальную скорость (около 4500 об / мин) по сравнению с бензиновыми двигателями (около 6500 об / мин), — это более тяжелые механические компоненты (поршни, шатуны, коленчатый вал и т. Д.).

Вернуться

Тепловая нагрузка

Головка поршня находится в прямом контакте с горючими газами внутри камеры сгорания, поэтому подвергается высоким термическим и механическим нагрузкам .В зависимости от типа двигателя (дизельный или бензиновый) и типа впрыска топлива (прямой или непрямой) головка поршня может быть плоской или содержать чашу .

Тепловая нагрузка от температуры газа в процессе сгорания также является циклической нагрузкой на поршень. Он действует в основном во время такта расширения на поршне со стороны камеры сгорания. В других тактах, в зависимости от принципа работы, тепловая нагрузка на поршень уменьшается, прерывается или даже имеет охлаждающий эффект во время газообмена.Как правило, передача тепла от горячих дымовых газов к поршню происходит в основном за счет конвекции, и лишь небольшая часть является результатом излучения.

Изображение: Рабочие температуры поршня
Предоставлено: [3]

Тепло, выделяемое при сгорании, частично поглощается поршнем. Большая часть тепла передается через площадь кольца поршня (около 70%). Юбка поршня отводит 25% тепла, а остальное передается дальше на поршневой палец, шатун и масло.Более высокая частота вращения двигателя означает более высокую температуру поршня . Это происходит потому, что накопленное тепло не успевает рассеяться между двумя последовательными циклами сгорания. В то же время более высокая нагрузка на двигатель означает более высокую температуру поршня, потому что при этом сгорает больше воздушно-топливной смеси, которая выделяет больше тепла.

Изображение: Распределение температуры в поршне бензинового двигателя
Кредит: [6]

Изображение: Распределение температуры в поршне дизельного двигателя с каналом охлаждения
Кредит: [6]

Изображение: Тепловая нагрузка поршня
Кредит: [7]

Что касается такта расширения, продолжительность действия тепловой нагрузки от сгорания очень мала.Следовательно, только очень небольшая часть составляющей массы поршня, вблизи поверхности на стороне сгорания, следует за циклическими колебаниями температуры. Таким образом, почти вся масса поршня достигает квазистатической температуры, которая, однако, может иметь значительные локальные изменения.

Вернуться назад

Охлаждение

По мере увеличения удельной мощности в современных двигателях внутреннего сгорания поршни подвергаются возрастающим тепловым нагрузкам. Поэтому эффективное охлаждение поршня требуется чаще, чтобы обеспечить безопасность эксплуатации.

Изображение: 2009 Ecotec 2.0L I-4 VVT DI Turbo (LNF) Головка поршня и масляная форсунка
Кредит: GM

Температуру поршня можно снизить за счет циркуляции масла в средней части поршня. Это может быть достигнуто с помощью маслоструйных устройств, установленных на блоке цилиндров, которые впрыскивают моторное масло через отверстие, когда поршень находится близко к нижней мертвой точке (НМТ).

Компания Tenneco Powertrain разработала новый стальной поршень для дизельных двигателей с «герметичной на весь срок службы» охлаждающей камерой в головке, что позволяет поршням безопасно работать при температурах в головке более чем на 100 ° C выше, чем существующие ограничения.

Изображение: технология охлаждения поршня EnviroKool
Кредит: Tenneco

Для формирования коронки EnviroKool внутри поршня с помощью сварки трением создается цельный охлаждающий канал, который затем заполняется высокотемпературным маслом и инертным газом. Эта камера постоянно закрыта приварной заглушкой. Согласно Tenneco Powertrain, технология EnviroKool позволяет преодолеть температурные ограничения обычных открытых галерей, в которых в качестве теплоносителя используется смазочное масло.

Назад

Типы

Геометрия поршня ограничена из-за кубатуры ДВС. Поэтому основной способ повышения механического и термического сопротивления поршня — увеличение его массы. Это не рекомендуется, потому что поршень с большой массой имеет большую инерцию, которая преобразуется в высокие динамические силы, особенно при высоких оборотах двигателя. Сопротивление поршня можно улучшить за счет оптимизации геометрии, но всегда будет компромисс между массой, механическим и термическим сопротивлением.

На первый взгляд поршень кажется простым компонентом, но его геометрия довольно сложна:

Изображение: Техническое описание дизельного поршня
Кредит: Kolbenschmidt

Изображение: Техническое описание бензинового поршня
Кредит: Kolbenschmidt

Условные обозначения:

  1. Диаметр чаши
  2. днище поршня
  3. камера сгорания (чаша)
  4. кромка днища поршня
  5. верхняя площадка поршня
  6. канавка под компрессионное кольцо
  7. посадочная площадка кольца
  8. основание канавки
  9. углубление под кольцо
  10. стороны канавки
  11. канавка маслосъемного кольца
  12. отверстие возврата масла
  13. выступ поршневого пальца
  14. расстояние до канавки
  15. канавка для стопорного кольца
  16. расстояние до ступицы поршня
  17. расстояние до ступицы поршня
  18. ступенчатая кромка
  19. диаметр поршня 90 ° C снова проход поршневого пальца
  20. отверстие поршневого пальца
  21. глубина чаши
  22. юбка
  23. зона кольца
  24. высота сжатия поршня
  25. длина поршня
  26. канал маслоохладителя
  27. держатель кольца
  28. втулка болта
  29. измерительное окно диаметра
  30. развала короны

Как видите, между дизельными и бензиновыми поршнями есть существенные различия.

Поршни дизельного двигателя должны выдерживать более высокие давления и температуры, поэтому они больше, крупнее и тяжелее. Они могут быть изготовлены из алюминиевых сплавов, стали или их комбинации. Поршень дизеля содержит часть камеры сгорания в головке поршня. Из-за формы поперечного сечения головки поршня поршень дизельного двигателя также называют поршнем с головкой омега.

Поршни бензиновых двигателей легче и предназначены для более высоких оборотов двигателя.Они изготавливаются из алюминиевых сплавов и обычно имеют плоскую головку. Бензиновые двигатели с непосредственным впрыском (DI) имеют специальные головки, чтобы направлять поток топлива качающимся движением.

Ниже вы можете увидеть несколько изображений дизельных и бензиновых (бензиновых) двигателей в высоком разрешении.

Изображение: LS9 6.2L V-8 SC поршень (алюминий, бензин / бензиновый двигатель с непрямым впрыском)
Кредит: GM

Изображение: Ecotec 2.0L I-4 VVT DI Turbo (LNF) поршень (алюминиевый, бензиновый / бензиновый двигатель с прямым впрыском)
Кредит: GM

Изображение: Поршень дизельного двигателя автомобиля с кольцами (алюминий, дизель)
Кредит: Kolbenschmidt

Изображение: Поршень из моностали (сталь, дизель) )
Кредит: Tenneco

Назад

Материалы

Большинство поршней для автомобильной промышленности изготавливаются из алюминиевых сплавов .Это потому, что алюминий легкий, обладает достаточной механической прочностью и хорошей теплопроводностью. Существуют тяжелые применения, коммерческие автомобили, в которых используются поршни из стали , которые более устойчивы к более высоким давлениям и температурам в камере сгорания.

Алюминиевые поршни производятся из литых или кованых жаропрочных алюминиево-кремниевых сплавов. Есть три основных типа алюминиевых поршневых сплавов. Стандартный поршневой сплав представляет собой эвтектический сплав Al-12% Si, содержащий дополнительно ок.По 1% каждого из Cu, Ni и Mg [3].

Основными алюминиевыми сплавами для поршней являются [3]:

  • эвтектический сплав (AlSi12CuMgNi): литой или кованый
  • заэвтектический сплав (AlSi18CuMgNi): литой или кованый
  • специальный эвтектический сплав (AlSi12Cu4Ni2Mg только

    , потому что

, только , , , , ). алюминиевый сплав имеет более низкую прочность, чем чугун, поэтому необходимо использовать более толстые секции, поэтому не все преимущества легкого веса этого материала реализуются. Кроме того, из-за более высокого коэффициента теплового расширения алюминиевые поршни должны иметь больший рабочий зазор.С другой стороны, теплопроводность алюминия примерно в три раза выше, чем у железа. Это, вместе с большей толщиной используемых секций, позволяет алюминиевым поршням работать при температурах примерно на 200 ° C ниже, чем чугунные [8].

В некоторых случаях прочность и износостойкость поршней из алюминиевого сплава недостаточны для удовлетворения требований по нагрузке, поэтому используются черные материалы (например, чугун, сталь). Существует несколько методов использования черных металлов в производстве поршней:

  • в качестве местной арматуры, вставок из черных металлов (т.е.g., держатели колец)
  • в виде удлиненных частей композитных поршней (например, днища поршня, болтов)
  • поршней, полностью изготовленных из чугуна или кованой стали

Изображение: композитный поршень для тяжелого двигателя — поперечное сечение
Кредит: [8]

Изображение: Поршень композитной конструкции для судовых дизельных двигателей
Кредит: Warstila

В поршнях и поршнях используются два типа черных металлов компоненты [6]:

  • чугун :
    • аустенитный чугун для держателей колец
    • чугун с шаровидным графитом для поршней и юбок поршней
  • сталь
    • хромомолибденовый сплав (42CrMo4)
    • хром-молибден-никелевый сплав (34CrNiMo6)
    • молибден-ванадиевый сплав (38MnVS6)

Cas • Железные материалы обычно имеют содержание углерода> 2%.Поршни в высоконагруженных дизельных двигателях и другие высоконагруженные компоненты двигателей и конструкции машин преимущественно изготавливаются из сферолитического чугуна M-S70. Этот материал используется, например, для изготовления цельных поршней и юбок поршней в композитных поршнях [6].

Сплавы железа, обозначенные как стали, обычно имеют содержание углерода менее 2%. При нагревании они полностью превращаются в ковкий (пригодный для ковки) аустенит. Поэтому сплавы железа отлично подходят для горячей штамповки, такой как прокатка или ковка.

Изображение: Стальной поршень против алюминиевого поршня
Кредит: Kolbenschmidt

По сравнению с алюминиевыми поршнями, стальные поршни обладают большей механической прочностью при гораздо меньшем размере. По этой причине они в основном предпочтительны для дизельных двигателей, которыми оснащаются грузовые автомобили.

Вернуться назад

Technologies

Существует несколько передовых поршневых технологий, каждая из которых имеет целью увеличить механическое и / или термическое сопротивление, снизить коэффициент трения или общую массу (сохраняя в то же время механические и термические свойства. ).

Ниже вы можете найти примеры современных поршней, производимых на заводе Kolbenschmidt , каждый с уникальными технологиями.

Изображение: Поршень дизеля с охлаждающим каналом, втулкой болта и держателем кольца
Кредит: Kolbenschmidt

Изображение: Шарнирно-сочлененный поршень дизеля с кованной верхней стальной частью и алюминиевой юбкой
Кредит: Kolbenschmidt

Изображение: Поршень бензинового двигателя в облегченной конструкции LiteKS® с держателем кольца
Кредит: Kolbenschmidt

Изображение: Литые держатели колец из чугуна многократно увеличивают долговечность первой кольцевой канавки дизельных поршней.Kolbenschmidt является лидером в разработке соединения Alfin с держателем кольца
Кредит: Kolbenschmidt

Изображение: Канавки под кольцо с твердым анодированием предотвращают износ и микросварку поршней для бензиновых двигателей
Кредит: Kolbenschmidt

Изображение: Поршни KS Kolbenschmidt имеют специальное покрытие LofriKS®, NanofriKS® или графит на юбке поршня. Они уменьшают трение внутри двигателя и обеспечивают хорошие характеристики при аварийной работе. Покрытия LofriKS® также используются по акустическим причинам.Их использование сводит к минимуму шумы от хлопка поршня. NanofriKS® является дальнейшим развитием испытанного и испытанного покрытия LofriKS® и дополнительно содержит наночастицы оксида титана для повышения износостойкости и долговечности покрытия.
Кредит: Kolbenschmidt

Изображение: Юбки поршней с железным покрытием (Ferrocoat ®) гарантируют надежную работу при использовании в алюминиево-кремниевых поверхностях цилиндров (Alusil®).
Кредит: Kolbenschmidt

Изображение: Отверстия поршневого пальца специальной формы (Hi-SpeKS®) повышают динамическую нагрузочную способность станины поршневого пальца, тем самым увеличивая долговечность поршня
Кредит: Kolbenschmidt

Ниже вы можете найти примеры современных поршней, производимых компанией Tenneco Powertrain (ранее Federal Mogul) , каждый из которых основан на уникальных технологиях.

Изображение: Поршень Elastothermic® (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

Характеристики: Поршень с охлаждающим каналом
улучшает мощность и расход топлива уменьшенных бензиновых двигателей
— Канал эластотермического охлаждения снижает температуру днища поршня на около 30 ° C.
— снижение температуры первой кольцевой канавки примерно на 50 ° C, что, в свою очередь, снижает отложение нагара и износ канавок и колец для увеличения срока службы; низкий расход масла и удар на
; — ​​снижение риска неконтролируемого возгорания, такого как предварительное сгорание на низкой скорости. зажигание

Кредит: Tenneco Powertrain (Federal Mogul)

Изображение: Алюминиевые поршни дизельного двигателя

Характеристики:
— оптимизированное расположение каналов для максимального охлаждения может привести к снижению температуры обода барабана до 10%
— улучшенный боковой заброс методы значительно улучшают конструктивную устойчивость (даже с тонкостенными конструкциями)
— реконструкция камеры сгорания wl обод и дно стакана могут обеспечить увеличение усталостной долговечности до 100%

Поршень Monosteel® обеспечивает прочность и охлаждение, чтобы удовлетворить самые жесткие требования к двигателям на рынках тяжелых и промышленных двигателей, включая новое поколение давлений срабатывания двигателя, необходимых для дорожных правил Евро VI и выше.

Прочная конструкция, состоящая из сваренных с помощью инерционной сварки кованых стальных секций, образующих большие охлаждающие галереи, позволяет поршням Monosteel выдерживать возрастающие механические нагрузки. Эволюция Monosteel включает в себя последние разработки для промышленных двигателей с большим диаметром цилиндра, а также использование тонкостенных легких поковок и отливок для дизельных двигателей легковых автомобилей.

Основные характеристики продукта:
— большая закрытая структурная галерея с превосходным охлаждением обода чаши и кольцевой канавки, уменьшающим деформацию канавки и улучшающим контроль масла и газового уплотнения
— профилированное отверстие под палец без втулки
— юбка по всей длине для стабильного поршня динамика, снижение риска кавитации гильзы и улучшение кольцевого уплотнения.
— процесс обеспечивает гибкость материала с возможностью выбора материала коронки для уменьшения коррозии или окисления и / или выбора материала юбки для повышения технологичности.

Кредит: Tenneco Powertrain (Federal Mogul)

Изображение: Поршни с покрытием EcoTough® (алюминиевый поршень для бензиновых / бензиновых легких или тяжелых автомобилей)

Поршень с покрытием EcoTough® обеспечивает важные преимущества, помогающие удовлетворить потребности клиентов в более эффективные конструкции двигателей, в том числе сниженный расход топлива и выбросы CO 2 . Он сочетает в себе низкий износ и низкое трение в одном применении и снижает расход топлива на 0,8% по сравнению с обычными покрытиями поршней.

Ключевые преимущества:
— совместим с существующей и улучшенной обработкой отверстий цилиндров и может быть беспрепятственно введен в серийное производство двигателей в качестве рабочих изменений
— состав обеспечивает большую толщину, чем поршни с обычными покрытиями, обеспечивая дополнительную защиту
— соответствует строгим экологическим стандартам ; не содержит токсичных растворителей.
— запатентованное усовершенствованное покрытие юбки поршня с твердыми смазочными материалами и армированием углеродными волокнами, специально разработанное для тяжелых бензиновых условий.
— Снижение трения в силовом цилиндре (поршень + кольца) на 10% по сравнению сстандартные покрытия, улучшение экономии топлива до 0,4% / сокращение выбросов CO 2 в европейских испытаниях ездового цикла
— уменьшение износа на 40% по сравнению со стандартными бензиновыми покрытиями, повышенная надежность современных бензиновых двигателей с наддувом DI
— EcoTough® — это запатентованное покрытие FM

Предоставлено: Tenneco Powertrain (Federal Mogul)

Изображение: Поршень DuraBowl® (алюминиевый поршень для дизельных легких или тяжелых автомобилей)

Усиление поршня DuraBowl® Особенности частичного переплавления кромки чаши :
— Исключительное улучшение структуры алюминиевого материала, созданное локализованным переплавом с использованием технологии TIG.
— Повышенная долговечность двигателей с высокой удельной мощностью до 4 раз по сравнению с поршнями без переплавки барабана.Допускает форму камеры сгорания, подвергающуюся высоким нагрузкам.
— Технология FM DuraBowl® расширяет пределы алюминиевых поршней в наиболее сложных условиях за счет увеличения усталостной прочности (циклов) поршня

Авторы и права: Tenneco Powertrain (Federal Mogul)

Изображение: Elastoval II сверхлегкие поршни (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

Технология бензиновых поршней Avanced Elastoval® II основана на:
— глубоких карманах под короной
— наклонных боковых панелях
— облегченной конструкции опоры пальца
— тонких стенках 2.5 мм
— оптимизированная площадь юбки и гибкость
— Высокоэффективный сплав FM S2N

Характеристики и преимущества включают:
— снижение веса на 15% по сравнению с бензиновыми поршнями предыдущего поколения
— обеспечивает удельную мощность до 100 кВт / л
— оптимизировано характеристики шума и трения
Совместимость с опцией держателя кольца alfin для увеличения пикового давления в цилиндре и устойчивости к ударам

Кредит: Tenneco Powertrain (Federal Mogul)

Вернуться

Часто задаваемые вопросы

Какие поршни используются за?

Поршни используются в двигателях внутреннего сгорания для передачи усилия на шатун и коленчатый вал, создавая крутящий момент двигателя.Поршни преобразуют давление газа из камеры сгорания в механическую силу.

Что такое поршень и как он работает?

Поршень — это компонент двигателя внутреннего сгорания, сделанный из алюминия или стали, используемый для преобразования давления газа из камеры сгорания в механическую силу, передаваемую на шатун и коленчатый вал.

Из чего сделан поршень?

Поршень может быть изготовлен из цветных металлов, алюминия (Al) или черных металлов, таких как чугун или сталь .

Какие бывают два типа поршневых колец?

Два типа поршневых колец: компрессионных колец и масляных колец.

Какие два основных типа поршневых двигателей?

Двумя основными типами поршневых двигателей являются: дизельный двигатель поршневой и бензиновый (бензиновый) двигатель поршневой. Функция материала, два основных типа поршня: алюминиевый поршень и стальной поршень .

Каков срок службы поршней?

Поршень должен служить в течение всего срока службы автомобиля, если условия эксплуатации являются номинальными (нормальная смазка, регулярное обслуживание двигателя, отсутствие чрезмерной нагрузки, отсутствие чрезмерной температуры). В нормальных условиях эксплуатации поршень должен прослужить не менее 300000 км до 500000 км и более.

Что вызывает отверстия в поршнях?

Обычно аномально высокие температуры вызывают плавление поршней, или детонация двигателя может вызвать трещины в поршнях.Неисправные форсунки могут подавать чрезмерное количество топлива в цилиндры, что может вызвать аномально высокую температуру сгорания и частичное оплавление поршней.

Как узнать, повреждены ли поршни?

Если поршень поврежден, наиболее вероятными симптомами являются: потеря мощности из-за потери сжатия, чрезмерный дым в выхлопе или необычный шум двигателя.

Можно ли починить сломанный поршень?

Сломанный поршень не подлежит ремонту, его необходимо заменить.Поршни имеют очень жесткие геометрические допуски, которые, скорее всего, не будут соблюдены после ремонта. Кроме того, их механические и термические свойства будут изменены после ремонта, что приведет к дальнейшим повреждениям. Сломанный поршень может вызвать серьезные повреждения блока цилиндров, шатуна, клапанов и т. Д. И требует немедленной замены.

Можно ли водить машину с неисправным поршнем?

Вы можете ездить с плохим поршнем, но это не рекомендуется. Повреждение поршня может привести к значительному выходу из строя блока цилиндров, коленчатого вала, шатунов, клапанов и т. Д.Если не заменить поврежденный поршень, это может привести к полному отказу двигателя.

Повредит ли мой двигатель удар поршня?

Удар поршня повредит двигатель, оставьте без присмотра. Удар поршня в течение длительного времени приведет к повреждению гильзы цилиндра и самого поршня.

Уходит ли поршень при нагревании?

Поршень частично уходит, когда двигатель прогрет. Удар поршня возникает из-за чрезмерного износа гильзы цилиндра или самого поршня.Когда двигатель нагревается, поршень имеет тепловое расширение, и зазор между поршнем и цилиндром уменьшается, что приводит к уменьшению ударов поршня.

Могу ли я ехать с хлопком поршня?

Можно ездить с хлопком поршня, но долго водить не рекомендуется. Удар поршня вызовет износ самого поршня и гильзы цилиндра. Удар поршня также может вызвать трещины в поршне, что может привести к полному отказу двигателя, если его оставить без присмотра.

Что вызывает износ юбки поршня?

Износ юбки поршня вызван недостаточной смазкой гильзы цилиндра маслом.В нормальном рабочем состоянии система смазки разбрызгивает масло на цилиндры, чтобы избежать прямого контакта между юбкой поршня и цилиндром. При неисправности системы смазки или недостаточном уровне масла на стенках цилиндра будет недостаточно масла, и юбка поршня будет значительно изнашиваться.

Для любых вопросов, замечаний и запросов по этой статье используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Назад

Ссылки

[1] Клаус Молленхауэр, Хельмут Чоеке, Справочник по дизельным двигателям, Springer, 2010.
[2] Хироши Ямагата, Наука и технология материалов в автомобильных двигателях, Woodhead Publishing in Materials, Кембридж, Англия, 2005.
[3] The Aluminium Automotive Manual, European Aluminium Association, 2011.
[4] Heisler, Heinz , Технология транспортных средств и двигателей, Общество автомобильных инженеров, 1999.
[5] QinZhaoju et al., Моделирование термомеханической муфты поршня дизельного двигателя и многопрофильная оптимизация конструкции, Примеры из теплотехники, Том 15, ноябрь 2019.
[6] Испытания поршней и двигателей, Mahle GmbH, Штутгарт, 2012 г.
[7] Скотт Кеннингли и Роман Моргенштерн, Термическая и механическая нагрузка в области камеры сгорания легковых дизельных поршней из AlSiCuNiMg; Пересмотрено с акцентом на расширенный анализ методом конечных элементов и инструментальные методы тестирования двигателей, Federal Mogul Corporation, SAE Paper 2012-01-1330.
[8] T.K. Гарретт и др., Автомобиль, 13-е издание, Баттерворт-Хайнеманн, 2001.
[9] Н. Долатабади и др., Об идентификации событий ударов поршня в двигателях внутреннего сгорания с использованием трибодинамического анализа, Механические системы и обработка сигналов, Том 58 –59, июнь 2015 г., страницы 308-324, Elsevier, 2014.
[10] Клаус Молленхауэр и Гельмут Чоеке, Справочник по дизельным двигателям, Springer-Verlag Berlin Heidelberg, 2010.

Поршень: конструкция, функции, материалы и качество

Какие типы поршней в двигателях?

Поршень является основной частью двигателей внутреннего сгорания. Он имеет возвратно-поступательное движение и преобразует тепловую энергию в механическую. Когда двигатель вырабатывает мощность, он перемещается вверх и вниз внутри цилиндра. Назначение поршня — выдерживать расширение газов и направлять их к коленчатому валу.Он передает силу взрыва на коленчатый вал и, в свою очередь, вращает его. Поршень снабжен кольцами, которые обеспечивают уплотнение между ним и стенкой цилиндра. Это довольно сложно с точки зрения дизайна.

Поршень с плоской головкой

Эффективность и экономичность двигателя в первую очередь зависят от плавности работы поршня. Он должен работать в цилиндре с минимальным трением и выдерживать высокие взрывные силы в цилиндре. Кроме того, он также должен выдерживать очень высокую температуру более 2000 ° C во время работы.Он должен быть максимально прочным, а его вес — как можно меньшим.

Функции поршня следующие:

  1. Принимать тягу от взрыва и передавать усилие на коленчатый вал через шатун.
  2. Действует как уплотнение, предотвращающее попадание высокого давления сгорания в картер.
  3. Служит направляющей и подшипником для малого конца шатуна.

Он также должен обладать следующими необходимыми качествами:

  1. Жесткость, выдерживающая высокое давление.
  2. Легче, чтобы свести к минимуму силы инерции и обеспечить более высокие обороты двигателя.
  3. Бесшумность при прогреве и нормальной работе.
  4. Конструкция не должна допускать заедания.
  5. Материал должен иметь хорошую теплопроводность для эффективной передачи тепла. Это снижает риск детонации и обеспечивает более высокую степень сжатия.
  6. Его материал также должен иметь низкую способность к расширению.
  7. Обеспечивает стойкость к коррозии при горении.
  8. Он должен быть как можно короче, чтобы уменьшить общий объем двигателя.
  9. Должен иметь долгий срок службы.

Дизайн:

Конструкция поршня варьируется от двигателя к двигателю. Во многом это зависит от конструкции головки блока цилиндров. Верх поршня называется головкой или головкой. Как правило, недорогие двигатели с низкой производительностью имеют поршень с плоской головкой. Однако в некоторых случаях, когда поршень подходит очень близко к клапанам, инженеры обеспечивают сброс клапана в короне.Поршни, используемые в некоторых высокопроизводительных двигателях, имеют приподнятый купол, который увеличивает степень сжатия и регулирует сгорание.

Формы головки

В некоторых двигателях используются поршни с особенно выпуклой поверхностью для создания желаемой формы камеры сгорания вместе с головкой блока цилиндров. В случае, если в короне находится часть камеры сгорания, можно более точно контролировать степень сжатия. Однако у этой конструкции есть недостаток. В этой конструкции через поршень и кольца проходит большое количество тепла.

Земли:

В верхней части поршня по окружности прорезаны канавки, подходящие для поршневых колец. Полосы между канавками известны как «земли». Роль земель — поддерживать кольца против давления газа. Площадки также направляют кольца, так что они свободно вращаются в круговом направлении. Опорные перемычки передают силу взрыва непосредственно от днища на бобышки поршневых пальцев. Это снимает большие нагрузки с кольцевых канавок.

Дизайн и конструкция

Юбка:

Часть под поршневыми кольцами известна как «юбка».Его роль — формировать направляющую и поглощать боковую тягу, создаваемую давлением газа. Юбка имеет с внутренней стороны выступы для поддержки поршневого пальца. Он довольно плотно помещается в цилиндр; однако он отделен от стенок цилиндра смазочным маслом. Силы сгорания передаются от головки к шатуну через перемычки внутри поршня. Бобышки действуют как опорная поверхность для качательного движения шатуна. Толстые перемычки передают тепло от днища поршня к бобышкам и юбке поршневого пальца.

Более ранние двигатели использовали чугун из-за его износостойкости. Однако в современных двигателях для уменьшения веса поршней используется алюминиевый сплав, содержащий кремний. Он в три раза легче алюминия, поэтому имеет меньшую инерцию. Алюминиевый сплав обладает высокой теплопроводностью, что позволяет ему охлаждаться.

Зазор поршня:

Обычно диаметр поршня немного меньше диаметра отверстия цилиндра. Пространство между поршнем и стенкой цилиндра называется зазором поршня.Этот допуск необходим по следующим причинам.

  1. Обеспечивает пространство для пленки смазки для уменьшения трения между поршнем и стенкой цилиндра.
  2. Предотвращает заедания. Поршень и блок цилиндров расширяются из-за очень высоких температур. Однако цилиндр охлаждается лучше, чем поршень. Следовательно, между ними должен быть достаточный зазор для расширения поршня.
  3. Без достаточного зазора поршень не сможет работать в цилиндре; снижение его эффективности.

Величина зазора зависит от размера отверстия цилиндра и материала поршня. Но обычно это 0,025-0,100 мм. При работе пленка смазочного масла заполняет зазоры. При ремонте двигателя техники должны поддерживать надлежащий зазор между поршнем и цилиндром.

Тепловая дамба

Эффекты очистки:

Если зазор слишком мал, увеличивается трение; что приводит к потере мощности. Если зазор слишком большой, это приведет к «хлопку поршня».Это означает внезапное сотрясение поршня, когда он опускается во время рабочего хода; вызывая отчетливый шум. По мере прогрева двигателя этот зазор уменьшается, и шум обычно исчезает. Производители используют специальные сплавы и разные конструкции для уменьшения пощечины.

Mahle, Diamond, CP Carrillo, Ross и Arias — одни из мировых производителей поршней.

Смотреть поршневой Mahle в действии:

Подробнее: конструкция блока цилиндров

О CarBikeTech

CarBikeTech — это технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

различных тактов: двигатели внутреннего сгорания по-прежнему доставляют

Предсказания о прекращении производства двигателей внутреннего сгорания (ДВС) имеют долгую историю. Постоянно растущее количество гибридных и полностью электрических транспортных средств на дорогах, так сказать, только подлило масла в огонь.Но в то время как скептики пытались решить, сколько еще лет осталось ICE, инженеры и провидцы из нескольких разных компаний искали способы продлить его жизнь в будущем. Они достигли этого, полностью переосмыслив, как работает ICE и как он выглядит.

В этой статье мы рассмотрим новые технологии, разработанные этими компаниями. Простые рядные или V-образные поршневые двигатели в эту группу однозначно не входят. Остается только догадываться, сколько (или вообще какие-либо) из этих дизайнов когда-либо попадут в серийный автомобиль, который вы увидите в своем магазине.А пока интересно посмотреть, как далеко вы можете зайти с воздухом, небольшим количеством топлива и большой изобретательностью.

EcoMotors International ( www.ecomotors.com ) разработала двигатель с оппозитными поршнями и оппозитными цилиндрами (OPOC), который будет работать на различных видах топлива, включая бензин, дизельное топливо и этанол. Оригинальная конструкция двигателя OPOC имеет долгую историю, восходящую к первому десятилетию прошлого века, когда на нем устанавливались французские легковые автомобили Gobron-Brillié.Позднее эта конструкция использовалась в двигателях подводных лодок и локомотивов Fairbanks Morse, двигателях Grey Marine и Detroit Diesel, а также в двигателях немецких самолетов Junker во время Второй мировой войны.

Двигатель EcoMotors OPOC представляет собой двухтактный, горизонтально-оппозитный, двухконтурный, четырехпоршневой двигатель. В каждом отверстии цилиндра находится по два поршня. Внутренний набор поршней прикреплен непосредственно к коленчатому валу, и они работают почти так же, как и в традиционном поршневом двигателе. Внешний набор поршней прикреплен к коленчатому валу с помощью длинных титановых шатунов, которые прикреплены к подшипнику в задней части каждого поршня.Наружные поршни отражают движение внутренних поршней, двигаясь к коленчатому валу, когда внутренние поршни удаляются от него.

Впуск и выпуск обрабатываются аналогично обычному двухтактному дизельному двигателю — внешний нагнетатель воздуха (нагнетатель или турбонагнетатель) нагнетает воздух в цилиндр через отверстия на одной стороне гильзы цилиндра. Когда поршни двигаются, порты закрываются, и воздух сжимается между двумя сходящимися поршнями. Топливо впрыскивается напрямую, и смесь может воспламеняться от искры или воспламенения от сжатия, в зависимости от используемого топлива.Выхлоп удаляется через отверстия на другой стороне отверстия цилиндра, когда они открываются в конце хода поршня.

Поскольку событие сгорания происходит в середине отверстия цилиндра между двумя подвижными поршнями, существует большая площадь поверхности, на которую влияет давление сгорания. Следовательно, большая часть энергии, выделяемой при сгорании, преобразуется в механическую силу. В результате получается двигатель, удельная мощность которого выше, чем у традиционного двигателя (более одной лошадиных сил на фунт веса двигателя).

Эта конструктивная конфигурация также устраняет необходимость в компонентах головки блока цилиндров и клапанного механизма обычных двигателей, предлагая компактную и простую конструкцию основного двигателя. Фактически, деталей на 50% меньше, чем на обычном двигателе. Благодаря возвратно-поступательному действию поршней все силы двигателя противодействуют друг другу, что снижает уровень шума и вибрации.

Если требуется больше мощности, можно соединить вместе дополнительные модули, а затем по желанию разделить их с помощью электронного механизма сцепления.Эта функция переменного рабочего объема позволяет удвоить выходную мощность, когда это необходимо для более крупных транспортных средств, а затем отключать, когда она больше не нужна, чтобы обеспечить значительную экономию топлива. Производитель заявляет о семействе двигателей, которые легче, эффективнее и экономичнее обычных двигателей, с меньшими выбросами выхлопных газов.

Pinnacle Engines ( www.pinnacle-engines.com ) использует другой подход к конструкции двигателя с оппозитными поршнями (OP). Парные поршни, обращенные друг к другу внутри общих цилиндров, по-прежнему используются, но вместо одного коленчатого вала используется два.Они находятся снаружи горизонтально расположенного двигателя и синхронно движут парные поршни навстречу друг другу. Два коленчатых вала соединены друг с другом, чтобы все было синхронизировано.

Как и двигатель EcoMotors OPOC, конструкция OP компании Pinnacle Engines не требует головки блока цилиндров или клапанного механизма. И, как и многое другое в автомобильной промышленности, если вы посмотрите достаточно далеко, вы обнаружите, что эта конструкция была опробована и раньше (авиационные двигатели времен Второй мировой войны).

Отличие состоит в том, что компания взяла эту четырехтактную архитектуру с искровым зажиганием (SI), оппозитно-поршневой, втулочно-клапанной и добавила так называемый цикл Кливза, названный в честь Монти Кливза, основателя и главного технического директора компании.Управление золотниковым клапаном двигателя позволяет двигателю обеспечивать сгорание по циклу Отто (сгорание с постоянным объемом) или по дизельному циклу (сгорание с постоянным давлением), в зависимости от условий эксплуатации и имеющегося топлива.

Помимо устранения необходимости в обычном клапанном редукторе, требуется половина общего количества компонентов системы зажигания и впрыска по сравнению с обычным оппозитным двигателем, поскольку два поршня имеют общий канал. Модульная конструкция двигателя легко масштабируется в зависимости от требуемой выходной мощности.

Считается, что конструкция совместима с большинством видов топлива, включая бензин, дизельное топливо, природный газ, пропан и их заменители биотоплива (например, этанол). По словам производителя, дополнительного повышения эффективности можно достичь за счет включения регулируемых фаз газораспределения, механизма переменной степени сжатия, прямого впрыска и турбонаддува. Компания заявляет о повышении топливной эффективности от 30% до 50%. Также утверждается, что за счет точного управления тепловым циклом сокращаются выбросы выхлопных газов.

Компания Achates Power ( www.achatespower.com ) разработала двухтактный дизельный двигатель с оппозитными поршнями, в котором используются два поршневых поршня на цилиндр. Как и другие конструкции с оппозитными поршнями, двигатель Achates Power не требует головок цилиндров, которые являются основным источником тепловых потерь в обычных двигателях. Порты в стенках цилиндров двигателя заменяют тарельчатые клапаны и клапанные механизмы, создающие трение, в обычных двигателях. Впускные отверстия на одном конце цилиндра и выпускные отверстия на другом активируются движением поршня и обеспечивают эффективное удаление воздуха.

Компания утверждает, что ее собственная конструкция цилиндра и поршня обеспечивает повышение эффективности сгорания и расхода масла, что соответствует самым строгим нормам по выбросам. Утверждается, что в сочетании с преимуществом теплового КПД, присущим двигателям с оппозитными поршнями, его конструкция обеспечивает значительное снижение расхода топлива по сравнению с обычными четырехтактными двигателями с воспламенением от сжатия. Использование двухтактного воспламенения от сжатия позволит использовать возобновляемые виды топлива второго поколения, полученные из соевых бобов, биомассы, водорослей и других источников.

Группа компаний Scuderi ( www.scuderigroup.com ) разработала двигатель с разделенным циклом, который разделяет четыре такта цикла сгорания между двумя цилиндрами. Один цилиндр обрабатывает такты впуска и сжатия (цилиндр компрессора), а другой отвечает за такты мощности и выпуска (цилиндр расширителя).

За счет разделения четырех тактов между двумя цилиндрами двигатель может производить один цикл сгорания на один оборот коленчатого вала, как и двухтактный двигатель.Кроме того, отделив цилиндр сжатия от силового цилиндра, можно уменьшить размер цилиндра компрессора, чтобы исключить некоторую отрицательную работу такта сжатия. Мощность двигателя — это разница между положительной работой, производимой рабочим ходом, и отрицательной работой, потребляемой в течение остальной части цикла.

Турбонагнетатель с приводом от выхлопных газов нагнетает максимальный объем воздуха в цилиндр компрессора. После дальнейшего сжатия поршнем компрессора воздух передается между парными цилиндрами через переходной канал.Полностью регулируемые переключающие клапаны, открывающиеся наружу, регулируют поток сжатого воздуха из первого цилиндра во второй. В нужный момент топливо может впрыскиваться напрямую в цилиндр детандера или впрыскиваться в наддувочный воздух во время передачи в цилиндр детандера через переходной канал.

Поскольку сжатый воздух передается в цилиндр детандера из переходного канала, звуковой поток и высокая турбулентность улучшают смешивание топлива с воздухом и способствуют стабильному, надежному сгоранию.Результирующая скорость пламени необычайно высокая, с продолжительностью горения от 10% до 90% при угле поворота коленвала всего 12 °. Чрезвычайно быстрое сгорание и поздняя подача топлива обеспечивают высокую характеристику предотвращения детонации, а быстрое расширение во время сгорания снижает выбросы NOX — значительно ниже уровня обычного двигателя — без использования рециркуляции выхлопных газов (EGR).

Цикл Миллера был первоначально разработан для увеличения теплового КПД четырехтактного двигателя с наддувом за счет уменьшения такта сжатия по сравнению с тактом расширения.Это было достигнуто за счет использования стратегии фаз газораспределения, которая закрывала впускной клапан раньше, чем поршень достиг своей нижней мертвой точки (НМТ). Стратегия раннего выбора времени эффективно сократила ход сжатия без сокращения хода расширения.

Однако из-за преждевременного закрытия впускного клапана событие клапана не может быть оптимально рассчитано по времени для обеспечения максимальной объемной эффективности, и часть доступного рабочего объема не может быть использована. Кроме того, при преждевременном закрытии клапана событие клапана происходит, когда скорость поршня и скорость воздуха высоки, как и связанные с этим насосные потери.

Вместо смещения момента закрытия впускного клапана (IVC) расширенное расширение в двигателе с разделенным циклом Scuderi достигается за счет уменьшения фиксированного рабочего объема цилиндра компрессора по сравнению с фиксированным рабочим объемом цилиндра расширителя. Путем дифференцирования размеров цилиндров IVC синхронизируется с периодом низкой скорости поршня, когда может быть достигнуто оптимальное состояние захваченной массы и можно избежать насосных потерь.

В двигателе с разделенным циклом Scuderi также используется резервуар для сжатого воздуха, в котором накапливается энергия сжатого воздуха, вырабатываемая цилиндром компрессора в периоды низкой нагрузки, и используется ее для выработки энергии в периоды высокой нагрузки.Эта технология может использоваться для уменьшения размера и веса двигателя, увеличения удельной мощности и крутящего момента, а также снижения расхода топлива и выбросов.

По словам производителя, в отличие от любой другой технологии поршневого ДВС, технология разделения цикла двигателя Scuderi отделяет процессы сжатия от процессов расширения (сгорания), обеспечивая сжатие независимо от расширения и расширение независимо от сжатия. Когда процессы разделены, энергия, произведенная одним процессом, может храниться до тех пор, пока не понадобится другому.Электроэнергия доступна, когда она нужна, или накапливается, когда она не нужна.

В режиме зажигания и зарядки цилиндры компрессора и расширителя включены, а резервуар для хранения воздуха пополняется во время работы цилиндра расширителя. Воздух поступает в резервуар для хранения воздуха и расширительный цилиндр.

В режиме воздушного расширителя и зажигания цилиндр компрессора отключен, и воздух под высоким давлением для зажигания выпускается из резервуара для хранения воздуха без потока воздуха в цилиндр компрессора или из него.

В режиме воздушного компрессора цилиндр детандера отключен, и цилиндр компрессора перезаряжает резервуар для хранения воздуха во время работы на спуске, торможении и замедлении. Воздух поступает в резервуар для хранения воздуха без впрыска топлива или зажигания.

В режиме расширителя воздуха цилиндр компрессора отключен, и воздух под высоким давлением выпускается из резервуара для хранения воздуха для питания двигателя без впрыска топлива или зажигания.

Дойл роторный двигатель ( www.doylerotary.com ) спроектировал и построил (как следует из названия) роторный двигатель. Но двигатель Дойла не похож на роторные двигатели Ванкеля, которые использовались во многих автомобилях Mazda на протяжении многих лет. Скорее, это разновидность радиального двигателя, как на многих винтовых самолетах прошлого. Радиальный двигатель является обычным в том смысле, что коленчатый вал вращается, а цилиндры остаются неподвижными. Обратное верно для роторного двигателя. Коленчатый вал зафиксирован, а картер и цилиндры вращаются вокруг него.Роторы этой конструкции использовались в бипланах Gnome во время Первой мировой войны. Они также приводили в движение автомобили Adams-Farwell, которые производились в относительно небольших количествах между 1905 и 1912 годами.

Двигатель Дойла берет эту конструкцию роторного двигателя и буквально переворачивает ее с ног на голову. В обычном роторном двигателе верхняя часть поршней обращена наружу, а шатуны соединены с центральным коленчатым валом. Каждый цилиндр имеет свою головку блока цилиндров, впускные и выпускные клапаны и систему зажигания.В двигателе Дойла верхние части поршней обращены к центру двигателя. Шатуны направлены наружу и прикреплены к внешнему корпусу. Внешний корпус, поршни и цилиндры вращаются вокруг центральной камеры сгорания на эксцентрике. При вращении корпуса цилиндра эксцентрик заставляет поршни подниматься и опускаться для выработки энергии.

Чтобы усложнить задачу, двигатель Дойла также является конструкцией с разделенным циклом. Есть два набора поршней: один отвечает за впуск и сжатие, другой — за мощность и выпуск.Казалось бы, это приводит к большому количеству вращающегося металла, но компания утверждает, что вращательная масса на самом деле будет меньше, чем у обычного двигателя аналогичной мощности, поскольку внешний корпус изготовлен из алюминия.

Двигатель Doyle не имеет впускных и выпускных клапанов. Порт на обращенном внутрь конце цилиндров позволяет газу поступать в цилиндры и выходить из них, а также в центральную камеру сгорания, которая является общей для всех цилиндров. Одиночная свеча зажигания управляет зажиганием. Верхняя часть роторного двигателя Mazda и уплотнения ротора используются для уплотнения вращающихся частей.

Эта конструкция может быть применена к двигателям разного размера и рабочего объема. Дойл построил прототип двигателя с 12 цилиндрами и рабочим объемом 4,2 л. Парные комплекты цилиндров и поршней также могут быть собраны вместе для производства более крупных двигателей. Дойл совсем недавно уменьшил количество цилиндров, чтобы создать 6-цилиндровый прототип.

В обычном четырехтактном двигателе каждый поршень обеспечивает рабочий ход один раз за каждые два оборота коленчатого вала. Конструкция с разделенным циклом Дойла делает его четырехтактным двигателем, в котором каждый силовой поршень производит рабочий ход при каждом обороте коленчатого вала.Таким образом, на 12-цилиндровом прототипе на оборот приходится шесть тактов. Компания назвала это циклом Дойля.

Как и следовало ожидать, компания заявляет о нескольких преимуществах его дизайна. Конструкция с разделенным циклом позволяет одному ряду поршней выполнять такты впуска и сжатия (IC), в то время как другой ряд выполняет такты мощности и выпуска (PE). Эти два ряда разделяет центральная камера сгорания. Такая компоновка означает, что поршни и цилиндры IC могут быть сконструированы иначе, чем со стороны PE.Нет необходимости вести огонь до достижения верхней мертвой точки (ВМТ), поэтому топливо может гореть дольше и более полно в камере сгорания.

В обычном двигателе каждая камера сгорания горит немного иначе, чем другие. Это связано с различиями в рабочих температурах и длине всасывания и выхлопа. В двигателе Дойла каждый цилиндр использует одну и ту же камеру сгорания. Это увеличивает согласованность мощности между каждым цилиндром, что приводит к более плавной работе двигателя и постоянным характеристикам износа каждого компонента.

Отсутствие клапанного механизма означает меньшие потери энергии из-за трения. Кроме того, в отличие от обычных клапанов, порты в двигателе Дойла открываются и закрываются мгновенно. Это позволяет каналу оставаться открытым дольше и оставаться при полном потоке намного дольше, чем в обычном клапанном агрегате. Это преимущество наиболее заметно при более высоких оборотах, когда эффективность обычных клапанных механизмов начинает падать. Исключение клапанного механизма также позволяет избавиться примерно от сотни движущихся частей и исключает возможность вздутия прокладок головки блока цилиндров, трещин в головках цилиндров, износа распределительных валов, погнутых или опущенных клапанов или обрыва ремня привода ГРМ.

Заявлены также более низкие выбросы NOX и углеводородов, в первую очередь благодаря конструкции двигателя с разделенным циклом. В обычном двигателе температуры перед воспламенением высоки, потому что свежий воздух, всасываемый во время такта впуска, попадает в цилиндр, который только что выпустил чрезвычайно горячие газы. Пиковые температуры увеличиваются по мере увеличения угла опережения зажигания. Срабатывание до ВМТ приводит к тому, что поршень сжимает только что воспламенившуюся смесь. Сжатие воздуха увеличивает температуру сгорания.NOX возникает из-за того, что температура сгорания остается очень высокой в ​​течение длительного времени.

В двигателе Дойла свежий воздух вводится в относительно холодный цилиндр, не отвечающий за сгорание. Это приводит к более низким температурам предварительного воспламенения. Затем свежий воздух сжимается и передается в центральную камеру сгорания, где впрыскивается топливо и смесь воспламеняется. Сжигание после ВМТ снижает пиковые температуры сгорания.

Выбросы углеводородов возникают в результате выхода несгоревшего топлива из двигателя через выхлопные газы.Двигатель Дойла позволяет топливу сгорать в камере сгорания, а затем в силовых цилиндрах. Считается, что увеличение времени горения снижает количество несгоревшего топлива (углеводородов), выходящего из двигателя.

Ни одна из рассмотренных нами конструкций двигателей не может быть классифицирована как «нормальная» в общепринятом смысле этого слова. Но дальнейшее уводит нас еще дальше от уже пройденного пути проектирования двигателей внутреннего сгорания. С таким названием, как Grail Engine Technologies (www.grailengine.com), можно с уверенностью предположить, что все будет интересно.

Двигатель Grail представляет собой двухтактную конструкцию, состоящую из одного выпускного клапана, трех свечей зажигания и инжектора прямого впрыска топлива, расположенных в верхней части цилиндра. Единственный впускной клапан расположен внутри поршня. В камере предварительного сжатия находится односторонний пластинчатый клапан. Всасываемый воздух проходит через вентиляционные отверстия к поршню, через картер, впускные отверстия поршня, а затем через поршневой клапан.

Сжатие происходит в воздушной коробке пластинчатого клапана, камере предварительного сжатия, вентиляционных отверстиях поршня, впускных отверстиях поршня и картере. Когда поршень движется вверх, под ним создается вакуум. Свежий воздух поступает через коробку всасываемого воздуха через односторонний пластинчатый клапан и заполняет внешнюю камеру предварительного сжатия, отверстия для выпуска воздуха к поршню и впускные отверстия поршня свежим воздухом.

Сжатие происходит внутри цилиндра при движении поршня вверх. В ВМТ происходит прямой впрыск с последующим однократным или многократным зажиганием.Это заставляет поршень опускаться в цилиндр, сжимая воздух в картере двигателя, внешней камере предварительного сжатия, вентиляционных отверстиях и впускных отверстиях поршня.

Непосредственно перед BDC выпускной клапан открывается с помощью стандартного кулачкового / толкательного механизма или электромеханического управления клапаном. Выхлопные газы выходят через отверстие выпускного клапана в верхней части цилиндра. Сжатый свежий воздух поступает в цилиндр через поршневой клапан, который вытесняет окончательный выхлоп. Когда поршень проходит мимо НМТ, выпускной клапан и поршневой клапан закрываются, и цикл повторяется.

Регулировка давления во внешней камере предварительного сжатия с помощью серводвигателя или его эквивалента позволяет контролировать объемный КПД двигателя в диапазоне оборотов двигателя.

Компания заявляет о двух других разработках в области конструкции двигателей. Первый известен как принудительное полуоднородное заряженное воспламенение от сжатия (FS-HCCI). Второй — цикл Грааля, который представляет собой комбинацию одного типа воспламенения или воспламенения от сжатия с однородным зарядом, которое одновременно работает в цикле Миллера.По заявлению компании, двигатель Grail потенциально может стать первым двухтактным двигателем, не имеющим перекрестного загрязнения топлива и масла. Это приводит к снижению выбросов, но при этом обеспечивает большую мощность и крутящий момент при меньшем расходе топлива по сравнению с более крупными двигателями.

Перекрестное загрязнение в двухтактном двигателе с прямым впрыском происходит, когда поршень и кольца перемещаются через впускные и выпускные отверстия стенки цилиндра. Масло, смазывающее поршень, стенку цилиндра и кольца, поступает на выпуск и впуск камеры сгорания.Если количество масла в этой области уменьшается для поддержания выбросов, а также вакуумирования цилиндра для чистого сгорания, это может привести к преждевременному износу и / или высокому выбросу твердых частиц. Grail утверждает, что его двигатель не страдает от этих проблем.

Я оставил, наверное, самую необычную конструкцию двигателя напоследок. Сферический двигатель Hüttlin ( www.innomot.org ) использует некоторые из ранее обсуждавшихся технологий — например, оппозитные поршни — но отличается от других конструкций почти во всех других отношениях.Hüttlin Kugelmotor (сферический двигатель) назван в честь его изобретателя, доктора Герберта Хюттлина, который работал над этим и другими двигателями более 20 лет.

Описание очень нетрадиционного движка Hüttlin словами — настоящая проблема, и, вероятно, именно поэтому веб-сайт компании в значительной степени полагается на так много анимаций, чтобы рассказать свою историю. В этой конструкции энергия сгорания, генерируемая во время рабочего такта, напрямую преобразуется во вращательное движение. В конструкции нет обычного коленчатого вала.

Алюминиевый сферический корпус содержит поршневой ротор, вращающийся в двух роликовых подшипниках с большим кольцом. Ротор снабжен изогнутыми цилиндрическими камерами для установки двух пар поршней, расположенных напротив друг друга. Для каждой поршневой пары используются два полых направляющих шарика. Эти шарики катятся по обеим направляющим поверхностям изогнутого элемента, который расположен в ортогональном продольно центрированном положении на оси системы и прочно прикреплен к корпусу. Когда поршни и узел камеры сгорания вращаются, направляющие шарики направляют поршни через возвратно-поступательное качающееся движение четырехтактного двигателя Отто.

Компания видит широкий спектр применения этого двигателя. Несколько конфигураций уже были разработаны и испытаны, включая гибридный генератор с расширением диапазона, электродвигатель и компрессор в едином корпусе, а также домашний источник энергии, который можно комбинировать с солнечными и тепловыми коллекторами. Его также можно использовать в сочетании с ветряной турбиной для производства электроэнергии и сжатого воздуха.

Конфигурация гибридного расширителя диапазона особенно интригует. Двигатель можно использовать для выработки электроэнергии для электромобиля, чтобы пополнить его батареи, когда они разрядятся.Соединение двигателя непосредственно с трансмиссией транспортного средства позволило бы при необходимости использовать дополнительную тягу, а также рекуперативное торможение для дальнейшего пополнения заряда аккумуляторных батарей. Если функция сгорания двигателя отключена, его компрессия, которая в противном случае не использовалась, также могла бы способствовать торможению автомобиля.

Все компании, создавшие уникальные конструкции двигателей, описанные в этом отчете, считают, что у них есть все необходимое, чтобы произвести революцию в транспортной отрасли. Поскольку ни одна из этих новых технологий не включает способность заглядывать в будущее, нам, вероятно, придется подождать еще несколько лет, чтобы выяснить, верны ли какие-либо из них.Независимо от результата, приятно видеть, сколько разных методов можно использовать для достижения одних и тех же целей.

Скачать PDF

Evolution of Piston Design


Home, Библиотека по ремонту автомобилей, Автозапчасти, аксессуары, инструменты и оборудование, Руководства и книги, Автомобильный БЛОГ, Ссылки, Индекс

Ларри Карли, авторское право 2019 AA1Car.com

Первые поршни для двигателей внутреннего сгорания появились еще в 1866 году, когда Николай Август Отто изобрел первый такой двигатель.Учитывая это время, можно подумать, что поршни внутри сегодняшних двигателей будут радикально отличаться от поршней своих предков.

Материалы и конструкция поршней развивались на протяжении многих лет, и это будет продолжаться до тех пор, пока топливные элементы, экзотические батареи или что-то еще не сделает двигатель внутреннего сгорания устаревшим. Но пока этого не произойдет, поршни будут продолжать приводить в действие большинство транспортных средств, которыми мы управляем.

Одна вещь, которая не изменилась с годами, — это основная функция поршня.Поршень образует нижнюю половину камеры сгорания и передает силу сгорания через штифт и шатун на коленчатый вал. Базовая конструкция поршня осталась прежней. Это круглый кусок металла, который скользит вверх и вниз в цилиндре. Кольца по-прежнему используются для уплотнения сжатия, минимизации прорыва при сгорании и контроля масла.

Итак, что изменилось? Операционная среда. Сегодня двигатели работают чище, работают тяжелее и горячее, чем когда-либо прежде.В то же время ожидается, что двигатели прослужат дольше, чем когда-либо прежде: до 150 000 миль или более при минимальном техническом обслуживании и увеличенных интервалах замены масла. Следовательно, регулирование температуры является ключом к выживанию наиболее приспособленных.

Поршни конструировались методом проб и ошибок. Инженер по поршням три или четыре раза проверял новую конструкцию, прежде чем понял, что она правильная. Сегодня все моделируется в 3D на компьютере, а затем оценивается с помощью программного обеспечения для анализа методом конечных элементов, прежде чем что-либо будет сделано.Это ускоряет процесс проектирования и испытаний, сокращает время выполнения заказа на создание новых конструкций поршней и позволяет производить более качественный продукт.

Согласно книге «Поршни для двигателей внутреннего сгорания », выпущенной Mahle Inc., инженеры используют два метода для оценки новых конструкций поршней до их фактического производства для динамометрических испытаний двигателя: конечный анализ и анализ фотоупругих напряжений. Идея конечного анализа состоит в том, чтобы разделить модельный поршень на фиксированное (конечное) количество элементов.В результате сетка образует пересекающиеся и соединяющиеся линии. Компьютерное программное обеспечение генерирует уравнения для каждого отдельного элемента и прогнозирует общую жесткость всего поршня.

Анализ данных показывает, как поршень будет вести себя в реальном двигателе, и позволяет инженеру увидеть, где нагрузки и температуры будут наибольшими и как поршень будет реагировать.

При фотоупругом анализе напряжений из поршня отливается трехмерная прозрачная полимерная модель. Когда модельный поршень подвергается нагрузкам, преломляющие свойства пластика меняются, в результате чего поляризованный свет, проходящий через поршень, меняет цвет.Это показывает, как поршень деформируется под нагрузкой, и области, где он испытывает наибольшую нагрузку.

Управление теплом поршня

Самой важной областью для управления теплом является область верхнего кольца. Одна из уловок, которую придумали конструкторы двигателей для уменьшения выбросов, заключалась в перемещении верхнего компрессионного кольца ближе к верхней части поршня. В 1990-е годы расстояние или «ширина контакта» между канавкой верхнего кольца и головкой поршня обычно составляло от 7,5 до 8,0 мм. Сегодня это расстояние сократилось до 3.От 0 до 3,5 мм или менее во многих двигателях.

Маленькая щель вокруг верхней части поршня между головкой и верхним кольцом создает мертвую зону для воздушно-топливной смеси. Когда происходит возгорание, эта область часто не сгорает полностью, оставляя несгоревшее топливо в камере сгорания. Количество невелико, но если умножить остаточное топливо в каждом цилиндре на количество цилиндров в двигателе, умноженное на частоту вращения двигателя, это может составить значительную часть общих выбросов углеводородов (HC) двигателя.

Одним из последствий перемещения верхнего кольца ближе к верхней части поршня является то, что оно подвергает кольцо и канавку верхнего кольца воздействию более высоких рабочих температур. Верхние кольца на многих двигателях сегодня работают при температуре около 600 градусов по Фаренгейту, а второе кольцо имеет температуру 300 градусов по Фаренгейту или ниже. Эти экстремальные температуры могут размягчить металл и увеличить опасность деформации кольцевой канавки, микросварки и выбивания. Уменьшение толщины области контакта между верхней частью поршня и верхним кольцом также увеличивает риск растрескивания и разрушения земли.

Эволюционные достижения, которые позволяют сегодняшним поршням работать в такой среде, включают изменения в геометрии поршня, более прочные сплавы, анодирование канавки верхнего кольца и использование более прочных материалов для колец. Обычные верхние компрессионные кольца из чугуна, которые отлично работали в стандартном двигателе Chevy V8 350, не выдерживают такого тепла, которое характерно для многих двигателей поздних моделей. Вот почему верхние кольца из высокопрочного чугуна или стали используются во многих двигателях последних моделей, а также в двигателях с высокими характеристиками. Стальные кольца превосходят чугунные кольца по нескольким параметрам: меньший расход масла, лучшее уплотнение для меньшего прорыва, меньший износ (до 50 процентов!), Меньший риск поломки и меньшее трение.

Анодирование стало популярным методом повышения долговечности канавки верхнего кольца и теперь используется во многих последних моделях двигателей. Анодирование уменьшает количество микросварок между кольцом и поршнем, что значительно увеличивает срок службы. Но чудес не бывает: анодированный поршень может выйти из строя, если станет слишком горячим.

Анодирование выполняется обработкой кольцевой канавки серной кислотой. Кислота реагирует с металлом, образуя прочный слой оксида алюминия, который очень твердый и износостойкий.Часть слоя находится ниже поверхности металла, а часть — выше. В среднем слой составляет около 20 микрон (0,001˝), поэтому производитель поршня компенсирует добавленную толщину при обработке канавки верхнего кольца.

Еще один подход, который используют некоторые производители поршней для повышения долговечности верхнего кольца, — это вварка никелевого сплава в канавку верхнего кольца. Такой подход использовался для OEM-поршней в двигателях Saturn объемом 1,9 л, выпускавшихся с 1991 по 2001 годы. В двигателе Saturn 2002-03 годов использовалась анодированная канавка для верхнего кольца.

Поршневые кольца с низким натяжением

Чтобы еще больше усложнить проблему управления теплом, кольца стали меньше. Начиная с 1980-х годов, поршневые кольца «низкого натяжения» стали появляться во многих двигателях. На сегодняшний день типичные размеры колец составляют 1,2 мм для верхнего компрессионного кольца, 1,5 мм для второго кольца и 3,0 мм для масляного кольца. В двигателях серии Chevy LS первое и второе кольца имеют размер 1,5 мм, а маслосъемное кольцо — 3,0 мм. Некоторые даже тоньше. Некоторые двигатели имеют только верхние компрессионные кольца 1.0 мм толщиной, и Buick использовал масляное кольцо 2,0 мм в своем 3800 V6.

OEM-производители перешли на более тонкие и мелкие кольца, чтобы улучшить экономию топлива, поскольку на кольца приходится до 40 процентов потерь на внутреннее трение в двигателе. Более тонкие кольца вызывают меньшее сопротивление и трение о стенки цилиндра. Но недостатком является то, что они также уменьшают теплопередачу между поршнем и цилиндром из-за меньшей площади контакта между ними. Следовательно, поршни с кольцами низкого натяжения работают горячее, чем поршни с кольцами большего размера.

Кольца низкого натяжения также представляют собой другую проблему. Они хуже справляются с деформацией внутреннего диаметра цилиндра. Чтобы обеспечить максимальное сжатие и свести к минимуму прорыв, цилиндр должен быть как можно более круглым. Это часто требует использования динамометрической пластины при хонинговании, чтобы имитировать деформацию отверстия, создаваемую головкой блока цилиндров.

Геометрия поршня

В геометрию поршня также были внесены изменения, чтобы улучшить их способность выдерживать более высокие температуры. Производители поршней обычно шлифуют большинство поршней с прямым коническим профилем.Когда поршень становился слишком горячим, он контактировал с цилиндром по узкой области, образуя тонкую полосу износа на боковой стороне поршня. Теперь они используют станки с ЧПУ для создания профиля цилиндра на поршне. Диаметр поршня в верхней области контакта меньше, чтобы обеспечить большее тепловое расширение и распространение любого контакта со стенкой на большую площадь.

Поршни становятся короче и легче. В 1970-х типичный узел поршня и пальца Chevy на 350 небольших блоков весил около 750 граммов.Те же детали в двигателе Chevy LS последней модели весят всего около 600 граммов.

Частично снижение веса было достигнуто за счет уменьшения высоты поршня и использования более коротких юбок. Расстояние от центра пальца кисти до верхней части поршня (так называемая «высота сжатия») в 1970-х годах составляло от 1,5˝ до 1,7˝. Сегодня штифты для запястий расположены выше. На двигателях Ford 4,6 л высота сжатия составляет 1,2 дюйма, а на малоблочном Chevy — 1,3 дюйма.

Перемещение пальца выше на поршне также позволяет использовать более длинные шатуны, которые улучшают крутящий момент и упрощают срок службы подшипников и колец.

Некоторые поршни вторичного рынка оснащены запястьями, которые немного смещены вверх, чтобы компенсировать шлифовку блока и головок. Другой альтернативой является сбрить верхнюю часть поршня, если поверхность блока была изменена, но это уменьшает глубину предохранительных клапанов, что может увеличить риск детонации и / или повреждения клапана.

Поршни имели длинные хвостовые юбки (иногда трескались или ломались). Сейчас у большинства поршней есть мини-юбки. Вместо юбки 2,5 дюйма у поршня может быть только 1 шт.Юбка 5˝. Более короткие юбки уменьшают вес, но также требуют более плотной посадки между поршнем и отверстием цилиндра, чтобы минимизировать раскачивание поршня и шум. Следовательно, зазоры между поршнем и отверстием теперь меньше, обычно от 0,001˝ до 0,0005˝ или меньше. Некоторые из них имеют посадку с нулевым зазором, что стало возможным благодаря покрытию юбки с низким коэффициентом трения.

Материалы поршня

Сплав, из которого изготовлен поршень, определяет не только его прочность и характеристики износа, но и характеристики теплового расширения.Более горячие двигатели требуют более стабильных сплавов для обеспечения жестких допусков без задиров.

Многие поршни раньше изготавливались из «доэвтектических» алюминиевых сплавов, таких как SAE 332, который содержит от 8-1 / 2 до 10-1 / 2 процентов кремния. Сегодня мы видим больше поршней из «эвтектических» сплавов, которые содержат от 11 до 12 процентов кремния, и «заэвтектических» сплавов, которые содержат от 12-1 / 2 до более 16 процентов кремния.

Кремний повышает термостойкость и снижает коэффициент расширения, поэтому при изменении температуры можно выдерживать более жесткие допуски.У сверхэвтектических поршней коэффициент теплового расширения примерно на 15 процентов меньше, чем у стандартных поршней из сплава F-132. Благодаря этому поршни могут быть установлены с гораздо более плотной посадкой, в зависимости от области применения может потребоваться до 0,0005˝ меньшего зазора.

Гиперэвтектические сплавы также немного легче (примерно на 2 процента), чем стандартные сплавы. Но отливки часто делают тоньше, потому что сплав более прочный, что приводит к чистому снижению общего веса поршней до 10 процентов.

Гиперэвтектические сплавы труднее лить, потому что кремний должен оставаться равномерно распределенным по всему алюминию по мере охлаждения металла. Размер частиц также необходимо тщательно контролировать, чтобы поршень не стал хрупким и не образовал твердых пятен, затрудняющих обработку. Некоторые поршни также проходят специальную термообработку для дальнейшего изменения и улучшения структуры зерна для дополнительной прочности и долговечности. Термическая обработка «Т-6», которая часто применяется для рабочих поршней, увеличивает прочность до 30 процентов.

Обработка заэвтектических поршней затруднена из-за более твердого сплава. Следовательно, заэвтектические поршни обычно стоят немного дороже, чем поршни из стандартных сплавов. Вот почему большинство производителей оригинального оборудования (кроме Ford) вернулись к поршням из эвтектического сплава в своих последних моделях двигателей. Эвтектические сплавы с высоким содержанием меди предлагают большинство преимуществ заэвтектических сплавов без такой большой стоимости.

Кованые поршни давно используются в высокопроизводительных двигателях и дизельных двигателях. Два наиболее часто используемых сплава в кованых поршнях — это 4032 и 2618.Поршни из 4032 обычно предназначены для уличных работ. Для более требовательных применений предпочтительным сплавом часто является 2618. Этот сплав более ковкий, чем 4032, что позволяет ему противостоять детонации лучше, чем 4032. Он также имеет более высокий коэффициент теплового расширения, чем 4032, поэтому поршни из алюминия 2618 требуют большего зазор между стенками и повышенный шум поршня при прогреве холодного двигателя. Сплав также имеет тенденцию к ухудшению со временем больше, чем 4032, что означает, что поршни, возможно, придется заменить после сезона гонок.

Покрытия поршней

Для того, чтобы выжить сильнейший, также требуется высокая степень сопротивления истиранию. Холодный пуск без надлежащей смазки может привести к задиранию поршня. То же самое может произойти при перегреве двигателя. Зазоры между поршнем и цилиндром увеличиваются, и поршень начинает задевать отверстие. Первоначальный запуск только что построенного двигателя также представляет собой опасное время для образования задиров и вызывает особую озабоченность у производителей двигателей, поскольку именно тогда возникает много проблем с гарантийным обслуживанием.

Нанесение постоянного покрытия с низким коэффициентом трения на боковые стороны поршней обеспечивает слой защиты от истирания.Многие производители двигателей обнаружили, что использование поршней с покрытием практически исключает гарантийные проблемы из-за истирания.

Многие поздние модели двигателей OEM, включая Ford 4.6L и 5.0L V8, Chrysler 3.2L, 3.5L, 3.8L, 4.0L, 5.7L и 6.1L, и GM 3.1L, используют поршни с графитно-молибдисульфидным покрытием на поршне. юбка для повышения устойчивости к истиранию. С 2003 года GM наносит полимерное покрытие на юбки поршней LS для уменьшения задиров и зазора между поршнем и стенкой для уменьшения ударов поршня после холодного пуска.Большинство производителей поршней на вторичном рынке также предлагают различные типы покрытий поршней как для стандартных, так и для эксплуатационных целей.

Металлически-металлокерамические покрытия «Термобарьер» для верхних частей поршней — это еще один тип покрытия, которое использовалось на некоторых дизельных поршнях, бензиновых двигателях с прямым впрыском и рабочих поршнях. Улучшение удержания тепла в камере сгорания улучшает термический КПД и увеличивает мощность. Это также помогает охладить поршень. Но слишком большое количество тепла в камере сгорания также увеличивает риск детонации и преждевременного воспламенения, что не является проблемой для дизелей, а для бензиновых двигателей.Поэтому, когда используется покрытие, угол опережения зажигания обычно должен быть замедлен на несколько градусов, чтобы снизить риск детонации.

Корона поршня

Форма и отделка верхних частей поршней также изменились. Поршни с плоским верхом были заменены на поршни с выпуклой поверхностью, поршни с куполообразной формой и поршни с замысловатыми контурами, которые обеспечивают завихрение топливной смеси и улучшают распыление топлива.

Некоторые конструкции днища поршня могут быть очень сложными, поскольку они предназначены для обеспечения минимально возможных выбросов при наилучшей общей топливной эффективности.Форма головки контролирует движение воздуха и топлива, когда поршень поднимается на такт сжатия. Это, в свою очередь, влияет на скорость горения и на то, что происходит внутри камеры сгорания. Сменные поршни для стандартных двигателей со сложной конструкцией поршней должны быть такими же, как и у оригинальных, чтобы сохранить те же выбросы и рабочие характеристики.

Благодаря высокопроизводительным поршням конструкция может быть еще более специализированной. Производители разработали специальные конфигурации «быстрого сжигания», которые позволяют двигателям безопасно выдерживать большее сжатие без детонации.

Некоторые поршни имеют «канавку для глушителя» для увеличения сброса клапана. Канавка удаляет две потенциально горячие точки в камере сгорания и улучшает воздушный поток и распыление влажного потока. У некоторых рабочих поршней также есть небольшая канавка, вырезанная в контактной поверхности верхнего кольца для облегчения охлаждения. Если поршень становится слишком горячим, верхняя часть поршня разбухает, вызывая соприкосновение мини-канавки с цилиндром. Этот кратковременный контакт помогает охладить поршень, чтобы снизить опасность детонации и разрушения поршня.

Поршневые пальцы

Отверстия под поршневые пальцы также изменились. Вместо того, чтобы быть круглыми и прямыми, отверстия под пальцы приобретают новую форму. Некоторые из них овальные, а некоторые трубчатые, расширяющиеся к внутренним краям выступов штифтов. Причина такой формы в том, чтобы приспособиться к изгибу и овализации булавки на запястье. Эти отклонения от прямых и круглых довольно малы, измеряются в десятых долях тысячных, но доказали, что они продлевают срок службы поршня.

В некоторых легких поршневых поршнях также используется более короткий штифт для уменьшения веса.Штифт стальной, поэтому уменьшение его длины приводит к значительному снижению веса.

Будущие изменения поршней

Поршни могут и дальше становиться короче и легче, но большинство инженеров считают, что кольца не могут быть намного меньше, чем они есть сейчас. Некоторые все же думают, что поршень с двумя кольцами может быть недалеко. В некоторых гоночных моторах Indy довольно успешно использовались поршни с двумя кольцевыми поршнями.

Другие конструктивные инновации, которые могут определять направление будущего развития поршней, включают запястья из легкого сплава, большее анодирование и / или использование керамических покрытий на верхних частях поршней и канавке верхнего кольца для повышения термостойкости и износостойкости, а также, возможно, верхних колец. без торцевых зазоров.

Лучшим индикатором того, что будет дальше, является взгляд на современные гоночные поршни: сверхлегкие конструкции почти без юбок, отверстия, вырезанные по бокам для уменьшения веса, и различные дизайнерские приемы для контроля температуры расширение и детонация при высокой нагрузке.

Мы можем увидеть некоторые экзотические армированные графитом поршни для некоторых двигателей большой мощности, подобные тем, которые сейчас используются в дизельных двигателях. Растущее использование бензина с прямым впрыском требует сложных топливных баков в верхней части поршней, подобных тем, которые используются во многих дизельных двигателях.Прямой впрыск позволяет получить чрезвычайно бедную топливно-воздушную смесь, улучшить экономию топлива и мощность. Но это также требует точного управления потоком воздуха в камере сгорания для надежного зажигания и полного сгорания.



28 сентября 2020 г.

MAHLE создает первые в мире поршни с 3D-лазерной печатью

3D-печать существует уже некоторое время, но это первый пример того, как кто-то создает высокопроизводительные поршни с помощью специального лазерного 3D-принтера. Экспериментальные поршни изготовлены MAHLE в сотрудничестве с Porsche и Trumpf.


Первые в мире поршни с трехмерной лазерной печатью

В этом процессе используется специальный алюминиевый сплав, который распыляется до мелкого порошка, а затем печатается с помощью процесса, известного как Laser Metal Fusion (LMF). Подробная трехмерная карта поршня сначала создается на компьютере с помощью специального программного обеспечения, которое оценивает, где нагрузки на поршень самые высокие и самые низкие. Затем конструкцию можно изменить, чтобы убрать вес там, где он не нужен. Затем конструкция поршня подразделяется на тонкие слои, которые затем используются для направления лазерного луча.Лазер плавит алюминиевый порошок, добавляя слой за слоем, чтобы постепенно формировать форму поршня. На изготовление заготовки поршня с помощью 3D-процесса требуется около 12 часов, и она состоит из примерно 1200 слоев, сплавленных вместе.

Поршни были созданы, чтобы увидеть, насколько хорошо напечатанные на 3D-принтере детали по сравнению с традиционными отливками и поковками. Судя по всему, они очень хорошо выдержали изнурительное испытание на 700-сильном двигателе Porsche 911 GT2 RS во время 200-часового теста на выносливость. Поршни показывают большие перспективы не только для снижения веса, но и для работы с более высокими нагрузками в лошадиных силах.В процессе трехмерного формования за площадкой верхнего кольца были созданы специальные охлаждающие бортики, чтобы улучшить охлаждение в этой критической области. Конструкция с открытой стороной также снизила общий вес поршня до 20 процентов по сравнению с аналогичным кованым поршнем.

Этот новый метод создания поршней только микроскопическим слоем за один раз с помощью лазерного 3D-принтера открывает совершенно новый мир для гонок и специальных применений. Процесс 3D-печати по-прежнему слишком медленный для деталей массового производства, но для специальных проектов он предлагает широкий спектр возможностей.



Другие статьи о двигателях:

Новые конструкции поршней для двигателей GDI, автор журнала Ларри Карли 2015 Engine Builder

Поршневые кольца (складские и рабочие характеристики)

Стальные кольца: обновленная информация о технологии поршневых колец

Рекомендации по зазору концевых зазоров поршневых колец

Обновленная информация о методах хонингования цилиндров

Советы по восстановлению двигателя

Замена деталей двигателя

Нажмите здесь, чтобы увидеть больше статей, связанных с двигателем

Нажмите здесь, чтобы увидеть больше технических статей Carley Automotive


Не забудьте посетить другие наши веб-сайты:

AA1Car Справочный центр по автомобильной диагностике
Carley Automotive Software
OBD2HELP
Случайная осечка
Справка по диагностическому прибору
КОДЫ НЕИСПРАВНОСТЕЙ

(PDF) ДИЗАЙН И АНАЛИЗ ПОРШНЯ ДВИГАТЕЛЯ IC С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ CATIA И ANSIS

18

Этот вид повреждений может быть вызвано превышением оборотов пилы, работающей регулировкой карбюратора

9000 6 слишком бедная, из-за того, что не учитывается утечка воздуха в двигателе пилы или сочетание факторов.Лучший способ

избежать такого заедания — использовать топливо хорошего качества и смешивать масло, не допускать превышения оборотов двигателя, а

всегда прекращать работу пилы, которая показывает признаки потенциальной утечки воздуха. Этот вид повреждений может быть вызван также

из-за частичного засорения топливного фильтра, что является еще одной причиной, по которой топливные фильтры

следует регулярно заменять

Рис. 2.5 Рис 2.6

2.6.2 Неправильная неисправность

2.6.2.1 Повреждение из-за попадания мусора через воздушный фильтр

Повреждение юбки поршня вызвано попаданием мусора через систему фильтрации воздуха.

Обратите внимание, что горизонтальные следы машины были стерты по всей нижней части, что указывает на

экстремальный износ нижней части юбки. Не показано, но другая сторона поршня

выглядела идеально. Это повреждение было обнаружено только на впускной стороне поршня.Это типично для

повреждений от всасываемого мусора. Другая сторона поршня не соприкасается с впускным отверстием, поэтому

не затрагивается на ранних стадиях.

Что повреждает впускную юбку, так это мусор от протекающего фильтра, который заклинивает между поршнем и стенкой цилиндра

, вызывая задиры на юбке поршня. Поскольку поршень изготовлен из более мягкого материала, повреждение

более заметно на юбке, чем на твердой поверхности отверстия цилиндра. Этот износ поршня

увеличивает зазор, что позволяет поршню «качаться» в расточке цилиндра.По мере того как юбка

становится все тоньше и слабее, раскачивание увеличивается. В конце концов поршень сломается. Когда это делает

, двигатель заклинивает. На профессиональной пиле юбка поршня выполняет еще одну важную функцию. Не

только направляет поршень, юбка служит впускным клапаном двигателя. Когда поршень перемещается вверх по цилиндру

и опускается вниз, его основание открывается и закрывает впускной канал при прохождении. Для оптимальной работы двигателя

важно, чтобы этот клапан работал нормально.

Основы двигателя внутреннего сгорания | Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, от них в Соединенных Штатах полагается более 250 миллионов транспортных средств на шоссе. Наряду с бензином или дизельным топливом они также могут использовать возобновляемые или альтернативные виды топлива (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими силовыми агрегатами для увеличения экономии топлива или подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как горение, является основным химическим процессом высвобождения энергии из топливно-воздушной смеси. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию сгорания в работу. Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал.В конечном счете, это движение приводит в движение колеса автомобиля через систему шестерен трансмиссии.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них представляют собой четырехтактные двигатели, а это означает, что для завершения цикла требуется четыре хода поршня. Цикл включает четыре различных процесса: впуск, сжатие, сгорание, рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способам подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом, а затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая возгорание. Расширение дымовых газов толкает поршень во время рабочего хода. В дизельном двигателе только воздух всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в горячий сжатый воздух с подходящей дозированной скоростью, вызывая его возгорание.

Улучшение двигателей внутреннего сгорания

За последние 30 лет исследования и разработки помогли производителям снизить выбросы ДВС таких загрязнителей, как оксиды азота (NOx) и твердые частицы (PM), более чем на 99%, чтобы соответствовать стандартам выбросов EPA. .Исследования также привели к улучшению характеристик ДВС (мощность в лошадиных силах и время разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на повышение энергоэффективности двигателей внутреннего сгорания с минимальными выбросами.

Поршень: определение, детали, функции, материалы, выпуск, рабочий

В двигателе внутреннего сгорания поршень — один из важнейших компонентов, помогающих работе цикла сгорания.Часть двигателя заключена в блок цилиндров, в котором используется поршневое кольцо, не оставляющее места для утечки газа.

Поршни помогают преобразовывать тепловую энергию в механическую работу и наоборот. Он движется вверх и вниз внутри цилиндра, чтобы расширяться и сжимать топливно-воздушную смесь. По этой причине поршень в двигателе внутреннего сгорания неизбежен.

Сегодня мы рассмотрим определение, функции, работу, типы, детали, материалы и схему автомобильного поршня.

Читайте: Компоненты автомобильного двигателя

Что такое поршень?

Поршень — это механическое устройство, которое движется вверх для сжатия газа и вниз из-за взрыва в цилиндре, чтобы преобразовать тепловую энергию в механическую работу.

Поршень следует циклическому процессу для продолжения процесса преобразования тепла. процесс достигается тремя способами:

  • Обеспечение теплом газа внутри баллона для полезной работы
  • Отвод тепла от цилиндра для снижения давления, чтобы газ можно было легко сжимать.
  • Применить работу к поршню, когда он находится в исходном состоянии и готов к повторному выполнению цикла.

Функции поршня в двигателях внутреннего сгорания

Поршни играют жизненно важную роль в автомобильном двигателе, включая бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Процессы в этих двух двигателях внутреннего сгорания различаются, но в них используется поршень. Ниже приведены функции поршня автомобильного двигателя:

  • Основная функция поршня — передавать выходное усилие небольшого взрыва газа в цилиндре на коленчатый вал.Это обеспечивает вращающий момент маховику.
  • Он движется вперед, так что газы могут сжиматься, и при обратном движении может произойти взрыв.
  • Поршень содержит штифт, называемый поршневым пальцем, который позволяет газу не выходить из камеры.
  • Шатун, прикрепленный к днищу поршня, позволяет передавать механическую работу.
  • Поршни помогают переносить топливовоздушную смесь в течение цикла сгорания.
  • Поршни помогают контролировать поток масла в стенках цилиндра с помощью масляного регулирующего кольца.

Как работает поршень?

Спросив, как работает поршень, вы познакомитесь со всем принципом работы двигателя внутреннего сгорания. Это связано с тем, что поршень выполняет основную работу во время четырехтактного цикла.

Как уже упоминалось ранее, двигатель внутреннего сгорания бывает двух типов, и они работают двумя разными способами. Один из них работает со свечой зажигания, поэтому его называют «двигатель с искровым зажиганием», а другой — «двигатель с воспламенением от сжатия».Их работа совсем другая. Что ж, о работе этого движка рассказано в другой статье.

Читайте: Применение дизельного двигателя

Видео ниже показывает работу поршня в двигателе внутреннего сгорания en :

Материал поршня

Чугун — самый ранний материал, используемый для изготовления поршней. Однако в современном двигателе используются более легкие материалы для балансировки двигателя. Хорошие поршни должны выдерживать температуры сгорания двигателя.Для получения таких свойств специально используются такие сплавы, как Y-сплавы и алюминий.

Поршни изготовлены из алюминиевых сплавов методом литья. Некоторые поршни, используемые в гоночных автомобилях, требуют большей прочности и долговечности, поэтому они кованые.

Поршни

Billet также используются в гоночных двигателях, поскольку они не зависят от размера и архитектуры имеющихся поковок, что приводит к изменению конструкции в считанные минуты. Хотя невооруженным глазом это обычно не видно.

ниже представлена ​​схема поршня:

Основные части поршней и их функции

Ниже приведены пояснения к основным частям поршня:

Юбка поршня:

Юбка поршня представляет собой материал цилиндрической формы, прикрепленный к круглой части поршня. Обычно он изготавливается из чугуна, чтобы противостоять износу и обладать самосмазывающимися свойствами. На юбке есть канавки, которые позволяют поршневым кольцам идеально сидеть.Юбка поршня предназначена для перемещения вверх и вниз по цилиндру.

Поршневые кольца:

Поршневые кольца — это части разъемных колец, которые устанавливаются в области выемки поршня. В двигателе обычно три поршневых кольца. Иногда кольцо может быть одно, в зависимости от типа двигателя.

Подшипники поршневые:

Подшипники представляют собой отличные поршневые детали, повышающие эффективность движения. Он расположен в точках поворота.Эти подшипники обычно представляют собой полукруглые металлические детали, которые входят в отверстия этих точек.

Поршневой палец:

Поршневой палец — это часть поршня, также известная как поршневой палец или поршневой палец. Этот штифт представляет собой полый или цельный вал в секции юбки. На этом пальце шарнирно закреплен шток поршня, удерживаемый во втулке поршневого кольца. Функция поршневого пальца заключается в обеспечении опоры подшипника, чтобы поршень мог нормально функционировать.

Головка поршня:

Эта часть поршня также известна как корона или купол, которая представляет собой верхнюю поверхность.Это часть, которая контактирует с дымовыми газами, заставляя их испытывать чрезвычайно высокую температуру. Функция поршня — воспринимать давление, температуру и другие напряжения расширяющегося газа.

Болт шатуна:

Еще одна деталь поршня, которую нельзя оставлять позади, — это шатунный болт. Он используется для крепления штока к коленчатому валу. На нижнем конце болтов тяги находится крышка шатуна и подшипник. Затем используется гайка для фиксации компонентов вместе с болтом.

Шатун:

Шатун — одна из основных частей поршня, чаще всего укорачиваемая как шатун или шток. Он соединяет поршень с коленчатым валом двигателя и позволяет поршню двигаться в камере. Компонент рассчитан на механические нагрузки, поэтому он достаточно прочный. Детали поршня изготавливаются методом ковки, а иногда и литья.

Читайте: Четырехтактный двигатель: все, что вам нужно знать

Типы поршней

Ниже представлены три типа поршней:

Поршни тарелки: Поршень тарелки имеет форму пластины со слегка загнутыми вверх краями.Это легко и просто, а также создает меньше проблем для инженеров. Он часто используется в приложениях с наддувом, где не требуется распредвал с большим подъемом или высокая степень сжатия.

Поршни с плоским верхом: Поршень с плоским верхом имеет плоский верх. У него наименьшая площадь поверхности, что дает возможность создавать наибольшую силу. Он идеально подходит для эффективного сгорания.

Поршни с плоским верхом создают сильный взрыв в камере, но сжатие может быть слишком большим для небольших камер сгорания.

Купольные поршни: Концепция тарелочных поршней совершенно противоположна тарельчатым. Средний пузырек, чтобы увеличить площадь поверхности, оставленную в верхней части поршня. Что ж, большая площадь поверхности означает меньшее сжатие, в то время как большее сжатие означает большее усилие.

Камера сгорания имеет верхний предел, с которым она может справиться, поэтому уменьшение степени сжатия — лучший вариант предотвращения поломки двигателя.

Прочтите Все, что вам нужно знать о системе трансмиссии

Распространенная проблема с поршнем

Проблема развития поршня — это не что иное, как трещина.Эта трещина возникает на верхней части головки поршня, известной как корона. Обычно это происходит из-за чрезмерного сжатия или превышения опережения зажигания из-за давления сгорания в бензиновых двигателях. Головка поршня трескается, потому что работает за пределами допустимого давления.

В дизельном двигателе возникают проблемы с поршнем из-за состояния, известного как термическая усталость.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Разное