Зарядник своими руками для аккумулятора: Зарядное устройство 10а своими руками. Простые схемы для зарядки самых разных аккумуляторов. Схема автоматического отключения ЗУ
схема на тиристоре, с регулятором тока
Содержание
- Принцип работы и основные компоненты
- Принципиальные схемы зарядных устройств
- Простое зарядное устройство для АКБ автомобиля на 12В
- Зарядное на тиристоре ку202н
- ЗУ для автомобильного аккумулятора на tl494
- Схема с автоматическим отключением
- Схема мощного ЗУ с регулировкой тока
- Технология сборки
- Часто задаваемые вопросы
Зарядное устройство для автомобильного аккумулятора — необходимое устройство в любом автохозяйстве. Его можно купить в магазине. А можно сделать самостоятельно.
Принцип работы и основные компонентыСвинцово-кислотные аккумуляторы заряжают постоянным (выпрямленным) напряжением, стабильным по уровню. Чтобы получить ток, втекающий в батарею, зарядное напряжение должно быть выше напряжения АКБ. Ток заряда в таком режиме зависит от разницы напряжений источника и батареи.
Полностью разряженная АКБ автомобиля выдает напряжение 10,5 вольт (ниже разряжать нельзя), полностью заряженная — 12,6 вольт. В процессе уровень на выходе ЗУ остается постоянным, на клеммах батареи плавно повышается. Поэтому в начале зарядки ток будет максимальным, по окончании – минимальным. Снижение уровня тока служит признаком окончания процесса. Также для автоматического завершения зарядки можно использовать достижение напряжения на АКБ значения 12,5..12,6 вольт.
Процесс зарядки свинцово-кислотной батареи стабильным напряжением.Стандартная схема построения зарядника содержит:
- Сетевой трансформатор;
- Выпрямитель;
- Регулятор тока (напряжения) — стабилизированный или нет.
Очень желательны приборы, индицирующие ток и напряжение. Дополнительно ЗУ может оснащаться:
- схемой ограничения тока;
- электрическими защитами;
- индикацией или автоматическим отключением по окончании зарядки.
Эти функции являются сервисными и повышают удобство работы с ЗУ.
Принципиальные схемы зарядных устройствЗарядное устройство для автомобильной батареи можно выполнить на разной элементной базе. Все зависит от наличия комплектующих и квалификации мастера.
Простое зарядное устройство для АКБ автомобиля на 12В
Для регулирования тока и напряжения можно применить обычный потенциометр. Вращением его движка можно подстраивать ток в зарядной цепи.
ЗУ с регулирующим потенциометром.На практике такая схема не используется по двум причинам:
- через потенциометр идет полный ток нагрузки, элемент такой мощности найти трудно;
- ток нагрузки идет через подвижный контакт движка переменного резистора, это значительно снижает надежность работы устройства.
Зато по этой схеме легко понять принцип работы простых зарядников.
Схема простого ЗУ.На практике реализуется другая схема зарядного устройства для сборки своими руками. Здесь потенциометр включен в цепь базы транзистора, и ток через него небольшой. Зарядный же ток идет через коллектор-эмиттер транзистора, а полупроводниковый элемент подобной мощности найти гораздо проще. Но в этом и состоит главный недостаток схемы. Сквозной ток идет через регулирующий элемент, вся излишняя мощность рассеивается на нем. Потребуется радиатор значительной площади.
Зарядное на тиристоре ку202н
Популярна схема самодельного зарядного устройства, где аккумулятор заряжается выпрямленным напряжением, а ток регулируется вручную посредством тиристора (подходит отечественный КУ202Н или зарубежные аналоги).
Схема зарядного устройства на тиристоре.Сетевое напряжение понижается трансформатором Т1 и выпрямляется мостом VD1..VD4. На однопереходном транзисторе VT2 собран генератор импульсов. Его частота задается цепью из конденсатора C1 и управляемого резистора на VT1. Его сопротивление регулирует потенциометр R5. В начале каждого полупериода генератор запускается через цепь R1VD1, и начинает выдавать импульсы с заданной частотой. Первый импульс открывает тиристор, остальные (следующие до конца полупериода) не имеют значения. Чем раньше открывается ключ на VS1, тем большая часть синусоиды попадает в нагрузку, тем выше усредненное напряжение на аккумуляторе и средний ток, втекающий в него.
Принцип фазоимпульсного регулирования.Амперметр служит для контроля этого тока. Недостаток схемы в том, что напряжение не стабилизировано, и будет изменяться вслед за изменением напряжения сети 220 вольт (оно может меняться в пределах ±5%). Вслед за напряжением будет меняться ток заряда, потому процесс требует периодического контроля и, при необходимости, подстройки. Кроме того, напряжение на АКБ не измерить обычным вольтметром или мультиметром – они рассчитаны на измерение постоянного напряжения, а зарядник выдает резко отличающуюся от постоянки форму. Погрешность будет очень высокой, поэтому для контроля придется отключать аккумулятор и замерять его напряжение.
Схема ЗУ без однопереходного транзистора.
Если однопереходного транзистора нет, схему можно собрать без него. Она немного усложнится. Но вместо регулируемого сопротивления на транзисторе для задания частоты генерации возможно применить обычный потенциометр.
Зарядное устройство на симисторе.Существуют различные варианты данной схемы. Например, регулируемое устройство на симисторе. Здесь силовым ключом служит мощный симистор, а тиристор задействован в схеме формирования открывающих импульсов.
Видео версия: Зарядное с десульфатацией на одном тиристоре.
ЗУ для автомобильного аккумулятора на tl494
Зарядник можно построить на микросхеме TL494. Эта микросхема используется не совсем стандартно – обычно на ней строят полностью импульсные источники питания с выпрямлением сетевого напряжения и «нарезанием» из полученной постоянки высокочастотных импульсов (как в компьютерных БП). Здесь же присутствует и сетевой трансформатор, и выпрямитель вторичного напряжения. Импульсным является только регулируемый стабилизатор. Его достоинство в том, что регулирующий элемент (транзистор) открывается на определенные промежутки времени, через него не течет сквозной ток (равный току нагрузки), поэтому размеры теплоотвода можно значительно уменьшить.
Схема ЗУ на TL494.Микросхема генерирует импульсы, частота которых задается цепью R4C3, а ширина зависит от разницы между уровнями на входах 1 и 2. Импульсы управляют транзистором VT1, который, открываясь, подпитывает энергией дроссель L1. Запасенная энергия расходуется в нагрузку. Чем больше нагрузка, тем быстрее расходуется запас, тем быстрее падает напряжение на выходе, что приводит к увеличению длительности импульсов с выхода 8 микросхемы. К этому же приводит вращение потенциометра R9 — так регулируется выходное напряжение.
Ток заряда регулируется разницей напряжений между АКБ и выходом ЗУ, но микросхема TL494 позволяет выполнить дополнительное ограничение тока. Для этого используется второй усилитель ошибки. Ток ограничителя устанавливается потенциометром R3, а фактический ток замеряется, как падение напряжения на шунте R11. Если ток выше заданного, длительность импульсов уменьшается, напряжение на выходе снижается до достижения необходимого тока. Такой режим полезен при зарядке сильно разряженных батарей, а также позволяет осуществить режим зарядки стабилизированным током. В совокупности с широким диапазоном регулировки напряжения, возможность ограничения тока делает ЗУ универсальным и позволяет заряжать аккумуляторы, сделанные по различным технологиям. Также ограничитель осуществляет защиту силовых элементов от сверхтока.
Номиналы деталей указаны на схеме. Дроссель лучше изготовить на сердечнике из альсифера.
При настройке подбирают число витков так, чтобы свист обмотки наблюдался только при среднем токе нагрузки, а при его увеличении исчезал. Если свист исчезает рано (уже при небольших токах) и выходной транзистор греется, количество витков надо увеличить. Ориентироваться надо на 20..100 витков провода диаметром 2 мм. Также при сборке в электросхему надо добавить вольтметр и амперметр (можно цифровой или стрелочный) – пользоваться будет намного удобнее. Напряжение на выходе сглаживается конденсатором C6, его форма близка к постоянному.
Рекомендуем: Как из БП компьютера сделать зарядное устройство
Схема с автоматическим отключением
Удобно, чтобы батарея отключалась по окончании процесса пополнения энергии. Один из вариантов схемы такой автоматики приведен на рисунке.
Схема автоматического отключения.Принцип действия основан на контроле напряжения заряжаемой батареи. Как только оно достигнет номинального уровня (он подстраивается потенциометром), транзистор откроется, сработает реле и отключит напряжение с АКБ. При этом загорится светодиод, сигнализирующий об окончании зарядки. Реле можно применить любое с напряжением срабатывания 12 вольт и током контактов не менее 15 ADC.
Достоинство схемы в том, что ее можно собрать на отдельной плате и использовать совместно с любым готовым зарядником. Недостатком является необходимость измерять напряжение непосредственно на клемме аккумулятора, поэтому цепь измерения (выделена красной линией) надо выполнять отдельным проводом с зажимом и подключать непосредственно к плюсовому выводу АКБ.
От этого недостатка свободны схемы с контролем зарядного тока, отключающие ЗУ при снижении тока ниже установленного предела. Для измерения тока в заряднике должно быть установлено измерительное сопротивление (шунт).
Схема мощного ЗУ с регулировкой тока
Схема мощного зарядного устройства.Заслуживает внимания еще одна схема ЗУ, обеспечивающая ток не менее 10 А. Ее особенности:
- схема управления собрана по стороне 220 вольт;
- первичная обмотка трансформатора служит одновременно индуктивностью, накапливающей энергию, а затем отдающей ее в нагрузку через вторичные обмотки.
Принцип регулирования – фазоимпульсный, ключом служит симистор VS1. Ток устанавливается потенциометром R1 и регулируется от нуля до 10 А. Первичная обмотка трансформатора должна иметь достаточную индуктивность. Для его изготовления можно применить ЛАТР-2. Его обмотка будет служить первичкой. Сверху надо обустроить изоляцию (достаточно 3 слоя лакоткани), а поверх намотать вторичную обмотку проводом сечением 3 кв.мм 40+40 витков. Резистор R6 служит нагрузкой выпрямителя и создает импульсы разряда батареи. Считается, что такой режим продлевает период эксплуатации АКБ. Вместо него можно установить автомобильную лампу накаливания на 12 вольт мощностью 10 ватт.
Читайте также
Схема и сборка самодельного блока питания с регулировкой напряжения и тока
Технология сборки
Большинство электронных компонентов лучше собрать на печатной плате. В домашних условиях плату можно изготовить методом ЛУТ или фотоспособом. Разработать рисунок можно в бесплатных программах, например LayOut или условно-бесплатной Eagle. А можно нарисовать дедовским способом на бумаге и нанести рисунок лаком на поверхность фольги. Плата травится в растворе хлорного железа или в следующем составе:
- 100 мл аптечной перекиси водорода.
- 30 г лимонной кислоты.
- Две чайные ложки поваренной соли.
Силовые элементы монтируются на радиаторы достаточной площади. Устанавливать их надо на теплопроводящую пасту. Если теплоотводящая поверхность элемента не соединена с общим выводом, на теплоотвод деталь крепят через изолирующую прокладку – слюдяную или из упругого материала. Радиатором может служить металлическая стенка корпуса. Также можно сделать теплоотвод частью конструкции. Можно организовать обдув радиаторов – тогда их площадь можно значительно уменьшить. Для этого понадобится вентилятор на 12 вольт, который можно подключить к выходу диодного моста.
Корпус подбирается готовым или изготавливается самостоятельно. На передней панели крепятся:
- измерительные приборы;
- органы регулирования напряжения и тока;
- индикаторы включенного состояния.
Для подключения проводов, отходящих к аккумулятору, клеммы и разъемы лучше не использовать. Токи через них идут большие, поэтому потенциальный источник дополнительного переходного сопротивления нежелателен. Провода лучше подпаять к плате и вывести через отверстия в передней панели. Сечение проводников должно достаточным – не менее 2 кв.мм, а лучше 4 кв.мм. С другой стороны проводов надо припаять зажимы «крокодил».
Зарядное устройство в самодельном корпусе.Это не полный обзор схем зарядок для автомобильного аккумулятора – их существует великое множество. По представленным конструкциям можно понять принципы построения ЗУ, требования к ним, разобраться в несложной схемотехнике. Отработав на практике сборку этих зарядных устройств, впоследствии можно перейти к более серьезным схемам, в том числе с использованием микроконтроллеров.
Похожая статья: Самодельное зарядное устройство для литий ионных аккумуляторов
Часто задаваемые вопросы
Каковы должны быть пределы регулировки по напряжению
Изменением уровня напряжения изменяют зарядный ток. Если предстоит зарядка автомобильных свинцово-кислотных батарей, то можно выбрать нижний предел регулировки, равный нижнему напряжению разряженной батареи – 10,5 вольт. Верхний предел надо установить по верхнему уровню 12,5 вольт плюс 1,5..2 вольта. На практике неплохо иметь запас по лимитам регулирования. Пределы от 10 до 16 вольт обеспечиат полный диапазон практически используемых зарядных токов.
Где можно взять трансформатор для автомобильного зарядного
Трансформатор можно подобрать промышленного изготовления. Ориентироваться надо на выходное напряжение и ток. Первый параметр должен составлять 12-14 (или 18..24 в зависимости от схемотехники) вольт, второй – от 4 до 10 ампер. Характеристики нескольких подходящих трансформаторов приведены в таблице.
Тип промышленного трансформатора | Выходное напряжение, В | Наибольший ток, А |
---|---|---|
ТТП-100 | 12 | 7,5 |
ТТП-150 | 12 | 12 |
ТН8-127/220-50 | 2х6,3 (обмотки соединяются последовательно) | 4,8 |
ТН28-127/220-50 | 2х6,3 (обмотки соединяются последовательно) | 4,8 |
Если есть трансформатор подходящей габаритной мощности, но вторичная обмотка не подходит по току или напряжению, ее можно смотать и намотать новую. Габаритная мощность определяется по сечению железа по формуле P=0,8..0,88*S2*/14000, где:
- P – габаритная мощность, ВА.
- 0,8..0,88 – коэффициент, учитывающий материал стали (если он неизвестен, выбирается значение 0,8).
- S — площадь сечения сердечника в квадратных сантиметрах.
Площадь сечения для тороидального сердечника вычисляется как (D-d)*h/2 (см.рис), для других типов – a*b.
Площадь сечения для разных типов сердечников
Для тока 4..10 А габаритная мощность должна быть не менее, соответственно, 50..120 ВА. Если железо подходит, вторичная обмотка перематывается медным проводом. Его сечение выбирается по упрощенной формуле d=0,72√I, где:
- d – диаметр провода в мм;
- I – потребный ток в амперах.
Число витков выбирается по формуле N=(50/S)*V (где V – требуемое выходное напряжение в вольтах) или подбирается экспериментально. Также для расчета можно воспользоваться различными программами-калькуляторами, в том числе размещенными на веб-сервисах.
Можно ли с помощью самодельных ЗУ заряжать АКБ без снятия с автомобиля
Этого делать не стоит. При зарядке на аккумулятор подается напряжение, уровнем и формой отличающееся от напряжения бортсети машины. Есть риск повреждения автомобильной электроники. Клеммы от АКБ надо отключить. Сам аккумулятор при этом можно не демонтировать, но это не очень удобно, да и длины проводов от ЗУ может не хватить.
Зарядное устройство для автомобильного аккумулятора своими руками
Из уроков физики мы знаем, что для любого транспортного средства так или иначе нужна энергия, за счёт которой и будет осуществляться передвижение.
В современном мире нужно быть готовым ко всему. Сегодняшние производители машин уже не могут гарантировать такого качества своей продукции, которое было раньше.
Каждый водитель должен быть готов к непредвиденным ситуациям, а именно:
- Замене колеса.
- Ремонту двигателя.
- Зарядке аккумулятора автомобиля.
Сегодня мы хотим поговорить с вами о схемах зарядного устройства для автомобильного аккумулятора своими руками и о том, как его правильно его заряжать.
Краткое содержимое обзора:
- Принцип работы автомобильного аккумулятора
- Схема своими руками
- Рейтинг зарядных устройств
- Aurora Sprint 6
- FUBAG MICRO 80/12
- CTEK MXS 3.8
- Пуско-зарядное устройство
- Заключение
- Фото зарядного устройства для автомобильного аккумулятора своими руками
Принцип работы автомобильного аккумулятора
Аккумулятор автомобиля подает питание к электронике, за счёт чего и происходят автоматизированные процессы во время езды.
Стандартный аккумулятор оснащен шестью элементами, каждый из которых имеет номинально значение 2,2 вольт. Элементы идут последовательно один за другим и представляют собой непрерывное звено.
Специальный раствор электролита принимает участие в их работе. Он устойчив к низким и высоким температурам.
Во время работы аккумулятора происходят сложные химические и физические реакции, которые и приводят в действие всю механику в машине.
Схема своими руками
Самое простое зарядное устройство можно соорудить, используя микросхему LM317. Она отлично подходит для других интегральных схем, обеспечивает надёжный и сильный сигнал.
Её начинка имеет защиту от короткого замыкания, поэтому они вам будут не страшны. Подробно схему можно изучить на фото.
Напряжение на плату подаётся через специальные клеммы, которые питаются от независимого блока. Подробные схемы разбора ищете на тематических сайтах и автомобильных блогах.
Рейтинг зарядных устройств
Вашему вниманию представлен рейтинг зарядных устройств для автомобильных аккумуляторов.
Aurora Sprint 6
Aurora Sprint 6 – довольно известная марка немецкого производства. Изготовитель уверяет, что это качественная продукция. Она имеет микропроцессорное управление, которое позволяет избежать резких скачков энергии, а также обеспечивает надёжный контакт с электропроводами.
На СТО диагностика такого зарядного происходит быстро, и в случае поломки, вам не придётся отдавать большие деньги за ремонт.
FUBAG MICRO 80/12
FUBAG MICRO 80/12 – популярный шведский бренд среди автолюбителей. В своей стране оно считается лучшим зарядным устройством для автомобильного аккумулятора. Диапазон ёмкости составляет от 3 до 75 ампер-часов.
Устройством крайне легко управлять с помощью одной кнопки MODE. Зарядное устройство удобно в использовании и непременно станет незаменимой вещью для дальней поездки.
CTEK MXS 3.8
CTEK MXS 3.8 – его главной особенностью является влагозащита, а также крепкий корпус, который способен выдержать сильные удары и нагрузки.
Следует отметить, что это аккумулятор малой ёмкости и поэтому хватать его будет на небольшое количество времени. Но как показывает практика, даже такая мелочь никак не влияет на его работу и популярность.
Пуско-зарядное устройство
В магазинах нашей стране есть множество качественных пуско-зарядных устройств для автомобильных аккумуляторов.
Одним из них является спец упзу-10000.Устройство не дорогое и очень качественное. С его помощью можно за короткое время запустить двигатель небольшого автомобиля или габаритного мотоцикла.
Устройство отличается своей надёжностью даже в самые суровые погодные условия. В нём есть уже встроенная подсветка, которая облегчает его использование.
Аккумулятор рассчитан до 5-6 часов непрерывной работы. Как утверждает производитель зарядного устройства, его температурный режим может доходить до -1 и +50 градусов соответственно.
Множество фото зарядного устройства для автомобильного аккумулятора от отечественного производителя вы можете увидеть на его официальном сайте.
Заключение
В заключении хотим сказать, что зарядное устройство для автомобильного аккумулятора эта та вещь, с которой работать надо максимально осторожно.
Нарушение элементарной техники безопасности может привести к удару тока под высоким напряжением, сильным ожогам и другим неприятным последствиям. Будьте предельно осторожны и следите за состоянием своего автомобиля.
Фото зарядного устройства для автомобильного аккумулятора своими руками
Самодельные зарядные устройства: полное руководство
Аккумулятор — одно из самых блестящих изобретений, когда-либо сделанных. Итак, как это работает, так это то, что он сохраняет фиксированное количество энергии, прежде чем закончится. Вот почему у нас есть перезаряжаемые батареи. Следовательно, если у вас разряженный аккумулятор, вы можете подключить его к зарядному устройству и зарядить. Однако производительность ваших аккумуляторов зависит от зарядного устройства. Поэтому необходимо хорошее зарядное устройство. Но, если вы хотите сделать его, существует множество конструкций зарядных устройств. Некоторые из них просты, например, зарядное устройство для светодиодных аккумуляторов, в то время как некоторые из них сложны. К счастью, мы создали эту статью, чтобы показать вам, как сделать зарядное устройство своими руками. Вы готовы? Давайте погрузимся!
Что такое зарядное устройство?
С точки зрения непрофессионала, зарядные устройства — это устройства, которые заряжают разряженные аккумуляторы.
Но давайте углубимся.
Зарядные устройства — это устройства, подающие электрический ток на батареи в течение длительного времени.
Зарядное устройство для аккумуляторов с проверкой напряжения и мощности
Цель состоит в том, чтобы аккумуляторные элементы сохраняли достаточную мощность и работали в качестве источника энергии. И это то, что объединяет все зарядные устройства.
Тем не менее, есть некоторые различия между дешевым зарядным устройством, сделанным своими руками, и зарядным устройством отличного качества.
Вот в чем дело.
Дешевые зарядные устройства для аккумуляторов обеспечивают постоянным напряжением или током аккумуляторы до тех пор, пока они не отключатся.
Проблема с дешевыми зарядками;
Если вы оставите аккумулятор заряжаться слишком долго, он перезарядится.
Но если вы снимете его слишком рано, ваши батареи не получат достаточно энергии для более продолжительной работы.
С другой стороны, качественные зарядные устройства используют более мягкую непрерывную зарядку (обычно 3-5 % от максимальной емкости аккумулятора) для более длительного времени.
Другим вариантом зарядного устройства является зарядное устройство с таймером. Это интеллектуальное зарядное устройство способно автоматически отключаться.
зарядное устройство с четырьмя аккумуляторными батареями
К сожалению, это не предотвращает перезарядку, так как каждая батарея имеет разное время зарядки.
Какие материалы необходимы для сборки зарядного устройства
Вам не нужно быть профессиональным производителем аккумуляторов, чтобы построить зарядное устройство. Вы можете сделать зарядное устройство своими руками, не выходя из дома.
Все, что вам нужно сделать, это следовать инструкциям и использовать правильные материалы.
Итак, вот детали, необходимые для сборки зарядного устройства:
- Понижающий трансформатор (220 В/14 В) X 1
- Свинцово-кислотный аккумулятор (12 В/7 Ач) X 1
- Диод (1N4007) X 4
- Измеритель AVO с датчиками X 1
- Зажимы для батарей типа «крокодил» X 1
- Клеммы держателя батарей X 1
- Пленочные конденсаторы (1 мкФ/105 Дж) X 1
- Паяльник X 1
- Шнуры питания X 1
- Припой и флюс X 1
- Гнездо питания постоянного тока X 1 1
- Соединительные провода X 1
Здесь, в этом разделе, мы покажем вам схему зарядного устройства 12 В. Вы можете использовать эту схему для зарядки любой 12-вольтовой аккумуляторной батареи, а также автомобильных аккумуляторов.
Цепь состоит только из источника питания 12 В постоянного тока с амперметром, который контролирует напряжение зарядки.
Кроме того, два диода образуют двухполупериодный выпрямитель с отводом от средней точки, а конденсатор фильтрует выходной сигнал выпрямителя, обеспечивая чистое выходное напряжение 12 В.
Схема, показывающая цепь зарядного устройства с поглощением 12-вольтовой батареи
Здесь вы можете подключить его IC в обычном режиме, где вы включаете R1 и R2 для настройки на требуемое напряжение.
ИС получает питание от стандартного трансформатора или сети диодного моста. После фильтрации напряжения через С1 устанавливается напряжение 14,9 В.0003
Следовательно, отфильтрованное 14 В постоянного тока подается на входной контакт микросхемы.
Кроме того, вы можете закрепить контакт ADJ микросхемы на соединении резисторов R1 и R2 (переменный резистор). Вы также можете настроить резистор R2 так, чтобы он соответствовал конечному выходному напряжению емкости аккумулятора.
Без RC схема будет работать как источник питания LM 317, где вы не сможете контролировать ток цепи.
Итак, RC и транзистор BC547, расположенные в цепи, могут определять ток, подаваемый на батарею.
Пока ток остается в безопасном диапазоне, напряжение будет оставаться на заданном уровне.
Однако, если ток поднимается выше безопасного диапазона приложений, ИС снимает напряжение и падает, чтобы еще больше ограничить рост тока и обеспечить безопасность батареи.
Понимание концепции самодельных зарядных устройствКонцепция зарядного устройства звучит просто, и это так. Однако, даже если идея довольно проста, она требует некоторых трудоемких процессов.
Кроме того, вам нужно убедиться, что зарядное устройство не перезаряжается.
Итак, давайте рассмотрим самый простой способ сделать простое зарядное устройство для аккумуляторов.
Как это работает?
Чтобы батарея работала, она должна преобразовывать накопленную химическую энергию в пригодную для использования электрическую энергию. Когда в батарее заканчиваются электролиты, батарея разряжается; затем вы должны зарядить его.
Итак, здесь на помощь приходит зарядное устройство.
Зарядное устройство подает на аккумулятор постоянный ток, и израсходованный электролит восстанавливается.
Итак, теоретически, когда электролиты батареи достигают полной зарядки, зарядное устройство должно прекратить подачу тока. На этом этапе вам нужно следить за состоянием батареи и отключать USB-порт батареи, когда он будет завершен. Или, возможно, вы покупаете интеллектуальное зарядное устройство для аккумулятора или USB-зарядное устройство для мобильного телефона.
Вы также можете использовать питание от солнечной панели и зажим для солнечной батареи для питания простой батареи.
Процесс зарядки аккумулятора
Весь процесс зарядки включает:
- Стабилизация
- Зарядка клемм аккумулятора
- Оптимизация скорости зарядки (увеличение потребляемой мощности не менее чем на 10–20 %)
- Завершение (узнавание момента прекращения подачи тока для обеспечения безопасности аккумулятора)
Кроме того, скорость заряда и разряда батареи представляет собой C-rate (Charge Rate). Он измеряет уровень заряда или разряда батареи с измеренной емкостью в Ач.
Например, если полностью заряженный аккумулятор емкостью 5 Ач разряжается током 5 ампер, для полной зарядки аккумулятора потребуется час. Следовательно, большинство современных гаджетов, таких как ноутбуки, электромобили, зарядные устройства для мобильных телефонов, специальные приложения для кухни и дома, электроинструменты и мобильные телефоны, используют литий-ионный аккумулятор.
Литий-ионный аккумулятор
Почему?
Вход литий-ионного аккумулятора продлевается на более длительное время при частой зарядке.
Схема литиевой батареи
Что происходит, когда батарея перезаряжается или недозаряжается при зарядке батареи?
Когда полностью заряженный аккумулятор заряжается, необходимо прекратить зарядку. Но стандартные зарядные устройства не могут определить, когда батарея достигла 100 процентов, поэтому они продолжают подавать ток на батарею.
По этой причине батареи нагреваются и могут быть повреждены. Это способ для батарей избавиться от дополнительной подаваемой энергии. Перезаряд аккумуляторов может не только повредить аккумулятор, но и сократить срок его службы.
Доступен широкий выбор зарядных устройств, таких как капельные зарядные устройства, интеллектуальные зарядные устройства на основе времени, простые зарядные устройства, интеллектуальные зарядные устройства, импульсные зарядные устройства, зарядные устройства с приводом от движения, солнечные зарядные устройства, быстрые зарядные устройства и трехступенчатые зарядные устройства.
В большинстве случаев зарядные устройства производятся для конкретной батареи из-за количества токов, которые они будут подавать, и того, сколько времени потребуется для полной зарядки батарей.
К сожалению, это означает, что любое зарядное устройство, предназначенное для зарядки определенного аккумулятора, может не работать с другим аккумулятором.
Итак, производители гаджетов советуют использовать для зарядки аккумуляторов одни и те же зарядные устройства. Таким образом, вы не повредите и не сократите срок службы батареи.
Если вы хотите получить максимальную отдачу от зарядного устройства, не пытайтесь одновременно заряжать аккумуляторы разной емкости или химического состава.
Почему?
Существует высокий риск повреждения батарей с течением времени.
Как сделать зарядное устройство своими рукамиКогда у вас есть готовые материалы, вы можете либо следовать инструкциям, либо соединить все параметры с помощью принципиальной схемы.
Итак, вот полное объяснение того, как работает схема:
Когда вы включаете питание батареи, диод 1N5402 работает с постоянным напряжением 24 В, создавая полуволну постоянного тока 24 В на выходе зарядного устройства.
В то время как среднеквадратичное значение напряжения выглядит как 9-12 вольт, максимальное напряжение составляет 24 вольта, поэтому вы не можете подать его напрямую на аккумулятор.
Если вы хотите уменьшить максимальное значение зарядного устройства, используйте лампочку в сочетании со схемой.
Итак, задача лампочки — поглощать максимальные значения напряжения. Таким образом, он обеспечивает более контролируемый выход на батарею. В конечном итоге это также становится саморегулирующимся из-за интенсивного свечения нити накала лампы.
Но обратите внимание на это;
Все лампы имеют разное сопротивление, поэтому их характеристики могут различаться.
По этой причине выходное напряжение и ток автоматически регулируются до разумного уровня зарядки, подходящего для безопасной зарядки аккумулятора.
После установки ламп вы будете знать, когда аккумулятор заряжается. Кроме того, лампочка постепенно тускнеет по мере достижения своего порога.
Как только напряжение батареи приблизится к 14,5 В, необходимо прекратить зарядку.
Быстрые шаги по созданию схемы зарядного устройства для аккумуляторов своими руками
Итак, вот краткие шаги, которые необходимо предпринять для создания схемы зарядного устройства для аккумуляторов своими руками с выходной мощностью и аварийным питанием:
1: Соберите мостовой выпрямитель, соединив четыре диоды 1N4007
2: Припаяйте выводы +Ve и -Ve мостового выпрямителя к вторичной обмотке трансформатора без ТТ.
3: Убедитесь, что вы обрезали лишние части мостового выпрямителя
4: Затем припаяйте один конец конденсатора с номинальным значением X к клемме +ve источника переменного тока, а -v к первичной обмотке трансформатора. Терминал.
5: Припаяйте зажимы типа «крокодил» к выводу мостового выпрямителя.
6: Подключите клеммы разъема питания постоянного тока к выходным клеммам зарядного устройства и проверьте цепь.
Final WordsВот и все, что вам нужно для создания зарядных устройств для аккумуляторов своими руками. Итак, видите, процесс создания не так сложен, как вы ожидали.
Если вы будете следовать всем инструкциям в этой статье, вы также создадите качественные зарядные устройства, которые будут работать долго.
Итак, расскажите нам, как работает ваш проект зарядного устройства. Кроме того, если вам нужна дополнительная информация о схеме зарядного устройства, не стесняйтесь обращаться к нам.
Руководство по сборке зарядных устройств для аккумуляторов
В этом руководстве мы рассмотрим схемы зарядки герметичных свинцово-кислотных (SLA), никель-кадмиевых (NiCd), никель-металлогидридных (NiMH) и литий-полимерных (LiPo) аккумуляторов. . Мы предоставим схемы и инструкции по их сборке.
Но прежде чем мы начнем, знайте, что важно правильно заряжать аккумуляторы. Использование неправильного напряжения или тока, или неправильного типа цепи зарядки аккумулятора может привести к возгоранию или даже взрыву аккумулятора. Соблюдайте осторожность при использовании самодельных схем зарядки аккумуляторов и не оставляйте заряжающиеся аккумуляторы без присмотра.
Герметичные свинцово-кислотные аккумуляторы
Герметичные свинцово-кислотные (SLA) аккумуляторы отлично подходят, если у вас есть место. Их большой размер позволяет им долго сохранять заряд на полке. Аккумуляторы SLA обычно заряжаются от источника постоянного напряжения. Зарядное устройство настроено на определенное напряжение, которое остается неизменным на протяжении всего цикла зарядки. Это позволяет батарее изначально потреблять большой ток, который затем уменьшается по мере зарядки. Начальный ток должен быть ограничен, чтобы предотвратить повреждение и перегрев.
На боковой стороне батареи SLA обычно есть этикетка со списком напряжений, которые следует использовать для зарядки:
На изображении выше приведены характеристики напряжения и тока для зарядки батареи в режиме «ожидания» или «циклического использования». Использование в режиме ожидания относится к батареям, которые проводят большую часть времени на зарядном устройстве в режиме поддерживающей зарядки. Циклическое использование относится к батареям, которые часто используются и часто заряжаются.
Начальный зарядный ток показан для режима ожидания и циклического использования. Ток заряда не должен превышать указанного значения (в данном случае 2,1 А). Зарядное напряжение отличается для режимов ожидания и циклического использования.
В зарядном устройстве SLA цикличность должна контролироваться на этой частоте; аккумулятор будет перезаряжаться, как только он достигнет емкости. Зарядку можно производить с помощью настольного блока питания с ограничением тока. Просто установите значение напряжения, которое вы будете использовать, и установите ограничение тока на значение, указанное на аккумуляторе.
Ниже показана схема зарядного устройства для аккумуляторов SLA, которое автоматически переключает скорость, когда аккумулятор полностью заряжен:
Никель-кадмиевые и никель-металлогидридные
Никель-кадмиевые (NiCd) батареи были популярны в течение последних нескольких десятилетий, но постепенно их заменяют никель-металлогидридными (NiMH) батареями. Причина в том, что батареи NiMH имеют меньшую память заряда по сравнению с батареями NiCd.
Никель-кадмиевые и никель-металлогидридные аккумуляторы имеют аналогичные требования к зарядке. Оба типа предлагают возможность заряжать столько, сколько вам нужно последовательно. Оба могут заряжаться постоянным током.
Это схема сборки зарядного устройства на дискретных транзисторах, которое можно использовать для зарядки NiCd и NiMH аккумуляторов:
Эта схема предназначена для зарядки 12-вольтовой батареи при токе 50 мА, но ее можно легко масштабировать до более высоких напряжений и токов с помощью подходящих компонентов.
Диоды D1 и D2 и резистор R2 обеспечивают постоянное напряжение 1,2 В на базе Q1, так как напряжение база-эмиттер всегда составляет 0,6 В. Правильно подобрав R1, мы имеем программируемый источник постоянного тока. Чтобы рассчитать значение R1, которое будет обеспечивать определенный ток, используйте эту формулу:
R = V / I
В этом случае V равно 0,6 В, а ток заряда будет равен 50 мА, поэтому:
R = 0,6 В / 50 мА
R1 = 12 Ом
На приведенной ниже схеме показан регулируемый стабилизатор напряжения LM317, настроенный на постоянный ток. источник. Это зарядное устройство может заряжать как никель-кадмиевые, так и никель-металлогидридные аккумуляторы:
Схема предназначена для зарядки аккумулятора 12 В при токе 50 мА.
LM317 подает опорное напряжение 1,25 В между Vadj и Vout. Чтобы рассчитать значение R3 для получения определенного зарядного тока, используйте эту формулу:
R = V / I
Таким образом, с V при 1,25 В и I при 50 мА,
R = 1,25 В / 50 мА
R3 = 25 Ом , ноутбуки и блоки питания, потому что они могут иметь высокое напряжение и большую емкость для своего размера.
Аккумуляторы LiPo требуют осторожной и контролируемой зарядки. Батареи LiPo нельзя заряжать последовательно. Правильный цикл зарядки LiPo состоит из четырех последовательных этапов зарядки:
После подключения полностью разряженной батареи LiPo к зарядному устройству первым этапом является предварительная зарядка. На этом этапе зарядный ток устанавливается равным 10% от максимального зарядного тока. На следующем этапе к батарее подается постоянный ток, в то время как напряжение резко возрастает. В конечном итоге напряжение выравнивается на третьем этапе, когда к аккумулятору прикладывается постоянное напряжение. На заключительном этапе ток начинает падать. Когда ток заряда становится равным 10% от максимального тока заряда, зарядка прекращается:
Аккумуляторы LiPo можно заряжать с помощью модуля зарядки литиевых аккумуляторов TP4056. Модуль может питаться от 5В, подаваемого по кабелю micro USB, или через контакты на печатной плате.
Когда аккумулятор полностью заряжен, загорается зеленый светодиод.