Принцип работы гидроусилителя: Гидроусилитель рулевого управления: устройство и принцип работы

Содержание

Устройство и работа гидроусилителя рулевого управления автомобиля. Основное его предназначение

 

Гидроусилитель руля – устройство, которое на порядок облегчило жизнь водителям. Ведь крутить «баранку» без такого помощника трудно даже на легковом автомобиле. Причем, если раньше с этой задачей более-менее справлялись мужчины, то субтильным дамам оказывалось явно не под силу. Одним словом, данный элемент позволяет снизить уровень физических затрат для управления любым видом транспорта, чем было до его появления. Однако устройство и работа гидроусилителя рулевого управления постоянно трансформировалась, совершенствовалась, пока не доросла до современной системы с электронной «начинкой». Без данного продукта инженерной мысли сегодня трудно представить любой без исключения автомобиль, поэтому знать его «болячки» и особенности полезно всем водителям. 

 

Предназначение ГУР

Согласно физическим законам, чтобы совершить поворот, требуется либо недюжинная сила или большее количество оборотов рулевого колеса.

В любом из приведенных случаев это неудобно, и процесс управления автомобилем превращается в малоприятное и трудозатратное мероприятие. И совсем иное дело, когда в дело вступает устройство, которое существенно наращивает мощность усилий, прилагаемых для совершения поворота. Это, в свою очередь, помогает увеличению маневренности машины при парковке, в условиях ограниченного пространства, езде на высокой скорости. 

Другая функция ГУР состоит в нивелировании ударов, приходящую на рулевую рейку от дорожного покрытия. За счет демпфирования улучшается комфортность вождения – на руки водителя приходится меньше дискомфортных толчков и ударов, а это снижает усталость, что приводит к более острой концентрации на процессе управления. 

Наконец, еще одно полезное свойство узла – устройство и работа гидроусилителя будет рассмотрено чуть ниже – заключается в том, что он дает возможность удерживать выбранную траекторию движения даже тогда, когда происходит внезапный прокол шины. Кроме того, если система гидроусилителя функционирует в штатном режиме, она позволяет легче держаться в полосе движения. Именно по данной причине водителю не нужно постоянно совершать мелкие и регулярные довороты руля, как можно увидеть в старых кинофильмах, для того, чтобы автомобиль двигался прямолинейно. 

 

Компоненты гидроусилителя руля

Принципиальная компоновка ГУР практически на всех современных автомобилях одинакова и включает в себя:

 гидравлический (силовой) цилиндр поршневого типа;

 помпа для нагнетания жидкости;

 рулевая рейка;

 шланги – нагнетательный и возвратный;

 расширительный бачок для масла;

 золотниковый распределитель

 перепускной клапан.

В данной системе основными элементами являются гидронасос и силовой цилиндр. Первый создает необходимое давление, подавая жидкость в золотниковый (управляющий) распределитель, который регулирует ее подачу, а второй непосредственно воздействует на рулевую рейку. Характерно, что гидравлический насос сам по себе не требует каких-либо компонентов, приводящих его в работоспособное состояние – он расположен на корпусе блока цилиндров и приводится в действие от коленвала через связку «шкив – приводной ремень». 

В автомобилестроении наиболее широко применяются лопастные насосы ввиду их повышенной износоустойчивости и высокого КПД. Корпус для них может быть либо металлический, либо с добавлением алюминия. Внутри корпуса располагается ротор с лопастями, который нагнетает масло и поддерживает необходимое давление. Если давление превышает норму, срабатывает перепускной клапан. 

 

Принцип работы

Чтобы иметь хотя бы примерное понятие об устройстве и работе гидроусилителя, лучше всего рассмотреть несколько наиболее частых ситуаций, когда она приводится в действие. Например, машина с заведенным мотором просто стоит. В такой позиции система ГУР никаких действий не предпринимает: гидравлическая жидкость перекачивается помпой по шлангам из бачка и беспрепятственно возвращается обратно. 

Часто встречающаяся ситуация №2 – водитель вращает рулевое колесо во время движения. В этот момент задействуется вал, на который поступает крутящий момент от рулевого колеса, далее он передается на торсион. Этот элемент, в свою очередь, начинает закручиваться относительно собственной оси. Причем поворотный золотник не срабатывает, и гидравлическая жидкость подается в гидроцилиндр под высоким давлением, оказывая воздействие на поршень со штоком. В итоге шток давит на рулевую рейку, и та перемещается в соответствии с усилием, заданным водителем за счет поворота руля. В итоге поворачиваются и сами колеса. 

Специалисты утверждают, что система оказывается в самой трудной ситуации №3 – если водитель на неподвижном автомобиле до упора выворачивает «баранку» либо просто удерживает ее под определенным углом в одном и том же положении. Такие манипуляции приводят к тому, что распределитель не способен вернуться в исходное положение, и гидравлическая помпа находится под максимальной нагрузкой. При этом довольно часто снижается комфортность вождения: появляются вибрации, шум, руль может бить в руку и пр. неприятные моменты. Однако они сразу же перестают себя проявлять, как только колеса выравниваются, и автомобиль начинает двигаться. 

Устройство и работа гидроусилителя руля продуманы таким образом, чтобы при выходе из строя одного из его компонентов рулевое управление продолжало работать в стандартном режиме. С той лишь оговоркой, что вращать руль в нештатных ситуациях приходится все-таки с большим усилием. 

 

Периодичность замены масла

Почему-то львиная доля автовладельцев свято уверовали в непонятно откуда взявшийся фейк о том, что любые «расходники» – исключение якобы составляет лишь моторное масло – залиты в автомобиль раз и навсегда. То есть, замены не требуют. И если антифриз худо-бедно заливают, то речь о замене жидкости для ГУР, как и масла для трансмиссии, заводится лишь тогда, когда водителя хорошенько припугнет бывалый мастер на станции техобслуживания. 

Между тем такой подход опасен тем, что устройство и принцип работы гидроусилителя предполагают регулярный нагрев масла и трение, вследствие чего гидравлическая жидкость постепенно теряет большую часть своих полезных качеств. Соответственно, полная замена масла для ГУР – процедура обязательная в среднем хотя бы через 50 тыс. км пробега. Еще лучше проводить данную процедуру почеаще. И даже если автомобиль используется нечасто, в любом случае масло в полном объеме нужно менять через 5 лет – именно такой срок годности у «расходника». 

 КАК ПОНЯТЬ, ЧТО МАСЛО ТРЕБУЕТ ЗАМЕНЫ? Если вынуть из расширительного бачка фильтр и обнаружить на его поверхности много осадка и налета, это означает, что рабочий ресурс масла практически исчерпан. Ведь именно осадок с налетом являются продуктом выработки активных в жидкости компонентов, и этот факт свидетельствует о значительном снижении защитных свойств масла – оно хуже предохраняет от коррозии и износа элементов гидравлической системы. 

Кроме того, сигнализаторами необходимости замены является шум помпы и тяжелый ход «баранки». Гадать о причинах данных неисправностей не нужно, они известны давно: в магистралях, т. е. шлангах, возникают воздушные пробки, провокаторами которых является недостаточный уровень масла. В таких случаях ее просто доливают в бачок. 

 

Неисправности, как их устранять 

У ГУР имеется ряд характерных признаков, сигнализирующих о том, что в этом узле появились технические проблемы. Знать о них полезно уже хотя бы в том плане, что можно без оплаты за услуги СТО устранить неполадки самостоятельно. Конечно, речь не идет о полной разборке гидронасоса или управляющего цилиндра – без помощи специалиста привести их в «боеготовное» состояние вряд ли удастся. 

 Вибрация на руле – ее причиной может быть завоздушивание системы. В таких случаях прибегают к прокачке гидросистемы или полной смене масла. Если вибрации через непродолжительное время повторяются, придется искать точки разгерметизации. 

 Протечки всегда бывают там, где имеется любая жидкость и соединяющиеся шланги либо трубопроводы. Для их появления причин хватает: изнашиваются и протекают уплотнительные элементы, на трубках появляются трещины, отворачиваются фиксирующие гайки и пр. Чтобы не переплачивать за устранение проблемы автомастерам, придется заехать в автомагазин и приобрести ремкомплекты, в которые включены резиновые прокладки. В общем, любой неисправный элемент при протечках подлежит замене на новый. 

 «Тяжелый руль». Если для какого-либо маневра приходится прилагать значительное физическое усилие, нужно помнить, что тому имеется три основные причины: 

 износ приводного ремня, вследствие чего гидропомпа не создает нужное давление в системе; 

 завоздушивание гидросистемы;

 низкий уровень жидкости.

 Гудит насос. Данная неполадка появляется тогда, когда масло давно не менялось или сильно износились подшипники вала помпы. Кроме того, может быть излишне натянут приводной ремень. 

 Удары в руль вызваны исключительно все тем же приводным ремнем: либо он элементарно износился, либо растянулся, вследствие чего начал проскальзывать. Из-за этой неисправности насос работает рывками, он нагнетает жидкость в ГУР с отчетливо заметной пульсацией. 

 

Плюсы и минусы гидроусилителей с классической компоновкой

Об отрицательных сторонах гидроусилителя с классической схемой говорить непросто, так как за долгие годы использования он зарекомендовал себя как исключительно надежный, и в то же время простой узел. Никто не отрицает, что по сравнению со своими более «крутыми» коллегами – речь идет о системе с электроникой – он выглядит слегка архаичными и громоздким. Однако для эффективной работы ему совсем не обязательно наличие электропривода, не говоря уже о возможных проблемах, часто себя проявляющих в связи с наличием датчиков наряду с электронным блоком, которые нуждаются в высокой координации действий. 

Да и в целом минусов у традиционных ГУР немного: 

 раз в два-три года – с такой периодичностью нужно проводить техническое обслуживание системы, иначе продукты износа, скапливающиеся в масляном фильтре и самой жидкости, приведут к выходу устройства из строя;

 незначительная потеря мощности силового агрегата из-за расхода части энергии на привод ГУР;

 небольшое увеличение потребления автомобилем топлива. 

Если говорить о преимуществах гидроусилителя, то их тоже можно пересчитать на пальцах одной руки – комфортность управления, безотказность, повышение маневренности автомобиля. Однако в сравнении с недостатками, что называется, плюсы применения ГУР куда весомее.


устройство и принцип работы, схема рулевого управления с ГУРом

Гидроусилитель руля (аббревиатура ГУР) — знакома большинству автолюбителей. Относится она к основной части рулевого механизма. Раньше управление машиной, было очень утомительным занятием, так как приходилось при резкой смене траектории напрягаться для поворота рулевого колеса, особенно это было проблематично на грузовых машинах. Конструкторы, которые всегда совершенствуют детали для удобства, комфорта и безопасности, обратили на это внимание, поэтому рулевое колесо стало не исключением. Чтобы свисти усилие к минимуму, была придумана система гидроусилителя руля.

Основным его предназначением, как и было, задумано выступает, комфортное управление машиной в момент движения, но есть и другие не менее важные заслуги, такие как:

  • сохранение «обратной связи»;
  • обеспечение устойчивости на дороге;
  • повышение безопасности. То есть происходит контроль над ТС после повреждения передней шины и возможность увильнуть от столкновения;
  • позволяет «чувствовать» дорожное полотно и создает кинематическое следящее действие;
  • уменьшает передаточное отношение рулевой системы, что повышает маневренность;
  • продлевает время службы деталей рулевого узла.

    Гидроусилитель руля

По конструкции ГУР компактны и могут поглощать удары, с вибрацией отходящие от дорожного полотна на рулевое колесо. Во время использовании они совершенно бесшумны. С их появлением езда стала безаварийной, даже число парковочных мест снизилось вдвое. Имея в авто гидроусилитель сложные повороты и многоразовые маневры стали даваться на ура. Однако многие не знают принципа работы установленного штатного гидроусилителя, а когда транспортное средство уводит в сторону они пытаются разрешить ситуацию на «сход-развале» делая это неверно. Естественно, бывалые развальщики легко могут выставить углы установки колес для правильного «сопротивления» увода машины вбок, если гидроусилитель неисправен.

Чтобы устройство не подводило и надежно выполняло все предписанные задачи нужно своевременно посещать сервисные центры для диагностики.

Шаг в историю

Так как первые машины по конструкции были не увесистыми и с узкими колесами, то для поворота руля не требовалось особых усилий. Но с появлением первых грузовых автомобилей вращать колеса многотонного грузовика, оказалось занятием достаточно трудоемким, а то и вовсе не посильным. Тут-то и потребовалось уменьшить диаметр «баранки» и изменить устройство рулевой рейки. Изобрел и запатентовал гидроусилитель впервые Фредерик Ланчестер. Сначала, благо автомеханики распространилось только на карьерные самосвалы, пожарные и грузовые машины. Предвестники пневмоусилители — были несложными и подпитывались от компрессора уже существующих пневматических тормозов.

Только в 20-х годах XX-го века компания Rolls-Royse оснастила гидроусилителем машину-визитку Phantom. Понятное дело, гидравлические усилители были сложнее, чем уже существующие пневматические. Но попытка не увенчалась успехом, и эксперимент был отложен на несколько лет. Дальше уже во время Второй мировой войны англичане вновь ввели в работу ГУР, установив его на большие бронированные автомобили. И уже спустя пять лет технология плотно закрепилась в европейском и американском автопроме. С тех пор устройство не претерпевало принципиальных изменений. Сегодня разнообразие системы ГУРа впечатляет, помимо него существуют еще две удивительных технологии облегчающие эксплуатацию транспортных средств – Электроусилитель и Электрогидроусилитель.

Разновидности гидроусилителей

Утверждать, что ГУР в стандартном исполнении крайне необходим нельзя. Он полезен только в определенных моментах. Конечно, он позволяет с успехом маневрировать в городских условия, но вот на открытой трасе при высокой скорости пользы от него вовсе нет. С возрастанием скорости перестаёшь «чувствовать» дорогу, что популярно особенно в зимний период.

Чтобы, как-то перекрыть изъян, было предпринято установить рулевую рейку с переменным придаточным отношением. Однако попытка была безуспешной спасла ситуацию электроника, которая выступила модификацией гидроусилителя. Она сочетает не только комфорт, но и информативность руля. Электрогидроусилитель руля (ЭГУР) служит по тому же принципу, отличия — прибавка электронного блока и исполнительного электроклапана.

Бачок гидроусилителя

Гидроусилитель руля: устройство и принцип работы

Чтобы понять, как устроена конструкция ГУРа, рассмотрим схему гидроусилителя рулевого управления, состоящую из таких частей, как:

  1. Силовой гидроцилиндр двойного действия помещен в рулевую часть, где стоит межу деталями привода и кузова. Соединен он с золотниковым управляющим узлом и гидроцилиндром. Основная заслуга — преобразование давления жидкости в перемещение поршня и штока, помогающих двигать колеса в необходимое направление.
  2. Насос прикрепляется на двигателе, а его привод от коленчатого вала осуществляется ременной передачей от шкива коленчатого вала. Требуется для сформирования давления масла. Более распространены конструкции лопастого типа, потому что у них хорошее КПД.
  3. Рабочая жидкость содержится в бачке, там же имеется фильтр, крышка с щупом для замера уровня. Функция масла смазывать трущиеся детали и передавать усилие от насоса к гидроцилиндру.
  4. Бачок, наполненный гидравликой, чтобы содержать его в чистоте внутри есть фильтр.
  5. Регулятор давления или распределитель – это прецизионный (высокоустойчивый) и простой по схеме узел. Являет собой редукционный клапан. Располагается на деталях рулевого привода или на одном валу с рулевым элементом. Его задача распределять гидравлику в нужную полость гидроцилиндра или назад в бак. Требуется для контроля частоты вращения коленвала мотора, чтобы тот не повышал допустимую норму давления гидравлической жидкости. Золотниковый распределитель – сложная деталь, состоящая из торсиона и золотникового клапана. Когда находящийся внутри золотник крутится, распределитель называют роторным, а если поступательно перемещается – осевым.
  6. Соединительные шланги высокого и низкого давления сводят между собой гидроцилиндр, насос и распределитель. Также по ним циркулирует гидравлическая жидкость из бака в насос и обратно, возвращаясь от распределителя. Там, где требуется создать взаимную подвижность узлов, применяют гибкие шланги.

    Принцип работы у ГУР и ЭГУР схож

Принцип работы гидроусилителя руля как с осевым, так и с роторным распределителем, основан на перемещении золотника при перекладке рулевого колеса. Сначала насос формирует давление в узле рулевого управления. Если «баранку» крутят в одну из сторон, начинает двигаться золотник и закрывает одну из сливных магистралей, а рабочая жидкость под давлением идет в нужные полости гидроцилиндра. Гидравлика со штоком давит на поршень, а он двигает колеса.

Когда колеса поворачиваются, они направляют корпус распределителя в сторону движения золотника. А когда золотник принимает обездвиженное состояние начинают восстанавливать свое обычное положение корпуса распределителя. Из нагнетательной магистрали масло легко проходит в сливную. Далее, усилитель просто качает рабочую жидкость при помощи насоса по системе. В то же время колеса направлены прямо. Когда руль заканчивает крутиться, вся схема меняется и останавливается.

Если даже гидронасос сломался (к примеру, оборвался ремень привода) — это не влияет на управление транспортным средством. Потому что от рулевой системы усилие будет идти на корпус распределителя, а после на колеса с золотником. Через предпусковой клапан, гидравлика станет двигаться из одной полости в другую и не создавать препятствия, чем позволит поворачивать руль, только с напрягом. Схема рулевого управления с гидроусилителем наглядно демонстрирует всю суть системы.

Устройство насоса гидроусилителя руля

Во время поворота рулевого колеса в другую сторону распределитель подает масло в противоположные части гидроцилиндра, соответственно рулевая рейка идет в другую сторону и поворачивает колеса в нужную сторону. Что касается водителя, то он прилагает минимум усилия на поворот руля. Когда автомобиль находится без движения руль поворачивать также просто для этого необходимо чтобы был запущен мотор.

Если транспортное средство наезжает на препятствие, сила отталкивания пытается повернуть колеса. Но вместо этого они относительно золотника двигают корпус распределителя и перекрывают сливную магистраль. После чего гидравлическая жидкость поступает в полость цилиндра, и поршень посылает усилия на колеса, идущие в обратном направлении. Быстрая реакция приводит к тому, что колеса блокируются и не могут поворачивать. Из-за того, что ход золотника малый (где-то 1 мм), транспортное средство практически не меняет направление движения. ГУР ограждает руки водителя от столкновения со спицами руля, когда он во что-то врезается. Маленькие толчки все-таки ощущаются – это происходит из-за того, что над реактивными шайбами, повышается давление.

«Чувство дороги» — это обратная связь от управляемых колес через усилитель к рулю. Сообщает водителю, в каких условиях происходит поворот. Чувствуя силовое следящее действие управлять машиной можно при любой погоде. Поэтому в составе конструкции крепят реактивные шайбы, плунжеры или камеры. Одна из шайб при высоком давлении, пытается поместить золотник в исходную точку, от этого рулевое колесо работает «туже».

Расположение ГУРа

Устройство насоса гидроусилителя руля

Узел насоса лопастного типа делится на виды:

  1. Лопастный.
  2. Шестеренный.

Механизм насоса состоит из корпуса, ротора и уплотнительного кольца. Насос имеет клиноременный привод от шкива коленчатого вала. Шкив матируется в конце наружного вала, находящийся на шариковом и игольчатом подшипнике. Ротор располагается на шлицах вала, в его пазы свободно установлены лопасти. К корпусу насоса приделан распределительным диском и крышкой статор.
Внутренняя поверхность его корпуса имеет сложную форму. Лопасти устанавливаются в ротор, где параллельно его продольной оси предусмотрено несколько прорезей. Эти лопасти под давлением центробежной силы немного выходят из пазов и соприкасаясь, с внутренней поверхностью корпуса, создают замкнутые камеры.

Внутренняя поверхность корпуса устроена таким образом, что когда объём от вращения ротора снижается между ними сжимается масло. Если появляется отверстие, то гидравлическая жидкость стремительно выходит из лопастей. Процесс всасывания жидкости проходит наоборот. Сам по себе насос должен быть высокопроизводительным, чтобы обеспечивать повороты вала максимально быстро.
Запускается передачами от двигателя:

  1. Шестеренчатой.
  2. Ременной.

    Рулевое управление с гидроусилителем, совмещенным с рулевым механизмом

Техническое обслуживание гидроусилителя

  1. Очень часто приводящий ремень становится причиной поломки гидроусилителя, поэтому нужно следить за уровнем его натяжения.
  2. Необходимо смотреть за уровнем масла в бачке, если его показатель ниже нормы, нужно долить. Нехватка масла приведет к тому, что насос выйдет из строя. Какая подходит гидравлическая жидкость больше всего нужно узнать из инструкции или в специализированном магазине.
  3. Один раз в год меняйте фильтрующий элемент в бачке.
  4. Сливать масло легко, нужно снять шлангу и при открытой крышке бачка жидкость выльется от действия атмосферного давления. Залив свежее масло необходимо при открытой крышке пару раз прокрутить руль в крайние положения, это нужно, чтобы лишний воздух покинул бачок.
  5. Учтите, что на ТС с гидроусилителем не стоит держать руль в крайнем поворотном положении свыше 5–6 секунд – перегреется гидравлическая жидкость.
  6. Кроме того, следует время от времени осуществлять замену масла, это объясняется загрязнениями, которые влияют на его свойства. При потере основных свойств жидкость способна повредить сальники рулевой рейки, а это приведет к сбою ГУРа.
  7. Регулярно проводите визуальный осмотр системы, так как может быть нарушена герметичность системы. Потеки гидравлики говорят, что требуется ремонт.
  8. Если гидронасос не работает, использовать машину долгое время нельзя – это приведет к износу распределителя и поломке элементов рулевого механизма.

    Залив присадки в ГУР

Недостатки ГУР

  1. Нужно просматривать систему каждый день на наличие дефектов.
  2. Нанос работает от мотора, тем самым забирая у него часть мощности.
  3. Нет функций регулировки положений работы для разных условий.

Как видно минусов не так уж и много.

Интересное по теме:

загрузка…

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Автомобильный гидроусилитель — устройство и принцип работы

Принцип работы рулевой системы в автомобиле

Гидроусилитель повышает комфорт автомобиля тем, что позволяет крутить руль с приложением меньшего усилия, чем на автомобилях без ГУР. Автомобиль с рулевым усилителем становится более управляемым, маневренным, что немаловажно для удачного выхода из аварийных ситуаций.

ГУР ставится совместно с различными видами рулевого управления. Наиболее популярная конструкция — реечного типа. Её и рассмотрим.

Система гидроусиления состоит из:

  • Насоса;
  • Распределителя;
  • Силового цилиндра;
  • Бачка и соединительных шлангов.

Насос создает и поддерживает определенное давление в системе рабочей жидкости (масла). Он крепится к двигателю и работает через ремень от коленвала. Распределитель посылает струю жидкости в силовой цилиндр и назад — в бачок. Установлен на рулевой оси. Его узловые части – торсион и золотниковый клапан.

Устройство рулевой рейки

Торсион изготовлен в виде стального стержня, который способен закручиваться под действием силы. Торсион одним концом объединен с рулевым валом, а другим — с шестерней, вступающей в зацепление с рейкой.

Силовой цилиндр помещен в рейке. Его элементами являются поршень и шток, перемещающий рейку под нажимом жидкости. Рабочая жидкость от насоса воздействует на цилиндр, приводя его в движение.

Емкостью для масла выступает бачок с очищающим элементом и щупом для замера уровня жидкости. Шланги высокого давления связывают воедино насос, силовой цилиндр и распределитель, а шланги низкого давления возвращают масло от распределителя в бачок.

Действует этот механизм следующим образом. Когда руль не вращается и стоит на месте, то система усиления не действует, в распределителе маслопроводы подачи и стока находятся друг перед другом. Жидкость свободно, беспрепятственно движется через распределитель обратно в бачок. При повороте руля механизм усилителя руля совмещает отверстия подачи масла и необходимые сферы силового цилиндра (в зависимости от стороны, в которую повернут руль). Из другого канала цилиндра масло вливается в бачок. Чем сильнее заворачивается руль, тем больше затягивается торсион. В связи с этим, размер перепускного канала тоже изменяется, и соответственно с этим, изменяется и усилие на рейку.

Существует норма безопасности, которая предусматривает усилие на руль в случае рабочей или нерабочей системы гидроусилителя. Такое усилие не должно быть свыше 15 кг для работоспособного гидроусилителя и 30 кг – для неисправного узла рулевого управления.

Работа распределителя ГУР:

Принцип работы гидроусилителя руля

Принцип работы гидроусилителя руля с осевым распределителем изображён на рисунке:

 

 

 

На рисунке 2а центрирующие пружины удерживают в нейтральном положении золотник. Полости распределителя состыкованы таким образом, что жидкость беспрепятственно перетекает из нагнетающей магистрали в отводящую. В данный момент насос работает только лишь на прокачку жидкости по системе, а не на поворот колёс.

На рисунке 2б изображена работа ГУРа при повороте руля. Золотник в данном случае перемещается и закрывает отводящую магистраль. Под давлением масло поступает в одну из рабочих полостей цилиндра. Жидкость, воздействуя на поршень со штоком, поворачивает колёса. Они передвигают корпус распределителя в сторону движения золотника. Золотник останавливается, как только прекращается движение рулевого колеса, и корпус его «догоняет». Распределитель переходит обратно в нейтральное положение. Опять открывается отводящая магистраль и поворот колёс завершается.

«Чувство дороги» — этот эффект достигается обратной связью от колёс к рулю. На рисунке 2б видно, что конструкция распределителей снабжена большим количеством плунжеров, камер и реактивных шайб. С увеличением сопротивления повороту колёс увеличивается и давление в распределителе. При этом реактивная шайба производит большое усилие, чтобы вернуть золотник в нейтральную позицию. В результате этого процесса появляется ощущение, что руль становиться тяжелее.

При наезде на препятствие колёса перемещают распределитель относительно золотника и перекрывают отводящую магистраль. Масло начинает поступать в полость цилиндра. Поршень возвращает усилие на колёса обратно. С учётом небольшого хода золотника, автомобиль практически не изменяет направление. Таки образом, гидроусилитель руля не только помогает поворачивать колёса, но и сглаживает рулевые удары при наезде на препятствие.

Если гидроусилитель вышел из строя возможность управления автомобилем сохраниться. Просто усилие от руля будут передаваться непосредственно самими золотниками на распределитель и далее — на колёса. Жидкость, проходя через перепускной клапан, не препятствует повороту, но руль станет «тяжелее».

Принцип работы гидроусилителя руля с вращающимися золотниками такой же, как описанный выше.

Назначение, устройство и принцип работы гидроусилителя руля.

Рулевое управление предназначено для обеспечения движения автомобиля в заданном водителем направлении.

Рулевое управление современного автомобиля имеет следующееустройство:

  • рулевое колесо с рулевой колонкой;

  • рулевой механизм;

  • рулевой привод.

Рулевое колесо воспринимает от водителя усилия, необходимые для изменения направления движения, и передает их через рулевую колонку рулевому механизму. Диаметр рулевого колеса легковых автомобилей находится в пределе 380 — 425 мм, грузовых автомобилей – 440 – 550 мм. Рулевое колесо спортивных автомобилей имеет меньший диаметр.

Рулевая колонка обеспечивает соединение рулевого колеса с рулевым механизмом. Рулевая колонка представлена рулевым валом, имеющем несколько шарнирных соединений. На современных автомобилях предусмотрено иеханическое или электрическое регулирование положения рулевой колонки. регулировка может производиться по вертикали, по длине или в обоих направлениях. В целях защиты от угона осуществляется механическая или электрическая блокировка рулевой колонки.

Рулевой механизм предназначен для увеличения, приложенного к рулевому колесу усилия, и передачи его рулевому приводу. В качестве рулевого механизма используются различные типы редукторов. Наибольшее распространение на легковых автомобилях получили реечные рулевые механизмы.

Реечный рулевой механизм включает шестерню, установленную на валу рулевого колеса и связанную с зубчатой рейкой. При вращении рулевого колеса рейка перемещается в одну или другую сторону и через рулевые тяги поворачивает колеса. Реечный рулевой механизм располагается, как правило, в подрамникеподвески автомобиля.

Рулевой привод предназначен для передачи усилия, необходимого для поворота, от рулевого механизма к колесам. Он обеспечивает оптимальное соотношение углов поворота управляемых колес, а также препятствует их повороту при работе подвески.

Наибольшее распространение получил механический рулевой привод, состоящий из рулевых тяг и рулевых шарниров. Рулевой шарнир выполняется шаровым. Шаровый шарнир состоит из корпуса, вкладышей, шарового пальца и защитного чехла. Для удобства эксплуатации шаровый шарнир выполнен в виде съемного наконечника рулевой тяги. По своей сути рулевая тяга с шаровой опорой выступает дополнительным рычагом подвескию

Для уменьшения усилий, необходимых для поворота рулевого колеса, в рулевом приводе применяется усилитель рулевого управления. Применение усилителя обеспечивает точность и быстродействие рулевого управления, а также снижает общую физическую нагрузку на водителя.

В зависимости от типа привода различают следующие виды усилителей рулевого управления:

  • гидравлический;

  • электрический;

  • пневматический.

Большинство современных автомобилей имеют гидравлический усилитель рулевого управления(другое название – гидроусилитель руля).

Гидроусилителем рулевого управления (обиходное название –гидроусилитель руля) называется конструктивный элемент рулевого управления автомобиля, в котором дополнительное усилие при повороте рулевого колеса создается с помощью гидравлического привода. Гидроусилитель руля является самым распространенным видом усилителя рулевого управления.

Простейший гидроусилитель руля имеет привод гидронасоса от коленчатого вала двигателя. У такого усилителя производительность прямо пропорциональна частоте вращения колнечатого вала двигателя, что противоречит реальным потребностям рулевого управления (при максимальной скорости движения требуется минимальный коэффициент усиления, и наоборот).

Н аиболее совершенным с точки зрения потребительских свойств и конструкции является электрогидравлический усилитель руля. Преимуществами электрогидравлического усилителя являются компактность, возможность функционирования на неработающем двигателе, экономичность за счет включения в нужный момент. В конструкции данного гидроусилителя предусмотрена возможность электронного регулирования коэффициента усиления. Поэтому, наряду с комфортностью управления усилитель может обеспечить легкость маневрирования на малых скоростях, что недоступно обычному гидроусилителю.

Электрогидравлический усилитель рулевого управления имеет следующее устройство:

  • насосный агрегат;

  • гидравлический узел управления;

  • система управления.

Схема электрогидравлического усилителя руля

Насосный агрегат представляет собой объединенный блок, включающий гидравлический насос, электродвигатель насоса и бачок для рабочей жидкости. На насосный агрегат устанавливается электронный блок управления.

Гидравлический насос может быть лопастного или шестеренного типа. Наиболее простым и надежным является шестеренный насос.

Гидравлический узел управления является исполнительным механизмом усилителя руля. Он включает:

  • торсион с поворотным золотником и распределительной гильзой;

  • силовой цилиндр с поршнем.

Гидравлический узел управления объединен с рулевым механизмом. Шток поршня силового цилиндра является продолжением рейки рулевого механизма.

Система управления обеспечивает работу гидроусилителя. На современных автомобилях используется электронная система управления, которая обеспечивает регулирование коэффициента усиления в зависимости от скорости поворота рулевого колеса и скорости движения автомобиля.

Усилитель с такими характеристиками называется адаптивным усилителем рулевого управления.

Работа гидроусилителя руля:

При прямолинейном движении автомобиля гидравлический узел управления обеспечивает циркуляцию жидкости по кругу (от насоса по каналам напрямую в бачек).

При повороте рулевого колеса происходит закрутка торсиона, которая сопровождается поворотом золотника относительно распределительной гильзы. По открывшимся каналам жидкость поступает в одну из полостей (в зависимости от направления поворота) силового цилиндра. Из другой полости силового цилиндра жидкость по открывшимся каналам сливается в бачек. Поршень силового цилиндра обеспечивает перемещение рейки рулевого механизма. Усилие от рейки передается на рулевые тяги и далее приводит к повороту колес.

При осуществлении поворота на небольшой скорости (при парковке, маневрах в ограниченном пространстве) гидроусилитель руля работает с наибольшей производительностью. На основании сигналов датчиков электронный блок управления увеличивает частоту вращения электродвигателя насоса (обеспечивает открытие электромагнитного клапана). Соответственно увеличивается производительность насоса. В силовой цилиндр интенсивнее поступает специальная жидкость. Усилие на рулевом колесе значительно снижается.

С увеличением скорости движения частота вращения электродвигателя насоса снижается (срабатывает электромагнитный клапан и уменьшает поперечное сечение гидросистемы).

Работа гидравлического усилителя осуществляется в пределах поворота рулевого колеса и ограничивается предохранительным клапаном [4].

Гидроусилитель руля (ГУР) — устройство, принцип работы, основные неисправности

Стремление человека минимальными усилиями выполнить любую необходимую ему задачу поистине творит чудеса. Благодаря этому качеству мир узнал много полезных изобретений, которые вошли в нашу повседневную жизнь, во все ее уголки. К примеру, современный автомобиль очень существенно отличается от своих предков, где, для управления им, требовалось гораздо больше навыков и усилий. Вспомните, что в вашем автомобиле делает ваше управление им гораздо проще и легче. Наиболее популярно названным агрегатом, скорее всего, будет гидроусилитель руля, а затем, наверное, автоматическая коробка передач, об устройстве АКПП здесь. Но речь сегодня пойдет именно о гидроусилителе.

Устройство и работа гидроусилителя руля.

Гидроусилитель рулевого управления, чаще в народе это название встречается сокращенным: гидроусилитель руля либо ГУР. Из самого названия многим становится понятно, что принцип его работы строится на законах гидравлики. В основе работы ГУРа лежит насос, приводимый в движение от коленчатого вала двигателя, посредством ременной передачи подает специальное масло-жидкость в систему рулевого управления (редуктор, рейка), где последнее и облегчает движение рулевого механизма. Для определения, в каком направление производить помощь во вращении руля, в системе предусмотрен специальный клапан, который при вращении руля в необходимом направлении открывает магистраль с высоким давлением жидкости в соответствующую полость.

Само по себе данное изобретение не такое уже и новое, принцип его работы был запатентован еще в далеком 1925 году Френсисом Дэвисом в США, а спустя менее десяти лет, в 1933 году, данное устройство уже планировалась устанавливать на автомобилях Cadillac от General Motors. Однако наибольшее распространение гидроусилитель приобрел в первую очередь на грузовых автомобилях. Это и понятно, ведь вращать руль на грузовиках гораздо тяжелее, чем на легковых автомобилях.

С момента изобретения уже прошло много лет, за которые устройство гидроусилителя претерпело значительные улучшения и изменения. Конечно, его основной принцип работы остался неименным, но новинок в его функционировании вполне  предостаточно. К примеру, его первоначальный главный недостаток был в том, что приводимый в действие от коленчатого вала насос, на небольших оборотах и скорости движения (когда он наиболее необходим) не создавал необходимого давления для более легкого вращения. В свою очередь при больших скоростях и оборотах двигателя гидроусилитель (когда руль должен быть «жестким»), наоборот, облегчал его движение. Сегодня этот недостаток, да и многие другие решены с помощью внедренных улучшений: клапана распределения жидкости  управляются микропроцессором анализирующим множество входных параметров, привод гидравлического насоса переведен на вращение электродвигателем и другое.

Современный гидроусилитель руля является еще и весьма надежным механизмом. Если регулярно следить за его работоспособностью (контролировать уровень жидкости в расширительном бачке, проверять герметичности системы) и своевременно устранять выявляемые недостатки, данный агрегат прослужит вам, по меньшей мере, не меньше, чем сам двигатель автомобиля.

Но не волнуйтесь, даже если по каким-либо причинам произойдет отказ гидроусилителя руля, то автомобиль не потеряет своего управления. Да, руль в таком случае станет крутить значительно сложнее, даже труднее чем, если бы гидроусилитель на данном автомобиле не предполагался вовсе, но продолжать движение все равно будет возможно, хотя уже и не с присущим ранее комфортом.

Неисправности гидроусилителя руля.

Самым обыденной причиной отказа работы гидроусилителя является обрыв приводящего ремня. Такая поломка не приводит к критическим проблемам в самой системе и устраняется банальной покупкой и установкой нового ремня.

Следующая причина отказа возможна при вытекании жидкости (читаем масло для гидроусилителя руля) из системы ГУРа. В данном случае причиной этому может стать разрыв магистрали от насоса до системы рулевого направления или же разрушение резиновых сальников, но это возможно только в случае применения в системе, непредусмотренной производителем гидравлической жидкости. Ни когда не слушайте рыночных «знатоков», предлагающих, по их мнению, полный аналог. Заливайте только то, что указывает производитель в инструкции по эксплуатации. Устранение поломки, приведшей к вытеканию жидкости, может вылиться в весьма значительную сумму.

Помимо полного отказа гидроусилителя руля возможны сбои в его работе: обратная отдача при вращении руля, подергивание и другие нештатные моменты. В большинстве случаев такие проблемы лечатся подтяжкой приводного ремня, доливом жидкости до необходимого уровня либо просто ее заменой, подробнее в статье замена жидкости гидроусилителя руля.

Ну, а в заключении хотелось бы отметить, что даже возможные возникающие проблемы при работе рулевой системы с гидроусилителем будут во много раз перевешены тем комфортом в использовании, который он дарит. Попробуйте после даже небольшой поездки по тому же городу на автомобиле с гидроусилителем пересесть на авто с обычным рулевым управлением, поверьте, разницу вы ощутите мгновенно.

Рекомендую прочитать:

Принципы работы усилителя руля автомобиля – ЭУР, ЭГУР и ГУР

Запись на услуги

Устройство усилителя руля может быть трех видов: электрическим (ЭУР), электрогидравлическим (ЭГУР) и самым распространенным гидравлическим (ГУР). Он устроен таким образом, что даже при его выходе из строя сохранится возможность управления автомобилем.

Неинформативный, или «ватный», руль, его плохой самовозврат, слабая обратная связь с дорогой и так далее — все эти моменты зависят в первую очередь от конструкции рулевой системы. Основополагающую роль здесь играют потери на трение и паразитный момент инерции.

При выборе типа усилителя рулевого управления лучше ориентироваться именно на ездовые ощущения. Гидравлические и электрические системы имеют серьезные конструктивные отличия и свои слабые и сильные стороны.

В нашем автосервисе можно произвести диагностику и ремонт уселителя руля любой категории – ЭУР, ЭГУР и ГУР. Специалисты сервиса работают на современном оборудовании (стендах), и имеют большой опыт. Монтаж и демонтаж на месте. Гарантия на работы 2 года.

Электроусилитель рулевого управления (ЭУР)

При повороте водителем рулевого колеса происходит скручивание торсионного вала. Эту информацию блоку управления передает датчик крутящего момента. ЭБУ обрабатывает данные, соотносит их с показаниями других датчиков и вычисляет усилие, которое необходимо приложить, чтобы помочь водителю повернуть колеса. Электрический двигатель получает команду и воздействует на вал рулевой колонки либо на рулевую рейку.

Режимы работы электроусилителя:

  • Поворот автомобиля в обычном режиме
  • Поворот машины на большой скорости
  • Поворот машины на малой скорости
  • Возврат колес в среднее положение
  • Поддержание колес в среднем положении

Электрогидравлический усилитель (ЭГУР)

На помощь механике и гидравлике пришла электроника. В результате такого симбиоза появился электрогидравлический усилитель. Существует два типа ЭГУРа: с электромагнитным клапаном и с электронасосом. Управляет работой усилителя электронный блок на основании показаний датчиков скорости, поворота руля, оборотов коленвала. Набор датчиков может меняться в зависимости от модели автомобиля.

В первой конструкции в распределитель ГУРа дополнительно встраивается электромагнитный клапан и камера обратного действия с поршнем. При повороте колес на месте или при движении с малой скоростью клапан открыт, давление в системе максимально – руль крутить легко. При наборе скорости клапан, управляемый блоком, пропорционально закрывается. В результате давление в системе уменьшается, а усилие на руле увеличивается.

Во второй, более совершенной конструкции, гидронасос заменен электронасосом, приводится не от коленвала, а отдельным электромотором. Управляет его работой блок управления. На малых скоростях скорость вращения насоса максимальна, а на больших – ограничивается блоком управления. Поэтому чем выше скорость движения – тем тяжелее становится руль. Замена гидронасоса электронасосом позволяет снизить расход топлива до 0,2 л на 100 км.

Гидравлический усилитель руля (ГУР)

ГУР – это гидравлический усилитель руля, который преобразует механическую энергию в давление жидкости, нагнетая масло под давлением в рулевой механизм.

Гидроусилитель руля устанавливается на рулевой механизм любого типа. Для легковых автомобилей наибольшее распространение получил реечный механизм. В этом случае схема ГУР следующая:

Бачок гидроусилителя – в резервуаре для рабочей жидкости установлен фильтрующий элемент и щуп для контроля за уровнем масла. С помощью масла смазываются трущиеся пары механизмов и передается усилие от насоса к гидроцилиндру. Фильтром от грязи и металлической стружки, возникающей в процессе эксплуатации, в бачке служит сетка.

Уровень жидкости внутри бака можно проверить визуально в случае, когда резервуар сделан из полупрозрачного пластика. Если пластик непрозрачный или используется металлический бачок, уровень жидкости проверяется с помощью щупа.

В некоторых автомобилях уровень жидкости можно проверить только после кратковременной работы двигателя либо при вращении рулевого колеса несколько раз в разные стороны во время работы машины на холостом ходу.

На щупах или резервуарах сделаны специальные насечки, для холодного двигателя, так и для горячего, работающего определенное времени. Также необходимый уровень жидкости можно определить и с помощью отметок «Max» и «Min».

Насос гидроусилителя – необходим для того, чтобы в системе поддерживалось нужное давление, а также происходила циркуляция масла. Насос устанавливается на блоке цилиндров двигателя и приводится в действие от шкива коленчатого вала при помощи приводного ремня.

Конструктивно насос может быть разных типов. Наиболее распространенными являются лопастные насосы, которые характеризуются высоким КПД и износоустойчивостью. Устройство выполнено в металлическом корпусе с вращающимся внутри него ротором с лопастями.

В процессе вращения лопасти захватывают рабочую жидкость и под давлением подают ее в распределитель и далее в гидроцилиндр.

Привод насоса осуществляется от шкива коленчатого вала, поэтому его производительность и давление зависят от количества оборотов двигателя. Для поддержания необходимого давления в ГУР используется специальный клапан. Давление, которое создает насос в системе, может достигать до 100–150 бар.

В зависимости от типа управления масляные насосы подразделяются на регулируемые и нерегулируемые:

  • Регулируемые насосы поддерживают постоянное давление за счет изменения производительной части насоса
  • Постоянное давление в нерегулируемых насосах поддерживает редукционный клапан.

Редукционный клапан представляет собой пневматический или гидравлический дроссель, действующий автоматически и контролирующий уровень давления масла.

Распределитель гидроусилителя – устанавливается на рулевом валу или на элементах рулевого привода. Его назначение – направление потоков рабочей жидкости в соответствующую полость гидроцилиндра или обратно в бачок.

Главными элементами распределителя являются торсион, поворотный золотник и вал распределителя. Торсион представляет собой тонкий пружинистый металлический стержень, который закручивается под действием крутящего момента. Золотник и вал распределителя представляют собой две цилиндрические детали с каналами для жидкости, вставленные друг в друга. Золотник связан с шестерней рулевого механизма, а вал распределителя с карданным валом рулевой колонки, то есть с рулем. Торсион одним концом закреплен на валу распределителя, другой его конец установлен в поворотный золотник.

Распределитель может быть осевым, при котором золотник перемещается поступательно, и роторным – здесь золотник вращается.

Гидроцилиндр – встроен в рейку и состоит из поршня и штока, перемещающего рейку под действием давления жидкости. Соединительные шланги высокого давления обеспечивают циркуляцию масла между распределителем, гидроцилиндром и насосом. Масло из бачка в насос и из распределителя обратно в бачок поступает по шлангам низкого давления.

Принцип работы гидроусилителя руля

Режимы работы гидроусилителя при повороте колес в любую сторону:

  • Автомобиль стоит неподвижно на месте – колеса установлены прямо. В данный момент гидроусилитель не работает и жидкость просто перекачивается насосом по системе (из бачка в распределитель и обратно).
  • Водитель начинает вращать рулевое колесо – крутящий момент от рулевого колеса передается на вал распределителя и далее на торсион, который начинает закручиваться. Поворотный золотник в этот момент не вращается, поскольку ему мешает это сделать сила трения, препятствующая повороту колес. Перемещаясь относительно золотника, вал распределителя открывает канал для поступления жидкости в одну из полостей гидроцилиндра (в зависимости от того, куда повернут руль). Таким образом, вся жидкость под давлением направляется в гидроцилиндр. Жидкость из второй полости гидроцилиндра поступает в сливную магистраль и далее в бачок. Жидкость давит на поршень со штоком, за счет чего перемещается рулевая рейка и поворачиваются колеса.
  • Водитель прекратил вращение рулевого колеса – продолжая удерживать его в повернутом положении. Рулевая рейка, перемещаясь, вращает поворотный золотник и выравнивает его относительно вала распределителя. В этот момент распределитель устанавливается в нейтральное положение и жидкость вновь циркулирует по системе, не совершая работы, как и при прямолинейном положении колес.
  • Руль выкручен в крайнее положение и удерживается – самый тяжелый режим для гидроусилителя, поскольку распределитель не может вернуться в нейтральное положение, и вся циркуляции жидкости происходит внутри насоса, что сопровождается повышенным шумом его работы. Но стоит отпустить руль, и система придет в норму.

Когда производить замену жидкости в ГУР

Теоретически рабочей жидкостью можно пользоваться в течение всего срока эксплуатации автомобиля, но рекомендуется периодически менять масло.

Сроки замены зависят от интенсивности эксплуатации транспортного средства. При среднегодовом пробеге 10–20 тысяч км, достаточно менять масло раз в два–три года. Если машина эксплуатируется чаще, то и смену жидкости нужно делать чаще.

В результате эксплуатации гидроусилителя повышается температура его элементов. За счет этого греется и масло, что приводит к ухудшению его физических свойств. Если при контроле состояния жидкости замечены посторонние частицы или запах горелого масла – значит, настало время для замены.

Объем жидкости при полной замене не превысит полутора литров. Для жидкости замеряют два уровня: холодный и горячий. Холодный уровень – это точка, при которой температура масла находится в пределах от нуля до тридцати градусов. Горячий уровень – точка, когда температура жидкости варьируется от пятидесяти до восьмидесяти градусов.

Преимущества и недостатки ГУР

Преимуществом системы гидроусилителя является:

  • Облегчение управления автомобилем, снижение утомляемости водителя
  • Смягчение ударов, которые передаются на рулевое колесо от неровностей дороги
  • Лучшая управляемость и маневренность автомобиля

Недостатки системы:

  • Постоянно работающий насос отбирает часть мощности у двигателя
  • Необходимость периодического обслуживания системы

Вернуться в блог статей

Полезные статьи из блога

Что такое усилитель тормозов? Как работает усилитель тормозов?

Техника вождения автомобиля полностью изменилась, и наступила новая эра с новыми технологиями и изобретениями.

Благодаря новым изобретениям старый опыт вождения полностью изменился. Было изобретено много новых механизмов и устройств, чтобы сделать вождение более безопасным и легким, например, механическая тормозная система заменена некоторыми передовыми тормозными системами, такими как гидравлический тормоз, пневматические тормоза и вакуумный тормоз.

Для правильной работы тормозных систем разработаны дополнительные устройства, делающие вождение более удобным и безопасным.

Усилитель тормозов является одним из устройств безопасности, используемых в автомобилях, и является необходимой частью тормозной системы.

Принцип работы и принцип работы усилителя тормозов следующий.

Принцип работы:

Усилитель тормозов — это защитное устройство, используемое вместе с тормозами и работающее по закону Паскаля.

Помогает сделать вождение очень комфортным, ведь при вождении основными задачами являются контроль скорости и торможение.

С помощью этого устройства ощущения от торможения полностью изменились, потому что оно снижает усилия человека по торможению. Он установлен между главным тормозным цилиндром и педалью тормоза.

Усилитель тормозов увеличивает усилие давления перед подачей на главный цилиндр, так что усилие водителя уменьшается или, можно сказать, увеличивает усилие водителя на педали тормоза с приложением вакуума, вызванного расположением поршень-цилиндр двигателя.

Повышает эффективность торможения и обеспечивает комфортное вождение за счет снижения утомляемости водителя, так как для нажатия на тормоз требуется очень меньше усилий.

Компоненты :

Brake Booster — это необходимое устройство в тормозная система. Он состоит из различных компонентов, которые расположены в правильная последовательность для нормального функционирования. Основные части тормоза Бустеры следующие:

Корпус:

Корпус — это основная деталь, в которой последовательно расположены все компоненты.Именно внешний кожух усилителя тормозов обеспечивает безопасность внутренних частей и предотвращает их удары и столкновения.

Валы: Валы

обеспечивают связь между входом и выходом. В усилителе тормозов используются два типа валов, один из которых известен как входной или первичный вал, а второй — как вторичный или выходной вал. Входной вал является связующим звеном между входной педалью тормоза и диафрагмой. Функция этого вала заключается в открытии и закрытии впускного клапана для входа и выхода атмосферного воздуха.Вторичный или выходной вал обеспечивает связь между диафрагмой и главным цилиндром. Функция вторичного вала заключается в передаче создаваемого усилия от диафрагмы к главному тормозному цилиндру.

Клапаны:

Клапаны играют важную роль в функционировании усилителя тормозов, потому что для контроля и поддержания точного давления требуется правильный вход и выход воздуха. Здесь два клапана используются одинаково для валов. Один клапан атмосферный, второй клапан вакуумный.Функция обоих клапанов одинакова, но вакуумный клапан является односторонним, потому что он используется для поддержания вакуума внутри усилителя тормозов и позволяет только выходу воздуха, вход воздуха запрещен.

Атмосферный клапан позволяет вход и выход атмосферного воздуха внутрь усилителя тормозов при торможении педаль нажимается и отпускается. Вакуумный клапан установлен на выходе сторону усилителя тормозов и поддерживает идеальный вакуум за счет ограничение поступления воздуха внутрь усилителя тормозов.

Мембрана:

Это основной компонент любого усилителя тормозов, поскольку он разделяет первичную и вторичную стороны усилителя тормозов, а также передает движение от впускного вала к внешнему валу за счет приложения давления воздуха.

Пружины:

В одном усилителе тормозов используются две пружины с обеих сторон. Размер пружин варьируется в зависимости от размера усилителя тормозов. Основная функция пружины заключается в регулировании положения клапанов и с помощью пружины клапаны возвращаются в исходное положение после отпускания педали.

Рабочий:

Работа усилителя тормозов очень просто. В усилителе тормозов усилие передается от входа к выходу. с применением давления воздуха, что увеличивает интенсивность тормозное усилие. Увеличивает усилие на педали тормоза перед внедрением в приложение для торможения. Усилитель тормозов работает следующим образом

  • При нажатии педали тормоза для включения тормоза атмосферный клапан открывается и атмосферный воздух начинает поступать в тормоз бустер.
  • В то же время поддерживается надлежащий вакуум на вторичном сторону с применением поршневой схемы двигателя. То свежий атмосферный воздух, имеющий давление, равное атмосферному давление позволяет первичному валу толкать диафрагму вперед направлении при нажатии на педаль тормоза.
  • При движении диафрагмы вторичный вал давит на главный цилиндр с большей интенсивностью силы.
  • Причиной увеличения интенсивности силы является разница давлений между обеими сторонами.На вторичной стороне вакуум или присутствует отрицательное давление, тогда как на первичной стороне атмосферное оказывает давление, которое намного выше, чем давление вторичной стороны поэтому легкое нажатие на педаль тормоза приводит к умножению входное усилие, которое требуется.
  • При отпускании педали тормоза весь узел возвращается в исходное положение положение с приложением пружин и выпуском воздуха которые закрывают оба клапана.

Это все об усилителе тормозов. Если у вас есть какие-либо вопросы относительно этой статьи, задайте их в комментариях.Если вам понравилась эта статья, не забудьте поделиться ею в социальных сетях. Подпишитесь на наш сайт, чтобы получать больше информативных статей. Спасибо, что прочитали это.

Читайте также – АНТИБЛОКИРОВОЧНАЯ СИСТЕМА ТОРМОЗОВ (АБС): КОМПОНЕНТЫ, ТИПЫ И ПРИНЦИП РАБОТЫ

Основы гидравлического тормоза | Журнал коммерческого перевозчика

Типовая гидравлическая тормозная система для средних нагрузок с передними дисками (красный контур) и задними барабанами (зеленый контур). Повышение или помощь (синяя схема) обеспечивается насосом с приводом от двигателя, хотя эту функцию часто выполняет насос гидроусилителя рулевого управления.Стояночные тормоза (оранжевый контур) приводятся в действие щитком приборов.

Никогда не задумывались, почему не может быть только один вид тормоза? Это связано с тем, что пневматические и гидравлические тормоза имеют рабочие характеристики, которые делают тот или иной вариант идеальным для определенных применений.

В большегрузных комбинированных транспортных средствах воздух является очевидным выбором из-за большого объема жидкости, которая потребуется для нагнетания всех колесных цилиндров. Кроме того, иметь дело с гладкими руками и шлангами, заполненными гидравлической жидкостью, было бы грязно.

Но для легких и средних грузовых автомобилей гидравлические тормоза предлагают следующие преимущества:

  • Ощущение тормоза – т. е. чем дальше педаль нажимается, тем больше усилие;
  • Высокое давление в трубопроводе, позволяющее использовать более легкие и компактные компоненты тормозной системы;
  • Меньше первоначальных затрат из-за меньшего размера и меньшего количества компонентов;
  • Чистота – гидравлические тормоза являются закрытыми системами;
  • Простота обнаружения утечек, так как жидкость видна.

Вариантов гидравлических тормозных систем гораздо больше, чем пневматических, но все они имеют общие черты.

Гидравлическая система
Все гидравлические тормозные системы содержат резервуар для жидкости, главный цилиндр, создающий гидравлическое давление, гидравлические линии и шланги для подачи жидкости под давлением к тормозам, а также один или несколько колесных цилиндров на каждом колесе.

Колесные цилиндры расширяются под давлением жидкости и прижимают тормозные колодки к внутренней части барабанов.Если используются дисковые тормоза, суппорты со встроенными цилиндрами зажимают роторы при приложении давления.

Поскольку транспортное средство должно останавливаться намного быстрее, чем ускоряться, требуется огромное тормозное усилие. Следовательно, тормозная мощность, генерируемая тормозами, должна в несколько раз превышать мощность двигателя.

Для создания сил, необходимых для удержания тормозных накладок в барабанах или дисках, и для достижения управляемого замедления необходимо умножить исходное усилие, прикладываемое к педали тормоза.

При использовании гидравлической системы единственным механическим рычагом является рычажный механизм педали. Однако изменение диаметра колесных цилиндров или диаметра суппорта по отношению к диаметру отверстия главного цилиндра обеспечивает дополнительное увеличение передаточного отношения.

В гидравлической системе давление, создаваемое различными колесными цилиндрами, напрямую зависит от площади их поршней. Например, если один поршень колесного цилиндра имеет площадь 2 квадратных дюйма, а другой поршень имеет площадь 1 квадратный дюйм, то давление в системе

Тормозные колодки (левые) раздвигаются колесным цилиндром и трутся о внутреннюю часть барабана, чтобы остановить автомобиль.Дисковые тормоза (справа) используют гидравлическое давление во встроенном цилиндре, чтобы заставить тормозные колодки зажимать ротор.

составляет 400 фунтов на квадратный дюйм, поршень площадью 2 квадратных дюйма будет давить на тормозные колодки с силой 800 фунтов. Поршень площадью 1 квадратный дюйм будет оказывать усилие в 400 фунтов. Соотношение между площадями главного цилиндра и колесных цилиндров определяет увеличение силы на поршнях колесных цилиндров.

Имейте в виду, что чем больше диаметр колесного цилиндра, тем больше жидкости должен подавать главный цилиндр для его заполнения.Это приводит к более длинному ходу главного цилиндра.

Если диаметр отверстия главного цилиндра увеличен, а прилагаемое усилие остается прежним, в системе будет создаваться меньшее давление, но для достижения желаемого давления в колесном цилиндре можно использовать больший поршень колесного цилиндра. Очевидно, что сменный главный цилиндр, колесный цилиндр или суппорт должны иметь ту же конструкцию и диаметр отверстия, что и оригинальный блок.

Гидравлические тормозные системы представляют собой сплит-системы, состоящие из двух дискретных тормозных контуров.Один поршень и резервуар главного цилиндра используются для приведения в действие тормозов на одной оси, а отдельный поршень и резервуар приводятся в действие тормозами на другой оси (осях). Хотя это редкость, некоторые тормозные системы малой грузоподъемности разделены по диагонали, а не по осям.

Причина использования сплит-системы заключается в том, что если в одном гидравлическом контуре образуется утечка, другой остановит автомобиль. Конечно, нельзя ехать на автомобиле дальше, чем это необходимо для ремонта тормозной системы.

При выходе из строя одного из гидравлических контуров датчик перепада давления определяет неравное давление в двух контурах.Переключатель содержит поршень, закрепленный центрирующей пружиной, и электрические контакты на каждом конце. Давление жидкости из одного гидравлического контура подается на один конец реле перепада давления, а давление из другого контура подается на другой конец. Когда давление в одном контуре падает, нормальное давление в другом контуре выталкивает поршень в неработающую сторону, замыкая контакты и зажигая сигнальную лампочку на приборной панели.

Усилитель
Усилители или усилители уменьшают усилие оператора на педали тормоза.Вакуумные усилители, популярные на легковых автомобилях, используют разрежение двигателя на одной стороне диафрагмы и атмосферное давление на другой стороне. Клапан позволяет вакууму воздействовать на диафрагму пропорционально ходу педали тормоза. Это способствует усилию на педали и позволяет увеличить давление на тормозную жидкость без чрезмерного увеличения усилия на педали.

Другие типы усилителей используют гидравлическое давление — либо от насоса гидроусилителя рулевого управления автомобиля, либо от отдельного электрического насоса, либо от обоих — для усиления усилия на педали.Когда педаль тормоза нажата, клапан увеличивает гидравлическое давление в камере наддува, чтобы приложить повышенное давление к поршням главного цилиндра.

В некоторых системах используется как вакуум, так и гидроусилитель. В других системах давление воздуха бортового компрессора используется для создания давления в гидравлической системе.

Клапаны
Клапаны, обычно используемые в гидравлических тормозных системах, включают:

  • Дозирующие или уравновешивающие клапаны. Они ограничивают процент гидравлического давления на задние тормоза, когда давление в системе достигает заданного высокого значения.Это улучшает баланс между передними и задними тормозами при торможении на высокой скорости, когда часть веса задней части автомобиля переносится вперед, и помогает предотвратить блокировку задних колес. Некоторые дозирующие клапаны чувствительны к высоте. То есть они регулируют давление в заднем тормозе в зависимости от загрузки автомобиля. По мере увеличения нагрузки автомобиля (уменьшения высоты) допускается большее гидравлическое давление на задние тормоза;
  • Дозирующие клапаны. Они удерживают давление на передние дисковые тормоза, позволяя колодкам задних барабанных тормозов преодолевать давление возвратной пружины и контактировать с задними барабанами.Это предотвращает блокировку передних тормозов на скользких поверхностях при легком торможении. Эти клапаны не срабатывают при резком торможении.

Парковка
Функция парковки сильно различается в зависимости от гидравлической тормозной системы. Во многих легковых автомобилях с задними барабанными тормозами используется рычажно-тросовая установка типа легкового автомобиля. Храповой рычаг или

Функция самовозбуждения барабанных тормозов. Когда тормозные колодки расширяются и контактируют с вращающимся барабаном, передняя тормозная колодка прижимается к задней колодке силой движущегося барабана.Это приводит к более высокому давлению между футеровкой и барабаном, чем давление, создаваемое одним колесным цилиндром (цилиндрами).

Ножная педаль

натягивает трос, который, в свою очередь, тянет узел рычага на каждом конце заднего колеса. Рычаг раздвигает тормозные колодки, и они механически удерживаются на барабанах до тех пор, пока храповик не будет отпущен.

Другие парковочные системы включают пружинные камеры, подобные тем, которые используются в пневматических тормозных системах. Они подпружинены, но отключаются под действием гидравлического давления, а не воздуха.

Антиблокировочная система
На многих грузовых автомобилях малой грузоподъемности с гидравлическими тормозами антиблокировочная система тормозов используется на задних колесах для сохранения устойчивости торможения, когда эти автомобили мало загружены. Антиблокировочная система передних и задних колес обычно является опцией, за исключением автомобилей полной разрешенной массой более 10 000 фунтов, которые должны иметь антиблокировочную систему рулевого управления и ведущей оси.

В современных гидравлических антиблокировочных системах спускной клапан выпускает гидравлическую жидкость под давлением в аккумулятор в случае надвигающейся блокировки колеса.

Электронный блок управления получает сигнал(ы) скорости от датчиков в трансмиссии и/или на колесах. Когда тормоза задействованы, блок управления определяет снижение скорости заднего колеса и активирует сбросной клапан (клапаны), если скорость замедления превышает заданный предел.

Блок управления активирует сбросной клапан серией быстрых импульсов для сброса гидравлического давления в колесе. Продолжая работу в антиблокировочном режиме, сбросной клапан подает импульс, чтобы колеса продолжали вращаться, сохраняя контролируемое замедление.

В конце такой остановки клапан обесточивается и вся жидкость в гидроаккумуляторе возвращается в главный цилиндр. Возобновляется нормальная работа тормозов.

Фундаментные тормоза
Фундаментальные тормоза в гидравлических системах могут быть барабанными или дисковыми. Во многих случаях на передней оси используются диски, а на задней — барабаны.

Барабанные тормоза считаются самоподдерживающимися. Это связано с тем, что когда тормозные колодки расширяются и контактируют с вращающимся барабаном, передняя или передняя тормозная колодка прижимается к задней колодке силой движущегося барабана.Это приводит к более высокому давлению между футеровкой и барабаном, чем может быть создано только колесным цилиндром.

По мере износа тормозных накладок колодки необходимо периодически приближать к барабанам, чтобы обеспечить надлежащий контакт при торможении. В то время как некоторые старые барабанные тормоза в сборе регулируются вручную, большинство из них являются автоматическими. В них используется звездочка или храповой узел, который определяет, когда колесный цилиндр выходит за пределы своего нормального хода, и расширяет точку поворота на другом конце тормозных колодок.

Помимо того, что тормозной барабан или ротор является одним из фрикционных элементов, он также действует как теплоотвод. Он должен быстро поглощать тепло при торможении и удерживать его до тех пор, пока оно не рассеется в воздухе. Чем тяжелее барабан или ротор, тем больше тепла он может удерживать.

Это важно, так как чем сильнее нагреваются тормозные колодки, тем больше они подвержены тепловому износу. Затухание тепла вызывается повторяющимися резкими остановками и приводит к уменьшению трения футеровки о барабан/ротор и увеличению тормозного пути транспортного средства.Как правило, качественные футеровки менее подвержены выцветанию при нагреве, чем низкокачественные. Кроме того, дисковые тормоза гораздо более устойчивы к перепадам температур, чем барабанные.

Другим типом выцветания, которому подвержены тормоза, является выцветание в воде. Барабанные тормоза с их большой площадью поверхности прикладывают меньшее усилие в фунтах на квадратный дюйм между накладкой и барабаном во время остановки, чем дисковые тормоза. Это, в сочетании с водоудерживающей формой барабана, способствует аквапланированию между колодкой и барабаном во влажных условиях. В результате значительно увеличивается тормозной путь.

Дисковые тормоза

, с их меньшими поверхностями трения и высокими усилиями прижима, хорошо справляются со стиранием воды с роторов и практически не снижают тормозную способность во влажном состоянии.

Описание гидравлических и электромеханических тормозов

Традиционные тормозные системы не сильно изменились за последнее столетие, поэтому концепция технологии электронного торможения представляет собой изменение, которое автопроизводители и общественность неохотно принимают. Электронное торможение относится к тормозным системам, которые управляют тормозами с помощью электрических средств.

Стефан Вайхельт / Getty Images

Комфортная природа гидравлических тормозов

В традиционных тормозных системах нажатие на педаль тормоза создает гидравлическое давление, которое приводит в действие тормозные колодки или колодки. В старых системах педаль действует непосредственно на гидравлический компонент, известный как первичный цилиндр. В современных системах усилитель тормозов, обычно приводимый в действие вакуумом, увеличивает силу нажатия на педаль и облегчает торможение.

Когда основной цилиндр активируется, он создает гидравлическое давление в тормозных магистралях.Это давление впоследствии действует на вторичные цилиндры, присутствующие в каждом колесе, которые либо зажимают ротор между тормозными колодками, либо выдавливают тормозные колодки наружу в барабан.

Современные гидравлические тормозные системы более сложны, но работают по тому же общему принципу. Гидравлические или вакуумные усилители тормозов уменьшают усилие, которое приходится прикладывать водителю. Такие технологии, как антиблокировочная система тормозов и системы контроля тяги, способны автоматически активировать или отключать тормоза.

Электрические и электрогидравлические тормоза традиционно использовались только на прицепах. Поскольку прицепы имеют электрические разъемы для стоп-сигналов и сигналов поворота, можно легко подключить электрогидравлический главный цилиндр или электрические приводы. Подобные технологии доступны от OEM-производителей, но критически важный для безопасности характер тормозов привел к тому, что автомобильная промышленность по-прежнему не решается внедрить технологию электронного торможения. Однако с появлением систем автономного вождения и систем помощи при вождении электронное торможение получило более широкое распространение.

Короткая остановка электрогидравлических тормозов

Современные системы торможения по проводам используют электрогидравлическую модель, которая не является полностью электронной. Эти системы имеют гидравлические системы, но водитель не активирует первичный цилиндр напрямую, нажав на педаль тормоза. Вместо этого первичный цилиндр приводится в действие электродвигателем или насосом, который регулируется блоком управления.

Когда педаль тормоза нажата в электрогидравлической системе, блок управления использует информацию от ряда датчиков, чтобы определить, какое тормозное усилие требуется для каждого колеса.Затем система может применить необходимое количество гидравлического давления к каждому суппорту.

Другое основное различие между электрогидравлическими и традиционными гидравлическими тормозными системами заключается в том, какое давление требуется. Электрогидравлические тормозные системы обычно работают при более высоком давлении, чем традиционные системы. Гидравлические тормоза работают при давлении около 800 фунтов на квадратный дюйм при нормальных условиях вождения, в то время как электрогидравлические системы Sensotronic поддерживают давление от 2000 до 2300 фунтов на квадратный дюйм.

Электромеханические системы действительно являются электронными тормозами

В то время как серийные модели все еще используют электрогидравлические системы, настоящая технология электронного торможения полностью исключает гидравлику.Эта технология не использовалась ни в одной из серийных моделей из-за критически важного для безопасности характера тормозных систем. Тем не менее, он подвергся значительным исследованиям и испытаниям.

В отличие от электрогидравлических тормозов компоненты электромеханической системы являются электронными. Суппорты имеют электронные приводы вместо вторичных гидравлических цилиндров, и всем управляет блок управления вместо первичного цилиндра высокого давления. Эти системы также требуют различного дополнительного оборудования, включая датчики температуры, силы зажима и положения привода в каждом суппорте.

Электромеханические тормоза включают в себя сложные коммуникационные сети, поскольку каждый суппорт получает несколько входных данных для создания надлежащего тормозного усилия. Из-за того, что эти системы критически важны для безопасности, обычно имеется резервная вторичная шина для доставки необработанных данных к каверномерам.

Насущная проблема безопасности технологии Brake-by-wire

Гидроэлектрические и электромеханические тормозные системы потенциально более безопасны, чем традиционные системы.Однако из-за возможности большей интеграции с ABS, ESC и аналогичными технологиями эти системы сдерживались соображениями безопасности. Традиционные тормозные системы могут и выходят из строя, но только катастрофическая потеря гидравлического давления полностью не позволит водителю остановиться или снизить скорость. Более сложные электромеханические системы имеют множество потенциальных точек отказа.

Требования к отказоустойчивости и другие рекомендации по разработке критически важных для безопасности систем, таких как торможение по проводам, регулируются стандартами функциональной безопасности, такими как ISO 26262.

Кто предлагает технологию Brake-by-Wire?

Избыточность и системы, способные работать с уменьшенным объемом данных, в конечном итоге сделают технологию электромеханического торможения достаточно безопасной для широкого распространения. На данный момент только несколько OEM-производителей экспериментировали с электрогидравлическими системами.

Toyota представила электрогидравлическую тормозную систему в 2001 году для своего Estima Hybrid. С тех пор доступны различные варианты технологии тормозов с электронным управлением (ECB).Технология впервые появилась в США в 2005 модельном году с Lexus RX 400h.

Примером того, как технология электронного торможения потерпела неудачу при запуске, был случай, когда Mercedes-Benz отказался от своей системы Sensotronic Brake Control (SBC), которая также была представлена ​​​​в модельном году 2001 года. Систему официально сняли с производства в 2006 году после дорогостоящего отзыва в 2004 году, когда Mercedes заявил, что будет предлагать те же функции, что и ее система SBC, через традиционную гидравлическую тормозную систему.

Спасибо, что сообщили нам!

Расскажите нам, почему!

Другой Недостаточно подробностей Сложно понять

ЗАДАЧИ Изложить принципы вакуума и теории вакуумного бустера. Расскажите, как работает вакуумный усилитель тормозов. Расскажите о работе вакуумного усилителя.

Презентация на тему: » ЗАДАЧИ Изложить принципы действия вакуума и теорию вакуумного усилителя. Объяснить принцип действия вакуумного усилителя тормозов. Объяснить принцип работы вакуумного усилителя тормозов.» — Транскрипт:

1

2 ЗАДАЧИ Изложить принципы вакуума и теорию вакуумного бустера. Расскажите, как работает вакуумный усилитель тормозов. Обсудите проверку работы вакуумного усилителя, проверку герметичности вакуумного усилителя и проверку герметичности гидравлической системы.Объясните работу и диагностику гидравлического усилителя тормозов Hydro-boost.

3 ПРИНЦИПЫ РАБОТЫ ВАКУУМА Большинство вакуумных усилителей тормозов получают вакуум от впускного коллектора двигателя. Двигатель, по сути, представляет собой большой воздушный насос, потому что поршни перемещаются вверх и вниз в цилиндрах, чтобы закачивать воздух и топливо и откачивать выхлопные газы.

4 ПРИНЦИПЫ ВАКУУМА Они делают это, создавая разницу в давлении воздуха.Когда поршень движется вниз на такте впуска с открытым впускным клапаном, он создает большую площадь внутри цилиндра для заполнения воздухом.

5 ПРИНЦИПЫ РАБОТЫ ВАКУУМА Это снижает давление воздуха внутри цилиндра
И воздух с более высоким давлением снаружи двигателя поступает через впускной коллектор, пытаясь заполнить область низкого давления.

6 ПРИНЦИПЫ РАБОТЫ ВАКУУМА Хотя может показаться, что низкое давление втягивает воздух в двигатель, на самом деле это более высокое внешнее давление, которое нагнетает воздух.Разность давлений между двумя областями называется перепадом давления.

7 ПРИНЦИПЫ РАБОТЫ ВАКУУМА Вакуум измеряется в дюймах ртутного столба (дюймы ртутного столба) или в миллиметрах ртутного столба (мм рт. давление на другом.

8 ПРИНЦИПЫ ВАКУУМА Вакуум — это измерение перепада давления между более низким давлением внутри трубки и более высоким давлением снаружи.

9 ПРИНЦИПЫ РАБОТЫ ВАКУУМА Вакуумные усилители получают вакуум от впускного коллектора двигателя. Дизельные двигатели, однако, работают без дроссельной заслонки (обороты двигателя строго контролируются количеством впрыскиваемого топлива) и практически не имеют вакуума во впускном коллекторе.

10 ПРИНЦИПЫ ВАКУУМНОЙ РАБОТЫ Если автомобиль с дизельным двигателем оснащен вакуумным усилителем тормозов, он также должен быть оснащен вспомогательным вакуумным насосом.

11 ТЕОРИЯ ВАКУУМНОГО УСИЛИТЕЛЯ Вакуумные усилители используют принцип перепада давления для увеличения усилия торможения. Типичный вакуумный усилитель имеет силовую камеру, разделенную гибкой диафрагмой на две меньшие камеры. Когда давление воздуха с одной стороны диафрагмы больше, чем с другой, создается перепад давления.

12 ТЕОРИЯ ВАКУУМНОГО УСИЛИТЕЛЯ В попытке выровнять давление в двух камерах более высокое давление оказывает силу, которая перемещает диафрагму в сторону области более низкого давления.Стержни, прикрепленные к диафрагме, передают это усилие, а также усилие, прилагаемое водителем к педали тормоза, на главный цилиндр.

13 РАБОТА ВАКУУМНОГО УСИЛИТЕЛЯ ТОРМОЗОВ
Вакуумный усилитель тормозов содержит резиновые диафрагмы, соединенные с педалью тормоза одним концом и с главным цилиндром другим концом. Когда тормоза выключены или отпущены, с обеих сторон диафрагмы создается одинаковый вакуум.

14 РАБОТА ВАКУУМНОГО УСИЛИТЕЛЯ ТОРМОЗОВ
Вакуумный силовой агрегат содержит узел силового поршня, в котором находятся регулирующий клапан и реактивный механизм, а также возвратную пружину силового поршня.

15 ЭКСПЛУАТАЦИЯ В ПРИЛОЖЕННОМ ПОЛОЖЕНИИ
Когда педаль тормоза нажата, плавающий регулирующий клапан перемещается к своему гнезду в силовом поршне, от задней части усилителя.Меньшая пружина воздушного клапана заставляет воздушный клапан растягиваться по направлению к отступающему плавающему регулирующему клапану до тех пор, пока он не упрется в кромку вакуумного канала силового поршня.

16 РАБОТА В РАБОЧЕМ ПОЛОЖЕНИИ
Перекрывает подачу вакуума в заднюю часть корпуса. Поскольку поплавковый регулирующий клапан перемещается дальше, чем уплотнительный конец воздушного клапана: атмосферный воздух может поступать между воздушным клапаном и поплавковым регулирующим клапаном, создавая давление в задней части корпуса.

17 РАБОТА В РАБОЧЕМ ПОЛОЖЕНИИ
В этот момент задняя часть корпуса находится под давлением, а передняя часть находится под вакуумом. Затем атмосферное давление может заставить силовой поршень двигаться вперед.

18 РАБОТА В ПОЛОЖЕНИИ УДЕРЖАНИЯ
Когда достигнуто желаемое усилие на педали тормоза и существует баланс между противодействующими силами на педаль тормоза и главный цилиндр: Силовой поршень перемещается вперед «вокруг» плавающего регулирующего клапана и реактивного диска до тех пор, пока воздух уплотнительный конец клапана «догоняет» плавающий регулирующий клапан.

19 РАБОТА В ПОЛОЖЕНИИ УДЕРЖАНИЯ
В этот момент воздушный клапан снова герметизируется по отношению к плавающему регулирующему клапану и больше не блокирует вакуумный канал в силовом поршне. Плавающий регулирующий клапан снова удерживается вдали от своего седла.

20 ПРОВЕРКА РАБОТЫ ВАКУУМНОГО УСИЛИТЕЛЯ
При выключенном двигателе несколько раз нажмите на тормоз, чтобы снизить уровень вакуума.Удерживая ногу на педали тормоза, запустите двигатель. Педаль тормоза должна упасть. Если педаль тормоза не проваливается, проверьте правильность источника вакуума в усилителе.

21 ТЕСТ НА УТЕЧКУ ВАКУУМНОГО УСИЛИТЕЛЯ
Чтобы проверить, может ли вакуумный усилитель удерживать вакуум, выполните следующие действия: ШАГ 1 Запустите двигатель, чтобы создать вакуум в усилителе, затем выключите двигатель. ШАГ 2 Подождите одну минуту.ШАГ 3 Нажмите педаль тормоза несколько раз. Должно быть два или более торможения с усилителем.

22 ТЕСТ НА УТЕЧКУ В ГИДРАВЛИЧЕСКОЙ СИСТЕМЕ
Внутренняя или внешняя утечка в гидравлической системе также может вызвать проблемы с тормозной системой. Чтобы проверить герметичность гидравлической системы (а не усилителя), нажмите и отпустите педаль тормоза (рабочие тормоза) несколько раз. Это должно истощить любую остаточную мощность.

23 HYDRO-BOOST ГИДРАВЛИЧЕСКИЙ УСИЛИТЕЛЬ ТОРМОЗОВ
Hydro-Boost — это гидроусилитель с гидравлическим приводом, созданный компанией Bendix. В системе Hydro-Boost в качестве источника энергии используется гидравлическая жидкость под давлением от насоса гидроусилителя рулевого управления автомобиля, а не вакуум двигателя, который используется в вакуумных усилителях.

24 HYDRO-BOOST ГИДРАВЛИЧЕСКИЙ УСИЛИТЕЛЬ ТОРМОЗОВ: ДИАГНОСТИКА
Выполните тщательный визуальный осмотр, включая следующее: 1.Проверка уровня жидкости гидроусилителя руля 2. Проверка отсутствия утечек из агрегата или насоса гидроусилителя 3. Проверка состояния и натяжения ремня привода ГУР 4. Проверка исправности базовой тормозной системы

25 РЕЗЮМЕ Большинство вакуумных усилителей тормозов получают вакуум от впускного коллектора двигателя. Вакуумные усилители используют принцип перепада давления для увеличения усилия торможения.Hydro-Boost — это гидроусилитель с гидравлическим приводом, созданный компанией Bendix.


Основы инженерного дела: основы гидравлических насосов

Скачать эту статью в формате .PDF

Когда работает гидравлический насос, он выполняет две функции. Во-первых, его механическое действие создает вакуум на входе в насос, что позволяет атмосферному давлению нагнетать жидкость из резервуара во впускной трубопровод к насосу. Во-вторых, его механическое действие доставляет эту жидкость к выходу насоса и нагнетает ее в гидравлическую систему.

Насос создает движение или поток жидкости: не создает давление . Он создает поток, необходимый для развития давления, которое является функцией сопротивления потоку жидкости в системе. Например, давление жидкости на выходе насоса равно ноль для насоса, не подключенного к системе (нагрузка). Далее, для насоса, подающего в систему, давление будет повышаться только до уровня, необходимого для преодоления сопротивления нагрузки.

Классификация насосов

Все насосы могут быть классифицированы как объемные или объемные.Большинство насосов, используемых в гидравлических системах, являются объемными.

Непрямой объемный насос создает непрерывный поток. Однако, поскольку он не обеспечивает положительного внутреннего уплотнения от проскальзывания, его производительность значительно меняется при изменении давления. Центробежные и пропеллерные насосы являются примерами насосов прямого вытеснения.

Если бы выходной порт объемного насоса был перекрыт, давление повысилось бы, а производительность уменьшилась бы до нуля.Хотя насосный элемент продолжал бы двигаться, поток останавливался из-за проскальзывания внутри насоса.

В объемном насосе проскальзывание незначительно по сравнению с объемным выходным потоком насоса. Если бы выходное отверстие было забито, давление мгновенно увеличилось бы до такой степени, что насосный элемент насоса или его корпус вышли бы из строя (возможно, взорвались бы, если бы приводной вал не сломался первым) или первичный двигатель насоса остановился.

Принцип объемного вытеснения

Объемный насос — это насос, который вытесняет (подает) одинаковое количество жидкости за каждый цикл вращения насосного элемента.Постоянная подача во время каждого цикла возможна благодаря посадке с жесткими допусками между насосным элементом и корпусом насоса. То есть количество жидкости, проскальзывающей мимо насосного элемента в объемном насосе, минимально и ничтожно мало по сравнению с теоретически максимально возможной подачей. Подача за цикл остается почти постоянной, независимо от изменений давления, против которого работает насос. Обратите внимание, что если проскальзывание жидкости существенное, насос работает неправильно и его следует отремонтировать или заменить.

Объемные насосы могут быть фиксированного или переменного объема. Производительность насоса постоянной производительности остается постоянной в течение каждого цикла откачки и при заданной скорости насоса. Производительность насоса с переменным рабочим объемом можно изменить, изменив геометрию камеры рабочего объема.

Другие названия для описания этих насосов: гидростатические , для объемного вытеснения и гидродинамические насосы для объемного вытеснения. Гидростатический означает, что насос преобразует механическую энергию в гидравлическую при сравнительно небольшом количестве и скорости жидкости.В гидродинамическом насосе скорость и движение жидкости большие; выходное давление фактически зависит от скорости, с которой жидкость течет.

Поршневые насосы


Рис. 1. Поршневой насос.

Принцип объемного вытеснения хорошо иллюстрируется насосом поршневого типа, простейшим объемным насосом, рис. 1. Когда поршень выдвигается, частичный вакуум, создаваемый в камере насоса, всасывает жидкость из резервуара через впускной обратный клапан. в камеру.Частичный вакуум помогает надежно зафиксировать выпускной обратный клапан. Объем жидкости, всасываемой в камеру, известен из-за геометрии корпуса насоса, в данном примере цилиндра.

Когда поршень втягивается, впускной обратный клапан возвращается в исходное положение, закрывая клапан, а сила поршня смещает выпускной обратный клапан, вытесняя жидкость из насоса в систему. При каждом возвратно-поступательном цикле из насоса вытесняется одинаковое количество жидкости.

Все объемные насосы подают одинаковый объем жидкости за каждый цикл (независимо от того, поршневые они или вращающиеся).Это физическая характеристика насоса, не зависящая от скорости движения. Однако чем быстрее приводится в действие насос, тем больше общих объемов жидкости он перекачивает.

Ротационные насосы

В насосе роторного типа вращательное движение переносит жидкость от входа насоса к выходу насоса. Ротационные насосы обычно классифицируют в зависимости от типа элемента, передающего жидкость, поэтому мы говорим о ротационном насосе шестеренчатого, лопастного, лопастного или поршневого типа.


Рис. 2.Цилиндрический шестеренчатый насос.

Насосы с внешним зацеплением можно разделить на типы с внешним и внутренним зацеплением. Типичный насос с внешним зацеплением показан на рис. 2. Эти насосы поставляются с прямозубым, косозубым или шевронным зацеплением. Прямозубые зубчатые колеса легче всего резать и они наиболее широко используются. Косозубые и шевронные шестерни работают тише, но стоят дороже.

Шестеренчатый насос создает поток, перемещая жидкость между зубьями двух зацепляющихся шестерен. Одна шестерня приводится в движение приводным валом и вращает промежуточную шестерню.Полости, образованные между соседними зубьями шестерни, закрыты корпусом насоса и боковыми пластинами (также называемыми изнашиваемыми или прижимными пластинами).

На входе в насос создается частичный вакуум, когда зубья шестерни выходят из зацепления. Жидкость втекает, чтобы заполнить пространство и разносится по внешней стороне шестерен. Когда зубья снова входят в зацепление на выпускном конце, жидкость вытесняется.

Объемный КПД шестеренных насосов достигает 93% при оптимальных условиях. Зазоры между рабочими поверхностями шестерен, гребнями зубьев шестерен и корпусом создают почти постоянные потери в любом перекачиваемом объеме при фиксированном давлении.Это означает, что объемная эффективность при низких скоростях и потоках низкая, поэтому шестеренные насосы должны работать на скоростях, близких к их максимальным номинальным значениям.

Хотя потери через рабочие зазоры, или «скольжение», увеличиваются с увеличением давления, эти потери почти постоянны при изменении скорости и производительности. Для одного насоса потери увеличиваются примерно на 1,5 галлона в минуту от нуля до 2000 фунтов на квадратный дюйм независимо от скорости. Изменение проскальзывания при изменении давления мало влияет на производительность при работе на более высоких скоростях и выходной мощности.Шестеренчатые насосы с внешним зацеплением сравнительно невосприимчивы к загрязнениям в масле, которые увеличивают скорость износа и снижают эффективность, но внезапные заклинивания и отказы маловероятны.


Рис. 3. Кулачковый насос.

Кулачковый насос представляет собой роторный насос с внешним зацеплением, рис. 3. Он отличается от обычного насоса с внешним зацеплением способом привода «шестерен». В шестеренчатом насосе одна шестерня приводит в движение другую; в лопастном насосе оба кулачка приводятся в движение через подходящие приводные шестерни вне камеры корпуса насоса.

Винтовой насос представляет собой шестеренчатый насос с осевым потоком, аналогичный по принципу действия винтовому компрессору. Винтовые насосы бывают трех видов: одновинтовые, двухвинтовые и трехвинтовые. В одновинтовом насосе спиральный ротор вращается эксцентрично во внутреннем статоре. Двухвинтовой насос состоит из двух параллельно зацепляющихся роторов, вращающихся в корпусе, обработанном с малыми допусками. Трехвинтовой насос состоит из ротора с центральным приводом и двух зацепляющихся холостых роторов; роторы вращаются внутри корпуса, обработанного с малыми допусками.

Поток через винтовой насос осевой и направлен в сторону приводного ротора. Впускная гидравлическая жидкость, окружающая роторы, захватывается при вращении роторов. Эта жидкость выталкивается равномерно при вращении роторов вдоль оси и вытесняется другим концом.

Жидкость, подаваемая винтовым насосом, не вращается, а движется прямолинейно. Роторы работают как бесконечные поршни, которые непрерывно движутся вперед. Пульсаций нет даже на высокой скорости. Отсутствие пульсаций и отсутствие контакта металл-металл обеспечивает очень тихую работу.

Насосы большего размера используются в качестве насосов предварительного заполнения низкого давления и большого объема на больших прессах. Другие области применения включают гидравлические системы на подводных лодках и другие области применения, где необходимо контролировать шум.


Рисунок 4. Шестеренчатые насосы — героторные и серповидные.

Насосы с внутренним зацеплением , рис. 4, имеют внутреннее зацепление и внешнее зацепление. Поскольку в этих насосах внутренняя шестерня имеет на один или два зуба меньше, чем внешняя, относительные скорости внутренней и внешней шестерен в этих конструкциях низкие.Например, если бы количество зубьев на внутренней и внешней шестернях было 10 и 11 соответственно, внутренняя шестерня сделала бы 11 оборотов, а внешняя — 10. Эта низкая относительная скорость означает низкую скорость износа. Эти насосы представляют собой небольшие компактные агрегаты.

Серповидное уплотнение Насос с внутренним зацеплением состоит из внутренней и внешней шестерни, разделенных серповидным уплотнением. Две шестерни вращаются в одном направлении, причем внутренняя шестерня вращается быстрее, чем внешняя. Гидравлическое масло всасывается в насос в точке, где зубья шестерни начинают расходиться, и подается к выпускному отверстию в пространстве между серпом и зубьями обоих разрывов.Точка контакта зубьев шестерни образует уплотнение, равно как и небольшой зазор между концами на серповидности. Хотя в прошлом этот насос обычно использовался для малой производительности с давлением ниже 1000 фунтов на квадратный дюйм, недавно стала доступна двухступенчатая модель на 4000 фунтов на квадратный дюйм.

Геротор насос с внутренним зацеплением состоит из пары шестерен, которые всегда находятся в скользящем контакте. Внутреннее зубчатое колесо имеет на один зуб больше, чем героторное. Обе шестерни вращаются в одном направлении. Масло всасывается в камеру, где зубья расходятся, и выбрасывается, когда зубья снова начинают зацепляться.Уплотнение обеспечивается скользящим контактом.

Как правило, шестеренный насос с внутренним зацеплением и уплотнением под давлением в виде гребня зуба имеет более высокий объемный КПД при низких скоростях, чем насос серповидного типа. Объемный и общий КПД этих насосов находятся в том же диапазоне, что и у насосов с внешним зацеплением. Однако их чувствительность к загрязнениям несколько выше.


Рис. 5. Базовый (несбалансированный) лопастной насос.

В лопастных насосах ряд ​​лопастей скользит в пазах ротора, который вращается в корпусе или кольце.Корпус может быть эксцентричным по отношению к центру ротора, или его форма может быть овальной, рис. 5. В некоторых конструкциях центробежная сила удерживает лопасти в контакте с корпусом, в то время как лопасти вдавливаются в пазы и выходят из них под действием силы тяжести. эксцентриситет корпуса. В одном лопастном насосе легкие пружины прижимают лопасти к корпусу; в другой конструкции насоса штифты под давлением выталкивают лопасти наружу.

Во время вращения, когда пространство или камера, окруженная лопастями, ротором и корпусом, увеличивается, создается вакуум, и атмосферное давление нагнетает масло в это пространство, которое является входной стороной насоса.По мере уменьшения пространства или объема жидкость вытесняется через выпускные отверстия.


Рис. 6. Насос со сбалансированными лопастями.


Рис. 7. Пластинчатый насос переменной производительности с компенсацией давления.

Сбалансированные и несбалансированные лопастные насосы — Насос, показанный на рис. 5, является неуравновешенным , поскольку все насосное действие происходит в камерах с одной стороны ротора и вала. Эта конструкция создает боковую нагрузку на ротор и приводной вал.Пластинчатый насос этого типа имеет круглый внутренний корпус. Неуравновешенные лопастные насосы могут иметь постоянный или переменный рабочий объем. Некоторые лопастные насосы имеют уравновешенную конструкцию , в которой эллиптический корпус образует две отдельные насосные зоны на противоположных сторонах ротора, так что боковые нагрузки уравновешиваются, рис. 6. Уравновешенные лопастные насосы поставляются только в конструкциях с постоянным рабочим объемом.

В неуравновешенной конструкции с переменным объемом, рис. 7, рабочий объем можно изменить с помощью внешнего управления, такого как маховик или компенсатор давления.Система управления перемещает кулачковое кольцо, чтобы изменить эксцентриситет между кольцом и ротором, тем самым изменяя размер насосной камеры и, таким образом, изменяя рабочий объем за один оборот.

Когда давление достаточно велико, чтобы преодолеть усилие пружины компенсатора, кулачковое кольцо смещается, уменьшая эксцентриситет. Регулировка пружины компенсатора определяет давление, при котором смещается кольцо.
Поскольку для удержания лопастей в корпусе и обеспечения герметичности в этих точках требуется центробежная сила, эти насосы не подходят для работы на низких скоростях.Эксплуатация на скорости ниже 600 об/мин не рекомендуется. Если использовать пружины или другие средства для удержания лопастей на кольце, возможна эффективная работа на скоростях от 100 до 200 об/мин.

Насосы лопастные

сохраняют высокую эффективность в течение длительного времени, так как компенсация износа концов лопастей и корпуса происходит автоматически. По мере износа этих поверхностей лопасти перемещаются дальше в своих пазах, чтобы поддерживать контакт с корпусом.

Лопастные насосы

, как и другие типы, бывают сдвоенными.Сдвоенный насос состоит из двух насосных агрегатов в одном корпусе. Они могут быть одинакового или разного размера. Хотя они установлены и приводятся в действие как одиночные насосы, гидравлически они независимы. Другим вариантом является последовательная установка: два насоса одинаковой производительности соединены последовательно, так что выход одного питает другой. Такая компоновка обеспечивает удвоенное давление, обычно создаваемое этим насосом. Лопастные насосы имеют относительно высокий КПД. Их размер невелик по отношению к выходу. Грязеустойчивость относительно хорошая.

Поршневые насосы


Рис. 8. Аксиально-поршневой насос изменяет рабочий объем за счет изменения угла наклона шайбы.

Поршневой насос представляет собой роторный агрегат, в котором для создания потока жидкости используется принцип поршневого насоса. Вместо использования одного поршня в этих насосах используется множество комбинаций поршень-цилиндр. Часть механизма насоса вращается вокруг приводного вала, создавая возвратно-поступательные движения, которые всасывают жидкость в каждый цилиндр, а затем вытесняют ее, создавая поток.Есть два основных типа: аксиально-поршневые и радиально-поршневые; обе области доступны в виде насосов с фиксированным и переменным рабочим объемом. Вторая разновидность часто способна к переменному обратимому (надцентровому) смещению.

Большинство аксиально- и радиально-поршневых насосов можно использовать как с переменным, так и с постоянным рабочим объемом. Насосы с переменным рабочим объемом, как правило, несколько больше и тяжелее, потому что они имеют дополнительные внутренние органы управления, такие как маховик, электродвигатель, гидравлический цилиндр, сервопривод и механический шток.

Аксиально-поршневые насосы — Поршни в аксиально-поршневых насосах совершают возвратно-поступательное движение параллельно центральной линии приводного вала поршневого блока. То есть вращательное движение вала преобразуется в осевое возвратно-поступательное движение. Большинство аксиально-поршневых насосов являются многопоршневыми и используют обратные клапаны или портовые пластины для направления потока жидкости от входа к выпуску.


Рис. 9. Радиально-поршневой насос.

Рядные поршневые насосы — Простейший тип аксиально-поршневого насоса представляет собой конструкцию с наклонной шайбой, в которой блок цилиндров вращается приводным валом.Поршни, установленные в отверстиях в блоке цилиндров, соединены через поршневые башмаки и втягивающее кольцо, так что башмаки упираются в наклонную наклонную шайбу. Когда блок поворачивается, рисунок 8, башмаки поршня следуют за наклонной шайбой, заставляя поршни совершать возвратно-поступательное движение. Отверстия расположены в пластине клапана таким образом, что поршни проходят через впускное отверстие при вытягивании и через выпускное отверстие при обратном вдавливании. В этих насосах рабочий объем определяется размером и количеством поршней, а также длиной их хода. , который зависит от угла наклона шайбы.

В моделях линейных насосов с переменным рабочим объемом наклонная шайба качается в подвижной вилке. Поворот вилки на цапфе изменяет угол наклона шайбы, увеличивая или уменьшая ход поршня. Вилка может быть установлена ​​с различными элементами управления, т.е. , ручным управлением, сервоприводом, компенсатором, маховиком и т. д.


Рис. 10. Кривая «напор-расход» гидронасоса постоянного рабочего объема.

Насосы с изогнутой осью — Этот насос состоит из приводного вала, который вращает поршни, блока цилиндров и стационарной поверхности клапана, обращенной к отверстиям блока цилиндров, через которые проходят впускной и выпускной потоки.Ось приводного вала расположена под углом по отношению к оси блока цилиндров. Вращение приводного вала вызывает вращение поршней и блока цилиндров.

Поскольку плоскость вращения поршней находится под углом к ​​плоскости поверхности клапана, расстояние между любым из поршней и поверхностью клапана постоянно изменяется во время вращения. Каждый отдельный поршень перемещается от поверхности клапана в течение половины оборота вала и по направлению к поверхности клапана в течение другой половины.

Клапанная поверхность имеет такие отверстия, что ее впускной канал открыт для отверстий цилиндров в той части оборота, где поршни удаляются. Его выпускной канал открыт для отверстий цилиндров в той части оборота, где поршни движутся к поверхности клапана. Таким образом, во время вращения насоса поршни всасывают жидкость в соответствующие отверстия цилиндров через впускную камеру и вытесняют ее через выпускную камеру. Насосы с изогнутой осью поставляются в конфигурациях с фиксированным и переменным рабочим объемом, но не могут быть реверсированы.


Рис. 11. Кривая напора-расхода гидравлического насоса переменной производительности с идеальной компенсацией расхода и давления.

В радиально-поршневых насосах поршни расположены радиально в блоке цилиндров; они перемещаются перпендикулярно осевой линии вала. Доступны два основных типа: в одном используются поршни цилиндрической формы, в другом — шариковые поршни. Их также можно классифицировать в соответствии с расположением портов: обратный клапан или игольчатый клапан. Они доступны с фиксированным и переменным рабочим объемом, а также с переменным реверсивным (центральным) рабочим объемом.

В радиально-поршневом насосе с отверстиями на цапфе, рис. 9, блок цилиндров вращается на неподвижной цапфе и внутри круглого противодействующего кольца или ротора. Когда блок вращается, центробежная сила, давление наддува или какая-либо форма механического воздействия заставляют поршни следовать за внутренней поверхностью кольца, которое смещено от центральной линии блока цилиндров. Поскольку поршни совершают возвратно-поступательное движение в своих отверстиях, отверстие в штифте позволяет им всасывать жидкость при движении наружу и выпускать ее при движении внутрь.

Размер и количество поршней, а также длина их хода определяют рабочий объем насоса. Рабочий объем можно изменять, перемещая опорное кольцо для увеличения или уменьшения хода поршня, изменяя эксцентриситет. Для этой цели доступны несколько элементов управления.


Рис. 12. Схема типового управления пропорциональным компенсатором давления насоса.

Плунжерные насосы чем-то похожи на роторно-поршневые насосы в том смысле, что нагнетание происходит за счет возвратно-поступательного движения поршней в каналах цилиндров.Однако в этих насосах цилиндры закреплены; они не вращаются вокруг приводного вала. Поршни могут перемещаться возвратно-поступательно коленчатым валом, эксцентриками на валу или качающейся пластиной. При использовании эксцентриков обратный ход осуществляется пружинами. Поскольку клапаны не могут быть снабжены закрытием и открытием портов при вращении, в этих насосах могут использоваться впускные и выпускные обратные клапаны.

Благодаря своей конструкции эти насосы обладают двумя особенностями, которых нет у других насосов: один из них имеет более надежное уплотнение между входом и выходом, что позволяет работать при более высоких давлениях без чрезмерной утечки проскальзывания.Во-вторых, во многих насосах смазка движущихся частей, кроме поршня и цилиндрического отверстия, может быть независимой от перекачиваемой жидкости. Поэтому можно перекачивать жидкости с плохими смазывающими свойствами. Объемный и общий КПД близки к аксиально- и радиально-поршневым насосам.

Измерение производительности насоса

Объем перекачиваемой жидкости за один оборот рассчитывается исходя из геометрии маслонесущих камер. Насос никогда не подает рассчитанное или теоретическое количество жидкости.Насколько это близко, называется объемной эффективностью . Объемная эффективность находится путем сравнения расчетной подачи с фактической подачей. Объемный КПД зависит от скорости, давления и конструкции насоса.

Механический КПД насоса также далек от идеального, потому что часть входной энергии тратится на трение. Общий КПД гидравлического насоса является произведением его объемного и механического КПД.
Насосы обычно оцениваются по их максимальному рабочему давлению и производительности в гал/мин или л/мин при заданной скорости привода в об/мин.

Согласование мощности насоса с нагрузкой


Рис. 13. Кривая «напор-расход» регулируемого гидронасоса с компенсацией давления.


Рисунок 14. Схема управления двухступенчатым компенсатором насоса.

Компенсация давления и определение нагрузки — термины, часто используемые для описания функций насоса, повышающих эффективность работы насоса. Иногда эти термины используются взаимозаменяемо, и это заблуждение проясняется, когда вы понимаете разницу в том, как работают эти два расширения.

Чтобы исследовать эти различия, рассмотрим простую схему, в которой используется насос постоянной производительности, работающий с постоянной скоростью. Эта схема эффективна только тогда, когда нагрузка требует максимальной мощности, потому что насос выдает полное давление и подачу независимо от потребности нагрузки. Предохранительный клапан предотвращает чрезмерное повышение давления, направляя жидкость под высоким давлением в резервуар, когда система достигает настройки сброса. Как показано на рис. 10, мощность тратится впустую всякий раз, когда нагрузке требуется меньше полного расхода или полного давления.Неиспользованная энергия жидкости, производимая насосом, превращается в тепло, которое необходимо рассеять. Общая эффективность системы может составлять 25% или ниже.

Насосы с переменным рабочим объемом

, оснащенные регуляторами рабочего объема, рис. 11, могут сэкономить большую часть этой потерянной гидравлической мощности при перемещении одной нагрузки. Варианты управления включают маховик, рычаг, цилиндр, сервопривод штока и электрогидравлический сервопривод. Примерами приложений для контроля смещения являются гидростатические трансмиссии с рычажным управлением, используемые для привода косилок, погрузчиков с бортовым поворотом и дорожных катков.

Несмотря на точное соответствие расходу и давлению одной нагрузки, эти элементы управления не имеют встроенных возможностей ограничения давления или мощности. Таким образом, должны быть приняты другие меры для ограничения максимального давления в системе, и первичный двигатель по-прежнему должен иметь угловую мощность. Более того, когда насос снабжает контур несколькими нагрузками, ухудшаются характеристики согласования расхода и давления.

Конструктивный подход к системе, в которой один насос питает несколько нагрузок, заключается в использовании насоса, оснащенного пропорциональным компенсатором давления, рис. 12.Пружина бугеля смещает наклонную шайбу насоса в сторону полного рабочего объема. Когда давление нагрузки превышает настройку компенсатора, сила давления воздействует на золотник компенсатора, чтобы преодолеть силу, действующую на пружину.

Затем золотник смещается в сторону камеры компенсационной пружины, направляет выходную жидкость насоса к рабочему поршню и уменьшает рабочий объем насоса. Золотник компенсатора возвращается в нейтральное положение, когда давление насоса соответствует настройке пружины компенсатора. Если нагрузка блокирует приводы, расход насоса падает до нуля.

Использование насоса переменной производительности с компенсацией давления, а не насоса постоянной производительности, значительно снижает требования к мощности контура, рис. 13. Выходной поток насоса этого типа изменяется в соответствии с заданным давлением нагнетания, определяемым отверстием в компенсаторе насоса. . Поскольку сам компенсатор работает от жидкости под давлением, давление нагнетания должно быть установлено выше, скажем, на 200 фунтов на квадратный дюйм, чем максимальное давление нагрузки. Таким образом, если настройка давления нагрузки насоса с компенсацией давления составляет 1100 фунтов на квадратный дюйм, насос будет увеличивать или уменьшать свой рабочий объем (и выходной поток) в зависимости от давления нагнетания 1300 фунтов на квадратный дюйм.

Двухступенчатое управление компенсатором давления , рис. 14, использует вспомогательный поток при давлении нагрузки через отверстие в золотнике компенсатора основной ступени для создания перепада давления 300 фунтов на квадратный дюйм. Этот перепад давления создает силу на золотнике, которой противодействует пружина основного золотника. Пилотная жидкость поступает в бак через небольшой предохранительный клапан. Давление в пружинной камере 4700 фунтов на квадратный дюйм обеспечивает настройку управления компенсатором на 5000 фунтов на квадратный дюйм. Повышение давления выше уставки компенсатора смещает золотник главной ступени вправо, перенаправляя выходную жидкость насоса на ходовой поршень, что преодолевает усилие смещения поршня и уменьшает рабочий объем насоса в соответствии с требованиями нагрузки.

Высказанное ранее заблуждение связано с наблюдением, что выходное давление насоса с компенсацией давления может упасть ниже настройки компенсатора во время движения привода. Это происходит не из-за того, что насос воспринимает нагрузку, а из-за того, что размер насоса слишком мал для применения. Давление падает, потому что насос не может генерировать достаточный поток, чтобы справиться с нагрузкой. При правильном размере насос с компенсацией давления всегда должен нагнетать достаточное количество жидкости через отверстие компенсатора для работы компенсатора.

Улучшенный динамический


Рис. 15. Типичные характеристики одно- и двухступенчатой ​​компенсации давления.


Рис. 16. Схема пропорционального компенсатора насоса с функцией определения нагрузки.

В отношении функции согласования двухступенчатый компенсатор идентичен пропорциональному компенсатору, показанному на рис. 12. Однако динамические характеристики двухступенчатого регулятора выше. Это становится очевидным при анализе переходного процесса, связанного с внезапным снижением требуемой нагрузки, начиная с полного хода при низком давлении.

Одноступенчатый золотник управления подает сжатую жидкость к поршню только тогда, когда давление нагнетания насоса достигает настройки компенсатора. Золотник основной ступени двухступенчатого регулятора начинает двигаться, как только давление нагнетания насоса за вычетом давления в камере пружины превышает настройку пружины на 300 фунтов на кв. дюйм. Поскольку управляющая жидкость течет через отверстие и из-за потока, необходимого для сжатия жидкости в пружинной камере, давление в пружинной камере отстает от давления нагнетания насоса. Это приводит к тому, что золотник становится неуравновешенным и смещается вправо.

Разгон насоса начинается до того, как давление нагнетания насоса достигнет настройки компенсатора, рис. 15. Обратите внимание, что в системе, оснащенной аккумулятором, двухступенчатое управление компенсатором дает мало преимуществ. Однако в гидравлических системах экскаваторов преимущества двухступенчатого компенсатора очевидны: он обеспечивает гораздо большую защиту компонентов системы от скачков давления.


Рис. 17. Кривая «напор-расход» насоса с регулированием по нагрузке.


Рис. 18.Схема управления насосом, обеспечивающая определение нагрузки и ограничение давления.

Измерение нагрузки: следующий шаг
Похожим регулятором, который недавно стал популярным, является регулятор с измерением нагрузки , который иногда называют регулятором согласования мощности, рис. 16. Одноступенчатый клапан почти идентичен одноступенчатому. управления компенсатором ступени, рис. 12, за исключением того, что пружинная камера подсоединена после регулируемого отверстия, а не непосредственно к баку. Чувствительный к нагрузке золотник компенсатора достигает равновесия, когда перепад давления на регулируемом отверстии соответствует настройке пружины на 300 фунтов на квадратный дюйм.

Любой из трех основных сигналов измерения нагрузки управляет насосом измерения нагрузки: без нагрузки, в рабочем состоянии и при разгрузке. В режиме без нагрузки отсутствие давления нагрузки приводит к тому, что насос создает нулевой расход нагнетания при смещении или давлении разгрузки. Во время работы давление нагрузки заставляет насос создавать поток нагнетания в зависимости от установленного перепада давления или давления смещения. Когда система достигает максимального давления, насос поддерживает это давление, регулируя расход нагнетания.

Как и насос с компенсацией давления, насос с измерением нагрузки имеет управление компенсацией давления, но управление модифицировано для приема двух сигналов давления, а не одного.Как и в случае с компенсацией давления, чувствительное к нагрузке управление получает сигнал, представляющий давление нагнетания, но также получает второй сигнал, представляющий давление нагрузки. Этот сигнал исходит от второго отверстия ниже по потоку от первого. Это второе отверстие может быть клапаном регулирования расхода непосредственно за выпускным отверстием насоса, отверстием золотника направляющего регулирующего клапана или может быть сужением в проводнике жидкости.

Сравнение этих двух сигналов давления в модифицированной секции компенсатора позволяет насосу определять как нагрузку, так и расход.Это еще больше снижает потери мощности, рис. 17. Выходной поток насоса изменяется в зависимости от перепада давления на двух отверстиях. Точно так же, как насос с компенсацией давления увеличил свое давление нагнетания на величину, необходимую для работы компенсатора давления, давление нагнетания насоса с измерением нагрузки и расхода обычно на 200–250 фунтов на квадратный дюйм выше, чем фактическое давление нагрузки.

Кроме того, чувствительный к нагрузке насос может соответствовать требованиям к нагрузке и расходу для функции одного контура или нескольких одновременных функций, соотнося мощность в лошадиных силах с максимальным давлением нагрузки.Это потребляет минимально возможную мощность и выделяет наименьшее количество тепла.

Операторское управление

Если регулируемый проход представляет собой регулирующий клапан с ручным управлением, система может работать в режиме согласования нагрузки по указанию оператора. Когда он открывает клапан управления потоком, поток увеличивается пропорционально (постоянный перепад давления на отверстии с увеличивающимся диаметром) при давлении, немного превышающем давление нагрузки.

Как показано на рис. 17, потери мощности очень малы при использовании компенсатора насоса переменного объема, чувствительного к нагрузке.Поскольку система управления определяет перепад давления, а не абсолютное давление, необходимо предусмотреть предохранительный клапан или другое средство ограничения давления.

Эта проблема решается с помощью управления с измерением нагрузки/ограничением давления, рис. 18. Это управление работает как ранее описанное управление с измерением нагрузки до тех пор, пока давление нагрузки не достигнет настройки ограничителя давления. В этот момент ограничительная часть компенсатора отменяет управление, чувствительное к нагрузке, чтобы разрушить ход насоса. Опять же, первичный двигатель должен иметь угловую мощность.

Шестеренчатые насосы с измерением нагрузки


Рис. 19. Шестеренчатые насосы, чувствительные к нагрузке, с двумя установленными гидростатами разных типов. Пружинная регулировка позволяет настраивать перепад давления для клапанов разных производителей или длин трубопроводов.

Поршневые и лопастные насосы

зависят от их способности изменять рабочий объем для выполнения измерения нагрузки. Как же тогда шестеренчатый насос может определять нагрузку, если его рабочий объем фиксирован? Как и стандартные шестеренчатые насосы, шестеренчатые насосы с регулированием по нагрузке имеют низкую начальную стоимость по сравнению с другими конструкциями с аналогичными характеристиками расхода и давления.Тем не менее, шестеренчатые насосы с регулированием по нагрузке обеспечивают универсальность аксиально-поршневых и лопастных насосов с переменным рабочим объемом, но без высокой сложности и высокой стоимости механизмов с переменным рабочим объемом.

Шестеренчатый насос с регулированием по нагрузке может:

  • обеспечивают высокую эффективность измерения нагрузки без высоких затрат, связанных с поршневыми или пластинчатыми насосами,
  • обеспечивает выходной поток от нуля до полного менее чем за 40 миллисекунд с небольшим скачком давления или без него и без наддува на входе насоса,
  • контуры привода с низким (приближающимся к атмосферному) давлением разгрузки,
  • обеспечивают приоритетный поток и вторичный поток с низким давлением разгрузки для снижения потребляемой мощности в режиме ожидания и вторичной нагрузки, а
  • взаимозаменяемы с лопастными или поршневыми насосами с измерением нагрузки без необходимости изменения размеров трубопровода или компонентов.


Рис. 20. В шестеренчатый насос, чувствительный к нагрузке, добавлено управление разгрузочным устройством. В системе управления используется тарелка или плунжер, чтобы обеспечить максимальный поток при минимальном перепаде давления на разгрузочном устройстве с минимальным движением органа управления.


Рис. 21. Комбинированное управление достигается за счет включения пилотного предохранительного клапана, благодаря которому гидростат действует как основная ступень управляемого предохранительного клапана.

В поршневых насосах с измерением нагрузки

используются компенсатор давления и гидростат для изменения объемной подачи в систему в зависимости от давления нагрузки и требований к расходу.Гидростат представляет собой подпружиненное устройство, которое измеряет поток в соответствии с усилием пружины на его равных, но противоположных эффективных площадях. Он может быть ограничительным, как в последовательном контуре, или может перенаправлять первичное давление нагрузки на вторичное давление или давление в резервуаре. Проще говоря, гидростат разделяет общий поток на два потока: один представляет собой требуемый расход, а другой представляет собой требуемое давление первичного контура. Поршневой насос, чувствительный к нагрузке, использует свой гидростат для регулирования выходного потока в зависимости от давления нагрузки и перенаправляет избыточный поток насоса на вторичный канал, который может быть направлен в резервуар или во вторичный контур.

В шестеренчатом насосе, чувствительном к нагрузке, с другой стороны, используется гидростат в сочетании с разгрузочным устройством для изменения объемной производительности в зависимости от требований нагрузки и расхода. Поскольку поршневой и шестеренчатый насосы с измерением нагрузки используют один сигнал измерения нагрузки для управления давлением нагнетания и расходом насоса, они взаимозаменяемы в схемах измерения нагрузки. Оба типа имеют много общего и обеспечивают значительную экономию энергии по сравнению с системами, использующими насосы с постоянным рабочим объемом. Оба обеспечивают пониженное энергопотребление в рабочем режиме, когда для работы функции требуются расход и давление.Они также экономят электроэнергию в режиме ожидания — когда система простаивает или находится в нерабочем режиме. Кроме того, они могут уменьшить требуемый размер и, следовательно, стоимость клапанов, проводников и фильтров, необходимых для контура.

Шестеренчатый насос с измерением нагрузки, показанный на рис. 19, минимизирует энергопотребление в рабочем режиме за счет разделения общего потока нагнетания в соответствии с давлением удаленной первичной функции и первичным потоком. Это достигается за счет единого сигнала измерения нагрузки, поступающего из приоритетной цепи и направляемого как можно ближе к стороне нагнетания шестерен насоса.

Добавление устройства управления разгрузкой в ​​контур насоса, рис. 20, позволяет системе экономить электроэнергию как в режиме ожидания, так и в режиме работы. Этот регулятор должен быть установлен параллельно входному отверстию гидростата и как можно ближе к стороне нагнетания шестерен. Он должен управляться тем же сигналом измерения нагрузки, что и на Рисунке 19. Этот сигнал заставляет насос сбрасывать весь поток из выпускного отверстия во вторичный контур при давлении, значительно ниже уставки перепада давления гидростата в режиме ожидания.

Управление разгрузчиком должно работать на том же дистанционном датчике нагрузки, который управляет гидростатом. В отличие от гидростата, разгрузочная тарелка управления разгрузкой выполнена с соотношением противолежащих площадей не менее 2:1. Любое обнаруженное линейное давление, превышающее 50 % давления нагнетания насоса, закроет управление разгрузочным устройством. Способность управления разгрузочным устройством разгрузить насос до давления нагнетания, близкого к атмосферному, контролируется усилием пружины тарелки или плунжера. Регулятор разгрузки установлен на самое низкое значение, чтобы поддерживать нагрузку внутреннего давления шестеренчатого насоса.По сравнению со стандартной схемой шестеренчатого насоса с постоянным рабочим объемом, это управление может снизить энергопотребление в режиме ожидания на 90%.

Двойное и комбинированное управление


Рис. 22. На этом разрезе показано комбинированное управление, которое имеет регулируемый гидростат, встроенный в орган управления разгрузочным устройством. Расположение гидростата в системе управления малой разгрузкой позволяет всем участкам поршня работать от единого сигнала отклика нагрузки. Он предназначен для приложений, использующих большие насосы, где вторичный поток обходит резервуар.

Сигнал измерения нагрузки может быть обусловлен ограничением давления в линии дистанционного измерения или доведением его до 0 фунтов на кв. дюйм. Это приводит к тому, что гидростат и управление разгрузочным механизмом чувствительного к нагрузке шестеренчатого насоса реагируют на условный сигнал в соответствии с давлением нагнетания. Это достигается путем обеспечения пилотного сброса, рис. 21, который заставляет гидростат действовать как основная ступень предохранительного клапана с пилотным управлением. Способность регулировать чувствительную к нагрузке линию запатентована и делает шестеренчатый насос с чувствительной к нагрузке полезной для функций, отличных от простого измерения нагрузки.

Шестеренчатый насос с комбинированным управлением, чувствительный к нагрузке, рис. 22, предназначен для насосов большой производительности и перепускает вторичный поток в резервуар. Он также запатентован и может использоваться в тех же целях, что и насос с двойным управлением. Однако, поскольку вторичный поток должен быть направлен в резервуар, его нельзя использовать, когда вторичный контур приводит в действие нагрузку.

Скачать эту статью в формате .PDF

Как работает тормозная система

Двухконтурная тормозная система

Типичная двухконтурная тормозная система, в которой каждый контур действует на оба передних колеса и одно заднее колесо.Нажатие на педаль тормоза выталкивает жидкость из главного цилиндра по тормозным трубкам к рабочим цилиндрам на колесах; главный цилиндр имеет резервуар, который держит его полным.

Большинство современных автомобилей имеют тормоза на всех четырех колесах, управляемый гидравлическая система . Тормоза могут быть дискового или барабанного типа.

Передние тормоза играют большую роль в остановке автомобиля, чем задние, потому что при торможении вес автомобиля переносится на передние колеса.

Поэтому многие автомобили имеют дисковые тормоза , которые обычно более эффективны, на фронте и барабанные тормоза в тылу.

Полностью дисковые тормозные системы используются на некоторых дорогих или высокопроизводительных автомобилях, а полностью барабанные системы — на некоторых старых или небольших автомобилях.

Тормозная гидравлика

А гидравлический тормоз схема имеет заполненный жидкостью мастер и рабочие цилиндры соединены трубами.

Главный и рабочий цилиндры

Главный цилиндр передает гидравлическое давление на рабочий цилиндр при нажатии на педаль.

При нажатии на педаль тормоза она нажимает поршень в главный цилиндр , нагнетая жидкость по трубе.

Жидкость поступает на ведомый цилиндры на каждом колесе и заполняет их, заставляя поршни активировать тормоза.

Жидкость давление равномерно распределяется по системе.

Суммарная «толкающая» площадь поверхности всех подчиненных поршней намного больше, чем у поршня в главном цилиндре.

Следовательно, главный поршень должен пройти несколько дюймов, чтобы переместить подчиненные поршни на долю дюйма, необходимую для срабатывания тормозов.

Такое расположение позволяет сила тормоза, так же, как и у длинной рукоятки рычаг может легко поднять тяжелый предмет на небольшое расстояние.

Большинство современных автомобилей оснащены двойным гидравлическим контуром с двумя главными цилиндрами, соединенными тандемно, на случай, если один из них выйдет из строя.

Иногда одна цепь работает на передние тормоза и одна на задние тормоза; или в каждом контуре работают оба передних тормоза и один из задних тормозов; или одна схема работает со всеми четырьмя тормозами, а другая только с передними.

При резком торможении с задних колес может сняться такой большой вес, что они заблокируются, что может привести к опасному заносу.

По этой причине задние тормоза намеренно сделаны менее мощными, чем передние.

Большинство автомобилей теперь также имеют датчик ограничения давления, чувствительный к нагрузке. клапан . Он закрывается, когда резкое торможение повышает гидравлическое давление до уровня, который может привести к блокировке задних тормозов и предотвращает дальнейшее движение жидкости к ним.

Передовые автомобили могут даже иметь сложные антиблокировочные системы, которые различными способами определяют, как автомобиль замедляется и блокируются ли какие-либо колеса.

Такие системы включают и отпускают тормоза в быстрой последовательности, чтобы предотвратить их блокировку.

Тормоза с усилителем

Во многих автомобилях также есть усилитель мощности, чтобы уменьшить усилие, необходимое для включения тормозов.

Обычно источником энергии является разница давлений между парциальными вакуум на входе многообразие и наружный воздух.

сервопривод блок, обеспечивающий помощь, имеет трубное соединение с впускным коллектором.

Между педалью тормоза и главным цилиндром установлен сервопривод прямого действия. Педаль может воздействовать на главный цилиндр напрямую, если сервопривод неисправен или если двигатель не работает.

Между педалью тормоза и главным цилиндром установлен сервопривод прямого действия. Педаль тормоза толкает шток, который, в свою очередь, толкает поршень главного тормозного цилиндра.

А вот педаль тормоза тоже работает на комплекте пневмоклапанов, и там большая резинка диафрагма соединен с поршнем главного цилиндра.

Когда тормоза выключены, обе стороны диафрагмы подвергаются воздействию вакуума из коллектора.

При нажатии на педаль тормоза клапан, соединяющий заднюю сторону диафрагмы с коллектором, закрывается, и открывается клапан, впускающий воздух снаружи.

Более высокое давление наружного воздуха толкает диафрагму вперед, чтобы толкать поршень главного цилиндра, и тем самым способствует тормозному усилию.

Если затем удерживать педаль и больше не нажимать, воздушный клапан больше не пропускает воздух извне, поэтому давление на тормоза остается прежним.

При отпускании педали пространство за диафрагмой снова открывается для коллектора, поэтому давление падает и диафрагма опускается.

Если пылесос не работает из-за двигатель остановки, например, тормоза все еще работают, потому что между педалью и главным цилиндром есть нормальная механическая связь. Но для их срабатывания необходимо приложить гораздо большее усилие к педали тормоза.

Как работает усилитель тормозов

Тормоз выключен — обе стороны диафрагмы находятся под вакуумом.Применение тормоза пропускает воздух за диафрагму, прижимая ее к цилиндру.

Некоторые автомобили имеют сервопривод непрямого действия, установленный в гидравлических линиях между главным цилиндром и тормозами. Такой блок можно установить в любом месте двигатель отделение вместо того, чтобы быть непосредственно перед педалью.

Он тоже опирается на коллекторный вакуум чтобы обеспечить импульс. Нажатие на педаль тормоза вызывает повышение гидравлического давления в главном цилиндре, открывается клапан, который запускает вакуумный сервопривод.

Дисковые тормоза

Дисковый тормоз

Базовый тип дискового тормоза с одной парой поршней. Может быть более одной пары или один поршень, управляющий обеими колодками, как ножничный механизм, через различные типы суппортов — качающийся или скользящий суппорт.

Дисковый тормоз имеет диск, который вращается вместе с колесом. Диск окружен каверномер , в котором есть небольшие гидравлические поршни, работающие от давления главного цилиндра.

Поршни давят на трение подушечки которые зажимают диск с каждой стороны, чтобы замедлить или остановить его. Колодки имеют такую ​​форму, чтобы покрывать широкий сектор диска.

Может быть более одной пары поршней, особенно в двухконтурных тормозах.

Поршни перемещаются лишь на небольшое расстояние, чтобы задействовать тормоза, а колодки едва касаются диска при отпускании тормозов. У них нет возвратные пружины .

При включении тормоза давление жидкости прижимает колодки к диску.При выключенном тормозе обе колодки едва касаются диска.

Резиновые уплотнительные кольца вокруг поршней предназначены для постепенного проскальзывания поршней вперед по мере износа колодок, так что крошечный зазор остается постоянным и тормоза не требуют регулировки.

Многие более поздние автомобили имеют износ датчики провода, встроенные в колодки. Когда колодки почти изношены, провода обнажаются и замыкаются металлическим диском, зажигая сигнальную лампочку на приборной панели.

Барабанные тормоза

Барабанный тормоз

Барабанный тормоз с ведущей и замыкающей колодками, имеющий только один гидроцилиндр; тормоза с двумя ведущими колодками имеют по цилиндру на каждую колодку и установлены на передние колеса по полностью барабанной системе.

Барабанный тормоз имеет полый барабан, который вращается вместе с колесом. Его открытая задняя часть прикрыта неподвижным затыльником, на котором установлены две изогнутые колодки с фрикционными накладками.

Колодки выталкиваются наружу под действием гидравлического давления, перемещающего поршни в тормозной системе. колесные цилиндры , поэтому прижимайте накладки к внутренней части барабана, чтобы замедлить или остановить его.

При включенных тормозах колодки прижимаются к барабанам своим поршнем.

Каждый тормозная колодка имеет шарнир на одном конце и поршень на другом.Ведущий башмак имеет поршень на передней кромке по отношению к направлению вращения барабана.

Вращение барабана имеет тенденцию плотно прижимать переднюю колодку к ней, когда она соприкасается, улучшая тормозной эффект.

Некоторые барабаны имеют двойные ведущие башмаки, каждый со своим гидроцилиндром; у других есть одна передняя и одна задняя колодка с шарниром спереди.

Эта конструкция позволяет отталкивать две колодки друг от друга с помощью одного цилиндра с поршнем на каждом конце.

Это проще, но менее мощно, чем система с двумя ведущими колодками, и обычно ограничивается задними тормозами.

В обоих типах возвратные пружины немного оттягивают колодки назад при отпускании тормозов.

Ход башмака максимально укорочен с помощью регулятора. Старые системы имеют ручные регуляторы, которые необходимо время от времени поворачивать по мере износа фрикционных накладок. Позже появились тормоза автоматический регулировка с помощью храповика.

Барабанные тормоза могут изнашиваться, если их многократно применять в течение короткого времени — они нагреваются и теряют свою эффективность, пока снова не остынут.Диски с их более открытой конструкцией менее подвержены выцветанию.

Ручной тормоз

Механизм ручного тормоза

Ручной тормоз воздействует на колодки посредством отдельной от гидроцилиндра механической системы, состоящей из рычага и рычага в тормозном барабане; они управляются тросом от рычага ручного тормоза внутри автомобиля.

Помимо гидравлической тормозной системы, все автомобили имеют механический ручной тормоз, действующий на два колеса, обычно на задние.

Ручной тормоз обеспечивает ограниченное торможение при полном выходе из строя гидравлической системы, но основное его предназначение – как ручной тормоз .

Рычаг ручного тормоза натягивает трос или пару тросов, соединенных с тормозами с помощью набора меньших рычагов, шкивов и направляющих, детали которых сильно различаются от автомобиля к автомобилю.

Храповой механизм на рычаге стояночного тормоза удерживает тормоз после его включения. Нажимная кнопка расцепляет храповик и освобождает рычаг.

На барабанных тормозах система ручного тормоза прижимает тормозные колодки к барабанам.

Принцип

Паскаля | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Давление.
  • Состояние Принцип Паскаля.
  • Понимать применение принципа Паскаля.
  • Вывести соотношения между силами в гидравлической системе.

Давление определяется как сила на единицу площади. Можно ли увеличить давление в жидкости, надавливая непосредственно на жидкость? Да, но гораздо проще, если жидкость закрыта.Сердце, например, повышает кровяное давление, выталкивая кровь непосредственно в замкнутую систему (клапаны закрыты в камере). Если вы попытаетесь протолкнуть жидкость в открытую систему, такую ​​как река, жидкость утечет. Замкнутая жидкость не может утечь, и поэтому давление легче увеличить приложенной силой. Что происходит с давлением в замкнутой жидкости? Поскольку атомы в жидкости могут свободно перемещаться, они передают давление на все части жидкости и на стенки сосуда.Что примечательно, давление передается неуменьшаемым . Это явление называется принципом Паскаля , потому что оно было впервые четко сформулировано французским философом и ученым Блезом Паскалем (1623–1662): изменение давления, приложенного к замкнутой жидкости, без уменьшения передается всем частям жидкости и стенки своего сосуда.

Принцип Паскаля

Изменение давления, приложенного к замкнутой жидкости, передается в неизменном виде на все части жидкости и на стенки ее сосуда.

Принцип Паскаля, экспериментально подтвержденный факт, делает давление столь важным в жидкостях. Поскольку изменение давления передается без уменьшения в замкнутой жидкости, мы часто знаем о давлении больше, чем о других физических величинах в жидкости. Кроме того, принцип Паскаля подразумевает, что полное давление в жидкости есть сумма давлений из различных источников . Мы найдем этот факт — добавление давления — очень полезным.

У Блеза Паскаля была интересная жизнь, поскольку он обучался на дому у своего отца, который убрал все учебники по математике из его дома и запретил ему заниматься математикой до 15 лет.Это, конечно, возбудило в мальчике любознательность, и к 12 годам он начал самостоятельно заниматься геометрией. Несмотря на это раннее лишение, Паскаль внес значительный вклад в математические области теории вероятностей, теории чисел и геометрии. Он также хорошо известен как изобретатель первого механического цифрового калькулятора в дополнение к его вкладу в области статики жидкости.

Применение принципа Паскаля

Одно из наиболее важных технологических применений принципа Паскаля находится в гидравлической системе , которая представляет собой закрытую систему жидкости, используемую для приложения усилий.Наиболее распространенными гидравлическими системами являются те, которые управляют автомобильными тормозами. Сначала рассмотрим простую гидравлическую систему, показанную на рис. 1.

Рис. 1. Типичная гидравлическая система с двумя заполненными жидкостью цилиндрами, закрытыми поршнями и соединенными трубкой, называемой гидравлической линией. Направленное вниз усилие F 1  на левом поршне создает давление, которое без уменьшения передается на все части заключенной жидкости. Это приводит к тому, что восходящая сила F 2 на правом поршне больше, чем F 1 , потому что правый поршень имеет большую площадь.

Связь между силами в гидравлической системе

Мы можем вывести соотношение между силами в простой гидравлической системе, показанной на рисунке 1 , применив принцип Паскаля. Прежде всего обратите внимание, что два поршня в системе находятся на одной высоте, поэтому не будет разницы в давлении из-за разницы в глубине. Теперь давление F 1 , действующее на площадь A 1 , просто [латекс]{P}_{1}=\frac{{F}_{1}}{{A}_{ 1}}\\[/latex], как определено в [latex]P=\frac{F}{A}\\[/latex].Согласно принципу Паскаля, это давление без уменьшения передается всей жидкости и всем стенкам сосуда. Таким образом, на другом поршне ощущается давление P 2 , равное P 1 . То есть P 1 = P 2 . Но поскольку [latex]{P}_{2}=\frac{{F}_{2}}{{A}_{2}}\\[/latex], мы видим, что [latex]\frac{{ F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\\[/latex]. Это уравнение связывает отношение силы к площади в любой гидравлической системе при условии, что поршни находятся на одной высоте по вертикали и что трение в системе незначительно.Гидравлические системы могут увеличивать или уменьшать прилагаемое к ним усилие. Чтобы увеличить силу, давление прикладывается к большей площади. Например, если к левому цилиндру на рисунке 1 приложена сила 100 Н, а площадь правого цилиндра в пять раз больше, то выходная сила равна 500 Н. Гидравлические системы аналогичны простым рычагам, но у них есть преимущество. что давление может быть направлено по извилистым изогнутым линиям сразу в несколько мест.

Пример 1. Расчет силы ведомых цилиндров: Паскаль нажимает на тормоз

Рассмотрим автомобильную гидравлическую систему, показанную на рисунке 2.

Рис. 2. В гидравлических тормозах используется принцип Паскаля. Водитель прикладывает усилие 100 Н к педали тормоза. Эта сила увеличивается простым рычагом и снова гидравлической системой. Каждый из идентичных рабочих цилиндров получает одинаковое давление и, следовательно, создает одинаковую выходную мощность F 2 . Площади круглого поперечного сечения главного и ведомого цилиндров представлены A 1 и A 2 соответственно

К педали тормоза приложено усилие 100 Н, которое действует на цилиндр, называемый главным, через рычаг.На главный цилиндр действует сила 500 Н. (Читатель может убедиться, что сила составляет 500 Н, используя приемы статики из Приложения статики, включая стратегии решения проблем.) Давление, создаваемое в главном цилиндре, передается на четыре так называемых подчиненных цилиндра. Главный цилиндр имеет диаметр 0,500 см, а каждый рабочий цилиндр имеет диаметр 2,50 см. Рассчитайте силу F 2 , создаваемую на каждом из рабочих цилиндров.

Стратегия

Нам дана сила F 1 , приложенная к главному цилиндру.Площади поперечного сечения A 1 и A 2 можно рассчитать по их заданным диаметрам. Тогда [латекс]\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\\[/latex ] можно найти силу F 2 . Обработайте это алгебраически, чтобы получить F 2 с одной стороны и подставьте известные значения:

Раствор

Принцип Паскаля, примененный к гидравлическим системам, задается как [латекс]\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_ {2}}\\[/латекс]:

[латекс] {F}_{2}=\frac{{A}_{2}}{{A}_{1}}{F}_{1}=\frac{{\mathrm{{\pi r}}_{2}}^{2}}{{\mathrm{{\pi r}}_{1}}^{2}}{F}_{1}=\frac{{\left(1) .{4}\text{N}\\[/латекс].

Обсуждение

Это значение представляет собой силу, действующую на каждый из четырех подчиненных цилиндров. Обратите внимание, что мы можем добавить столько рабочих цилиндров, сколько пожелаем. Если каждый из них имеет диаметр 2,50 см, каждый будет оказывать усилие 1,25 × 10 4 Н.

Простая гидравлическая система, такая как простая машина, может увеличить усилие, но не может выполнять больше работы, чем выполняется на ней. Работа равна силе, умноженной на пройденное расстояние, и рабочий цилиндр перемещается на меньшее расстояние, чем главный цилиндр.Кроме того, чем больше добавлено ведомых устройств, тем меньше расстояние перемещается каждое из них. Многие гидравлические системы, такие как силовые тормоза и системы бульдозеров, имеют насос с электроприводом, который фактически выполняет большую часть работы в системе. Движение ног паука частично достигается гидравликой. Используя гидравлику, паук-скакун может создать силу, позволяющую ему прыгать в 25 раз больше своей длины!

Установление связей: сохранение энергии

Сохранение энергии, приложенной к гидравлической системе, говорит нам о том, что система не может выполнять больше работы, чем она совершает.Работа передает энергию, поэтому результат работы не может превышать затраты работы. Тормоза с усилителем и другие аналогичные гидравлические системы используют насосы для подачи дополнительной энергии, когда это необходимо.

Резюме раздела

  • Давление — это сила на единицу площади.
  • Изменение давления, приложенного к замкнутой жидкости, передается в неизменном виде на все части жидкости и на стенки ее сосуда.
  • Гидравлическая система представляет собой закрытую гидравлическую систему, используемую для приложения усилий.

Концептуальные вопросы

1.Предположим, что главный цилиндр в гидравлической системе находится на большей высоте, чем рабочий цилиндр. Объясните, как это повлияет на силу, создаваемую рабочим цилиндром.

Задачи и упражнения

1. Какое давление передается в рассматриваемой в примере 1 гидросистеме? Выразите ответ в паскалях и в атмосферах.

2. Какая сила должна быть приложена к главному цилиндру гидроподъемника, чтобы выдержать вес автомобиля массой 2000 кг (большого автомобиля), опирающегося на рабочий цилиндр? Главный цилиндр имеет 2.00 см в диаметре, а раб имеет диаметр 24,0 см.

3. Грубый хозяин выливает остатки нескольких бутылок вина в кувшин после вечеринки. Затем он вставляет в бутылку пробку диаметром 2,00 см, помещая ее в непосредственный контакт с вином. Он поражен, когда забивает пробку, и дно кувшина (диаметром 14,0 см) отламывается. Вычислите дополнительную силу, действующую на дно, если он ударит по пробке с силой 120 Н.

4. Некоторая гидравлическая система предназначена для приложения усилия, в 100 раз превышающего прилагаемое к ней усилие.а) Каким должно быть отношение площади рабочего цилиндра к площади главного цилиндра? б) Каким должно быть отношение их диаметров? в) Во сколько раз расстояние, на которое перемещается выходная сила, уменьшается по сравнению с расстоянием, на которое перемещается входная сила? Предположим, что потери на трение отсутствуют.

(5.a) Убедитесь, что входная работа равна выходной работе для гидравлической системы при условии отсутствия потерь на трение. Сделайте это, показав, что расстояние, на которое перемещается выходная сила, уменьшается в той же степени, в какой увеличивается выходная сила.Предположим, что объем жидкости постоянный. б) Какое влияние окажет трение внутри жидкости и между компонентами системы на выходную силу? Как это будет зависеть от того, движется ли жидкость?

Глоссарий

Принцип Паскаля:
изменение давления, приложенного к замкнутой жидкости, передается в неизменном виде на все части жидкости и на стенки ее сосуда

Избранные решения задач и упражнений

1.2,55 × 10 7 Па; или 251 атм

3. 5,76 × 10 3 дополнительное усилие

5. (a) [латекс] V = {d} _ {\ text {i}} {A} _ {\ text {i}} = {d} _ {\ text {o}} {A} _ { \text{o}}\Rightarrow {d}_{\text{o}}={d}_{\text{i}}\left(\frac{{A}_{\text{i}}}{ {A}_{\text{o}}}\right)\\[/латекс].

Теперь, используя уравнение:

[латекс]\frac{{F}_{1}}{{A}_{1}}=\frac{{F}_{2}}{{A}_{2}}\Rightarrow {F} _{\text{o}}={F}_{\text{i}}\left(\frac{{A}_{\text{o}}}{{A}_{\text{i}} }\справа)\\[/латекс].

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Разное