Зарядник своими руками для аккумулятора: Зарядное устройство для аккумуляторов своими руками: схемы, типы, порядок работ

Содержание

Зарядное устройство для автомобильного аккумулятора своими руками

  • Статья
  • Видео

Иногда случается так, что аккумулятор в машине садиться и завести ее уже не получается, так как стартеру не хватает напряжения и соответственно тока, чтобы провернуть вал двигателя. В этом случае можно «прикурить» от другого владельца авто, чтобы двигатель заработал и аккумулятор стал заряжаться от генератора, однако для этого нужны специальные провода и человек, желающий вам помочь. Можно так же зарядить аккумулятор самостоятельно посредством специализированного зарядного устройства, однако они достаточно дорогие, и пользоваться ими приходится не особо часто. Поэтому в данной статье мы подробно рассмотрим устройство самоделки, а также инструкцию о том, как сделать зарядное устройство для автомобильного аккумулятора своими руками.

  • Устройство самоделки
  • Технология сборки
  • Правила эксплуатации

Устройство самоделки

Нормальное напряжение на аккумуляторе, отключенном от автомобиля, находится в пределах между 12,5 в и 15 в.

Поэтому зарядное устройство должно выдавать такое же напряжение. Ток заряда должен быть равен примерно 0,1 от емкости, он может быть и меньше, но это увеличит время зарядки. Для стандартной батареи емкостью 70-80 а/ч ток должен быть равен 5-10 амперам в зависимости от конкретного аккумулятора. Наше самодельное зарядное устройство для АКБ должно соответствовать этим параметрам. Для сборки зарядного устройства для автомобильного аккумулятора нам потребуются следующие элементы:

Трансформатор. Нам подойдет любой из старого электроприбора или купленный на рынке с габаритной мощностью порядка 150 Ватт, можно больше, но не меньше, иначе он будет сильно нагреваться и может выйти из строя. Отлично, если напряжение его выходных обмоток составляет 12,5-15 В, а ток порядка 5-10 ампер. Посмотреть эти параметры можно в документации к вашей детали. Если же нужной вторичной обмотки нет, то необходимо будет перемотать трансформатор под другое выходное напряжение. Для этого:

  1. Удалите все ненужные вторичные обмотки, оставив только первичную.
  2. Выполните расчёт необходимого числа витков и сечения проволоки для подходящего напряжения и тока. Для этого есть специальные калькуляторы и формулы из курса физики. Необходимый диаметр проволоки рассчитывается по таблице ниже. Проволока обязательно должна быть в лаковой изоляции. А число витков определяется соотношением: U1/U2=N1/N2. Отсюда следует, что если у вас первичная обмотка состоит из 480 витков, то для получения 13 Вольт на выходе необходимо намотать всего 26 витков, так как напряжение сети – 220 Вольт.
  3. После этого уложите проволоку на основу виток к витку, делая изоляцию между слоями бумагой или изолентой в несколько слоев. Конец и начало обмоток выведите и надежно закрепите на корпусе. Чтобы припаять к ним провода, зачистите изоляцию ножом.
  4. Для уменьшения шума и вибраций, а также улучшения изоляции, можно пропитать устройство парафином.

Таким образом мы нашли или собрали идеальный трансформатор, чтобы сделать зарядное устройство для аккумулятора своими руками.

Нам также понадобятся:

  • 4 Диода. Подойдут любые диоды с током не менее 10 ампер. Одни из самых популярных: импортные – 10A10, отечественные – Д242А, 2Д203А, КД213Б. Или диодные мосты, например: КВРС1001, КВРС1002 и их аналоги.
  • 4 радиатора для диодов. Можно, конечно, обойтись и без них на малых токах порядка 3-5 Ампер. Но это может привести к их быстрому выходу из строя, поэтому необходимы радиаторы площадью 32 кв. см или 128 кв. см для диодного моста. Их можно сделать из листового алюминия или использовать кулеры от компьютера и материнских плат.
  • Разборная электрическая вилка или сетевой шнур.
  • Медные провода сечением не меньше 2,5 кв. мм.
  • Предохранители на 0,5А и на 10А.
  • Термоусадочная трубка или изолента.
  • Пластина из диэлектрика, а еще лучше – корпус, например фанерный или пластиковый.
  • Кусок нихромовой проволоки от электроплитки.
  • Мультиметр или вольтметр с амперметром.
  • Паяльник, припой и флюс (канифоль или ЛТИ-120).
  • Еще несколько радиокомпонентов, если мы хотим сделать устройство с защитой и автоматическим отключением.

Подготовив все материалы можно переходить к самому процессу сборки автомобильного ЗУ.

Технология сборки

Чтобы сделать зарядное устройство для автомобильного аккумулятора своими руками, необходимо следовать пошаговой инструкции:

  1. Создаем схему самодельной зарядки для АКБ. В нашем случае она будет выглядеть следующим образом:
  2. Используем трансформатор ТС-180-2. Он имеет несколько первичных и вторичных обмоток. Для работы с ним нужно соединить последовательно две первичные и две вторичные обмотки, чтобы получить нужное напряжения и ток на выходе.
  3. С помощью медного провода соединяем между собой выводы 9 и 9’.
  4. На стеклотекстолитовой пластине собираем диодный мост из диодов и радиаторов (как показано на фото).
  5. Выводы 10 и 10’ подключаем к диодному мосту.
  6. Между выводами 1 и 1’ устанавливаем перемычку.
  7. К выводам 2 и 2’ с помощью паяльника крепим сетевой шнур с вилкой.
  8. В первичную цепь подключаем предохранитель на 0,5 А, 10-амперный соответственно во вторичную.
  9. В разрыв между диодным мостом и аккумулятором подключаем амперметр и отрезок нихромовой проволоки. Один конец которой закрепляем, а второй должен обеспечивать подвижный контакт, таким образом будет меняться сопротивление и ограничиваться ток, подаваемый на аккумулятор.
  10. Изолируем все соединения термоусадкой или изолентой и помещаем устройство в корпус. Это необходимо, чтобы избежать поражения электрическим током.
  11. Устанавливаем подвижный контакт на конец проволоки, чтобы ее длинна и соответственно сопротивление были максимальны. И подключаем аккумулятор. Уменьшая и увеличивая длину проволоки, необходимо выставить нужное значение тока для вашего аккумулятора (0,1 от его емкости).
  12. В процессе зарядки сила тока, подаваемая на аккумулятор, будет сама уменьшаться и когда она достигнет 1 ампера можно сказать, что аккумулятор зарядился. Желательно также контролировать непосредственно напряжение на батарее, однако для этого его необходимо отключить от з/у, так как при зарядке оно будет немного выше реальных значений.

Первый запуск собранной схемы любого источника питания или ЗУ всегда производят через лампу накаливания, если она загорелась в полный накал — или где-то ошибка, или первичная обмотка замкнута! Лампу накаливания устанавливают в разрыв фазного или нулевого провода, питающих первичную обмотку.

Данная схема самодельного зарядного устройства для АКБ имеет один большой недостаток – она не умеет самостоятельно отключать аккумулятор от зарядки после достижения нужного напряжения. Поэтому вам придется постоянно следить за показаниями вольтметра и амперметра. Есть конструкция, лишенная этого недостатка, однако для ее сборки потребуется дополнительные детали и больше усилий.

Наглядный пример готового изделия

Правила эксплуатации

Недостаток самодельного зарядного устройства для аккумулятора 12В заключается в том, что после полной зарядки АКБ автоматическое отключение прибора не происходит.

Именно поэтому Вам придется периодически поглядывать на табло, чтобы вовремя выключить его. Еще один важный нюанс – проверять ЗУ «на искру» категорически запрещается.

Среди дополнительных мер предосторожности следует выделить такие:

  • при подключении клемм следите за тем, чтобы не перепутать «+» и «-», иначе простое самодельное зарядное устройство для АКБ выйдет из строя;
  • подключение к клеммам нужно осуществлять только в выключенном положении;
  • мультиметр должен иметь шкалу измерения свыше 10 А;
  • при зарядке следует выкручивать пробки на аккумуляторе, во избежание его взрыва из-за закипания электролита.

Мастер-класс по созданию более сложной модели

Вот, собственно, и все что хотелось рассказать Вам о том, как правильно сделать зарядное устройство для автомобильного аккумулятора своими руками. Надеемся, что инструкция была для Вас понятной и полезной, т. к. этот вариант является одним из простейших видов самодельной зарядки для АКБ!

Также читают:

  • Как собрать распределительный щит
  • Схема подключения однофазного электросчетчика к сети
  • Почему срабатывает УЗО

Наглядный пример готового изделия

Мастер-класс по созданию более сложной модели

как сделать своими руками, схема

Автор Владимир Остапенко На чтение 18 мин Просмотров 18.6к. Опубликовано Обновлено

Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.

Содержание

  1. Требования к зарядке АКБ
  2. Как сделать самодельное зарядное устройство для АКБ
  3. Простой “зарядник” с гасящими конденсаторами
  4. Прибор для зарядки и тренировки аккумулятора
  5. Зарядное устройство для АКБ с ШИМ-регулировкой тока
  6. Зарядное устройство с фазоимпульсной регулировкой
  7. Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)
  8. Автоматическое зарядное устройство из драйвера для светодиодных лент
  9. Зарядное устройство из блока питания ПК
  10. Как заряжать аккумулятор от самодельного устройства

Требования к зарядке АКБ

Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .

  1. Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
  2. В конце процесса зарядки ток желательно уменьшить, чтобы .
  3. Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
  4. При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.

Исходя из вышесказанного, определяем требования к зарядному устройству:

  1. Должно обеспечивать регулировку зарядного тока.
  2. Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, – позволяющих контролировать ток заряда и .
  3. Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.

Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.

Как сделать самодельное зарядное устройство для АКБ

А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.

Простой “зарядник” с гасящими конденсаторами

Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.

  

Схема простого зарядного устройства с гасящими конденсаторами

В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.

Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А. К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.

Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.

О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.

Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. “Электролит” — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.

Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.

Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.

Прибор для зарядки и тренировки аккумулятора

Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.

Электрическая схема зарядного устройства для тренировки батарей

Сетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.

По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Контролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.

Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ.  При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.

О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.

Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.

 Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.

Зарядное устройство для АКБ с ШИМ-регулировкой тока

Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.

Электросхема зарядного устройства с ШИМ

Задающий генератор блока регулировки тока собран на элементах DD1.1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.

В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.

Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.

О деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.

Двухполупериодный выпрямитель на двух диодах

В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.

Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.

В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.

Зарядное устройство с фазоимпульсной регулировкой

Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой

Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.

О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.

Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.

Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.

Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)

Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.

Зарядное устройство с регулировкой по высокому напряжению

В этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост  VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.

В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Вольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.

О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.

Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.

Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.

Автоматическое зарядное устройство из драйвера для светодиодных лент

Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.

Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:

Типовая схема драйвера для светодиодной ленты китайского производства

Нас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен “VR”), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.

Диапазона регулировки подстроечного резистора нам не хватило

Тут есть два варианта:

  1. Заменить подстроечный резистор другим, большего номинала.
  2. Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.

Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен “R30”.

Нас интересует резистор R30

На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.

Номинал нашего R30 составил 5 кОм

Берём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.

Напряжение на выходе составляет 14,5 В

Здесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.

Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.

Выпаиваем переменный резистор, измеряем его сопротивление.

Нам нужен постоянный резистор сопротивлением 4,5 кОм

Такого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.

Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.

Зарядное устройство из блока питания ПК

Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.

Аналоги микросхемы TL494 

Прибор

Описание

Прибор

Описание

GL494Зарубежный полный аналогM5T494PЗарубежный полный аналог
IR9494NMB3759
MB3759UA494PC
NE5561UC494
UPC494UC494CN
XR494UPC494C
ECG1729MB3759
IR3M02UA494DM
IR9494IR9494
MB3759MB3759
UPC494C1114ЕУ3Отечественный полный аналог
UA494DC1114ЕУ4
ECG17291114ЕУЗ
HA11794К1114ЕУ3
IR3M02КР1114ЕУ4

Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.

Зелёный провод управления припаиваем к минусовой шине питания

Теперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.

Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.

Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.

Нумерация выводов ведётся от ключа против часовой стрелки

Переворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.

Нас интересует этот резистор

Номинал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.

Установка выходного напряжения при помощи переменного резистора

Важно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.

Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.

Под нагрузкой выходное напряжение “просело” на несколько десятых — это нормально

Как заряжать аккумулятор от самодельного устройства

Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

  1. Выводим регулятор тока в «0».
  2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
  3. Подаём питание на ЗУ.
  4. Устанавливаем необходимый ток зарядки.
  5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
  6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.

Сейчас читают:

Самодельные зарядные устройства: полное руководство

Аккумулятор — одно из самых блестящих изобретений, когда-либо сделанных. Итак, как это работает, так это то, что он сохраняет фиксированное количество энергии, прежде чем закончится. Вот почему у нас есть перезаряжаемые батареи. Следовательно, если у вас разряженный аккумулятор, вы можете подключить его к зарядному устройству и зарядить. Однако производительность ваших аккумуляторов зависит от зарядного устройства. Поэтому необходимо хорошее зарядное устройство. Но, если вы хотите сделать его, существует множество конструкций зарядных устройств. Некоторые из них просты, например, зарядное устройство для светодиодных аккумуляторов, в то время как некоторые из них сложны. К счастью, мы создали эту статью, чтобы показать вам, как сделать зарядное устройство своими руками. Вы готовы? Давайте погрузимся!

Что такое зарядное устройство?

С точки зрения непрофессионала, зарядные устройства — это устройства, которые заряжают разряженные аккумуляторы.

Но давайте углубимся.

Зарядные устройства — это устройства, подающие электрический ток на батареи в течение длительного времени.

Зарядное устройство для аккумуляторов с проверкой напряжения и мощности

Цель состоит в том, чтобы аккумуляторные элементы сохраняли достаточную мощность и работали в качестве источника энергии. И это то, что объединяет все зарядные устройства.

Тем не менее, есть некоторые различия между дешевым зарядным устройством, сделанным своими руками, и зарядным устройством отличного качества.

Вот в чем дело.

Дешевые зарядные устройства для аккумуляторов обеспечивают постоянным напряжением или током аккумуляторы до тех пор, пока они не отключатся.

Проблема с дешевыми зарядками;

Если вы оставите аккумулятор заряжаться слишком долго, он перезарядится.

Но если вы снимете его слишком рано, ваши батареи не получат достаточно энергии для более продолжительной работы.

С другой стороны, качественные зарядные устройства используют более мягкую непрерывную зарядку (обычно 3-5 % от максимальной емкости аккумулятора) для более длительного времени.

Другим вариантом зарядного устройства является зарядное устройство с таймером. Это интеллектуальное зарядное устройство способно автоматически отключаться.

зарядное устройство с четырьмя аккумуляторными батареями

К сожалению, это не предотвращает перезарядку, так как каждая батарея имеет разное время зарядки.

Какие материалы необходимы для сборки зарядного устройства

Вам не нужно быть профессиональным производителем аккумуляторов, чтобы построить зарядное устройство. Вы можете сделать зарядное устройство своими руками, не выходя из дома.

Все, что вам нужно сделать, это следовать инструкциям и использовать правильные материалы.

Итак, вот детали, необходимые для сборки зарядного устройства:

  • Понижающий трансформатор (220 В/14 В) X 1
  • Свинцово-кислотный аккумулятор (12 В/7 Ач) X 1
  • Диод (1N4007) X 4
  • Измеритель AVO с датчиками X 1
  • Зажимы для батарей типа «крокодил» X 1
  • Клеммы держателя батарей X 1
  • Пленочные конденсаторы (1 мкФ/105 Дж) X 1
  • Паяльник X 1
  • Шнуры питания X 1
  • Припой и флюс X 1
  • Гнездо питания постоянного тока X 1 1
  • Соединительные провода X 1

Схема зарядного устройства 12 В

Здесь, в этом разделе, мы покажем вам схему зарядного устройства 12 В. Вы можете использовать эту схему для зарядки любой 12-вольтовой аккумуляторной батареи, а также автомобильных аккумуляторов.

Цепь состоит только из источника питания 12 В постоянного тока с амперметром, который контролирует напряжение зарядки.

Кроме того, два диода образуют двухполупериодный выпрямитель с отводом от средней точки, а конденсатор фильтрует выходной сигнал выпрямителя, обеспечивая чистое выходное напряжение 12 В.

Схема, показывающая цепь зарядного устройства с поглощением 12-вольтовой батареи

Здесь вы можете подключить его IC в обычном режиме, где вы включаете R1 и R2 для настройки на требуемое напряжение.

ИС получает питание от стандартного трансформатора или сети диодного моста. После фильтрации напряжения через С1 устанавливается напряжение 14,9 В.0003

Следовательно, отфильтрованное 14 В постоянного тока подается на входной контакт микросхемы.

Кроме того, вы можете закрепить контакт ADJ микросхемы на соединении резисторов R1 и R2 (переменный резистор). Вы также можете настроить резистор R2 так, чтобы он соответствовал конечному выходному напряжению емкости аккумулятора.

Без RC схема будет работать как источник питания LM 317, где вы не сможете контролировать ток цепи.

Итак, RC и транзистор BC547, расположенные в цепи, могут определять ток, подаваемый на батарею.

Пока ток остается в безопасном диапазоне, напряжение будет оставаться на заданном уровне.

Однако, если ток поднимается выше безопасного диапазона приложений, ИС снимает напряжение и падает, чтобы еще больше ограничить рост тока и обеспечить безопасность батареи.

Понимание концепции самодельных зарядных устройств

Концепция зарядного устройства звучит просто, и это так. Однако, даже если идея довольно проста, она требует некоторых трудоемких процессов.

Кроме того, вам нужно убедиться, что зарядное устройство не перезаряжается.

Итак, давайте рассмотрим самый простой способ сделать простое зарядное устройство для аккумуляторов.

Как это работает?

Чтобы батарея работала, она должна преобразовывать накопленную химическую энергию в пригодную для использования электрическую энергию. Когда в батарее заканчиваются электролиты, батарея разряжается; затем вы должны зарядить его.

Итак, здесь на помощь приходит зарядное устройство.

Зарядное устройство подает на аккумулятор постоянный ток, и израсходованный электролит восстанавливается.

Итак, теоретически, когда электролиты батареи достигают полной зарядки, зарядное устройство должно прекратить подачу тока. На этом этапе вам нужно следить за состоянием батареи и отключать USB-порт батареи, когда он будет завершен. Или, возможно, вы покупаете интеллектуальное зарядное устройство для аккумулятора или USB-зарядное устройство для мобильного телефона.

Вы также можете использовать питание от солнечной панели и зажим для солнечной батареи для питания простой батареи.

Процесс зарядки аккумулятора

Весь процесс зарядки включает:

  • Стабилизация
  • Зарядка клемм аккумулятора
  • Оптимизация скорости зарядки (увеличение потребляемой мощности не менее чем на 10–20 %)
  • Завершение (узнавание момента прекращения подачи тока для обеспечения безопасности аккумулятора)

Кроме того, скорость заряда и разряда батареи представляет собой C-rate (Charge Rate). Он измеряет уровень заряда или разряда батареи с измеренной емкостью в Ач.

Например, если полностью заряженный аккумулятор емкостью 5 Ач разряжается током 5 ампер, для полной зарядки аккумулятора потребуется час. Следовательно, большинство современных гаджетов, таких как ноутбуки, электромобили, зарядные устройства для мобильных телефонов, специальные приложения для кухни и дома, электроинструменты и мобильные телефоны, используют литий-ионный аккумулятор.

Литий-ионный аккумулятор

Почему?

Вход литий-ионного аккумулятора продлевается на более длительное время при частой зарядке.

Схема литиевой батареи

Что происходит, когда батарея перезаряжается или недозаряжается при зарядке батареи?

Когда полностью заряженный аккумулятор заряжается, необходимо прекратить зарядку. Но стандартные зарядные устройства не могут определить, когда батарея достигла 100 процентов, поэтому они продолжают подавать ток на батарею.

По этой причине батареи нагреваются и могут быть повреждены. Это способ для батарей избавиться от дополнительной подаваемой энергии. Перезаряд аккумуляторов может не только повредить аккумулятор, но и сократить срок его службы.

Доступен широкий выбор зарядных устройств, таких как капельные зарядные устройства, интеллектуальные зарядные устройства на основе времени, простые зарядные устройства, интеллектуальные зарядные устройства, импульсные зарядные устройства, зарядные устройства с приводом от движения, солнечные зарядные устройства, быстрые зарядные устройства и трехступенчатые зарядные устройства.

В большинстве случаев зарядные устройства производятся для конкретной батареи из-за количества токов, которые они будут подавать, и того, сколько времени потребуется для полной зарядки батарей.

К сожалению, это означает, что любое зарядное устройство, предназначенное для зарядки определенного аккумулятора, может не работать с другим аккумулятором.

Итак, производители гаджетов советуют использовать для зарядки аккумуляторов одни и те же зарядные устройства. Таким образом, вы не повредите и не сократите срок службы батареи.

Если вы хотите получить максимальную отдачу от зарядного устройства, не пытайтесь одновременно заряжать аккумуляторы разной емкости или химического состава.

Почему?

Существует высокий риск повреждения батарей с течением времени.

Как сделать зарядное устройство своими руками

Когда у вас есть готовые материалы, вы можете либо следовать инструкциям, либо соединить все параметры с помощью принципиальной схемы.

Итак, вот полное объяснение того, как работает схема:

Когда вы включаете питание батареи, диод 1N5402 работает с постоянным напряжением 24 В, создавая полуволну постоянного тока 24 В на выходе зарядного устройства.

В то время как среднеквадратичное значение напряжения выглядит как 9-12 вольт, максимальное напряжение составляет 24 вольта, поэтому вы не можете подать его напрямую на аккумулятор.

Если вы хотите уменьшить максимальное значение зарядного устройства, используйте лампочку в сочетании со схемой.

Итак, задача лампочки — поглощать максимальные значения напряжения. Таким образом, он обеспечивает более контролируемый выход на батарею. В конечном итоге это также становится саморегулирующимся из-за интенсивного свечения нити накала лампы.

Но обратите внимание на это;

Все лампы имеют разное сопротивление, поэтому их характеристики могут различаться.

По этой причине выходное напряжение и ток автоматически регулируются до разумного уровня зарядки, подходящего для безопасной зарядки аккумулятора.

После установки ламп вы будете знать, когда аккумулятор заряжается. Кроме того, лампочка постепенно тускнеет по мере достижения своего порога.

Как только напряжение батареи приблизится к 14,5 В, необходимо прекратить зарядку.

Быстрые шаги по созданию схемы зарядного устройства для аккумуляторов своими руками

Итак, вот краткие шаги, которые необходимо предпринять для создания схемы зарядного устройства для аккумуляторов своими руками с выходной мощностью и аварийным питанием:

1: Соберите мостовой выпрямитель, соединив четыре диоды 1N4007

2: Припаяйте выводы +Ve и -Ve мостового выпрямителя к вторичной обмотке трансформатора без ТТ.

3: Убедитесь, что вы обрезали лишние части мостового выпрямителя

4: Затем припаяйте один конец конденсатора с номинальным значением X к клемме +ve источника переменного тока, а -v к первичной обмотке трансформатора. Терминал.

5: Припаяйте зажимы типа «крокодил» к выводу мостового выпрямителя.

6: Подключите клеммы разъема питания постоянного тока к выходным клеммам зарядного устройства и проверьте цепь.

Final Words

Вот и все, что вам нужно для создания зарядных устройств для аккумуляторов своими руками. Итак, видите, процесс создания не так сложен, как вы ожидали.

Если вы будете следовать всем инструкциям в этой статье, вы также создадите качественные зарядные устройства, которые будут работать долго.

Итак, расскажите нам, как работает ваш проект зарядного устройства. Кроме того, если вам нужна дополнительная информация о схеме зарядного устройства, не стесняйтесь обращаться к нам.

Руководство по сборке зарядных устройств для аккумуляторов

В этом руководстве мы рассмотрим схемы зарядки герметичных свинцово-кислотных (SLA), никель-кадмиевых (NiCd), никель-металлогидридных (NiMH) и литий-полимерных (LiPo) аккумуляторов. . Мы предоставим схемы и инструкции по их сборке.

Но прежде чем мы начнем, знайте, что важно правильно заряжать аккумуляторы. Использование неправильного напряжения или тока, или неправильного типа цепи зарядки аккумулятора может привести к возгоранию или даже взрыву аккумулятора. Соблюдайте осторожность при использовании самодельных схем зарядки аккумуляторов и не оставляйте заряжающиеся аккумуляторы без присмотра.

Герметичные свинцово-кислотные аккумуляторы

Герметичные свинцово-кислотные (SLA) аккумуляторы отлично подходят, если у вас есть место. Их большой размер позволяет им долго сохранять заряд на полке. Аккумуляторы SLA обычно заряжаются от источника постоянного напряжения. Зарядное устройство настроено на определенное напряжение, которое остается неизменным на протяжении всего цикла зарядки. Это позволяет батарее изначально потреблять большой ток, который затем снижается по мере зарядки. Начальный ток должен быть ограничен, чтобы предотвратить повреждение и перегрев.

На боковой стороне батареи SLA обычно есть этикетка со списком напряжений, которые следует использовать для зарядки:

На изображении выше приведены характеристики напряжения и тока для зарядки батареи в режиме «ожидания» или «циклического использования». Использование в режиме ожидания относится к батареям, которые проводят большую часть времени на зарядном устройстве в режиме поддерживающей зарядки. Циклическое использование относится к батареям, которые часто используются и часто заряжаются.

Начальный зарядный ток показан для режима ожидания и циклического использования. Ток заряда не должен превышать указанного значения (в данном случае 2,1 А). Зарядное напряжение отличается для режимов ожидания и циклического использования.

В зарядном устройстве SLA цикличность должна контролироваться на этой частоте; аккумулятор будет перезаряжаться, как только он достигнет емкости. Зарядку можно производить с помощью настольного блока питания с ограничением тока. Просто установите значение напряжения, которое вы будете использовать, и установите ограничение тока на значение, указанное на аккумуляторе.

Ниже показана схема зарядного устройства для аккумуляторов SLA, которое автоматически переключает скорость, когда аккумулятор полностью заряжен:

Никель-кадмиевые и никель-металлогидридные

Никель-кадмиевые (NiCd) батареи были популярны в течение последних нескольких десятилетий, но постепенно их заменяют никель-металлогидридными (NiMH) батареями. Причина в том, что батареи NiMH имеют меньшую память заряда по сравнению с батареями NiCd.

Никель-кадмиевые и никель-металлогидридные аккумуляторы имеют аналогичные требования к зарядке. Оба типа предлагают возможность заряжать столько, сколько вам нужно последовательно. Оба могут заряжаться постоянным током.

Это схема сборки зарядного устройства на дискретных транзисторах, которое можно использовать для зарядки NiCd и NiMH аккумуляторов:

Эта схема предназначена для зарядки 12-вольтовой батареи при токе 50 мА, но ее можно легко масштабировать до более высоких напряжений и токов с помощью подходящих компонентов.

Диоды D1 и D2 и резистор R2 обеспечивают постоянное напряжение 1,2 В на базе Q1, так как напряжение база-эмиттер всегда составляет 0,6 В. Правильно подобрав R1, мы имеем программируемый источник постоянного тока. Чтобы рассчитать значение R1, которое будет обеспечивать определенный ток, используйте эту формулу:

R = V / I

В этом случае V равно 0,6 В, а ток заряда будет равен 50 мА, поэтому:

R = 0,6 В / 50 мА

R1 = 12 Ом

На приведенной ниже схеме показан регулируемый стабилизатор напряжения LM317, настроенный на постоянный ток. источник. Это зарядное устройство может заряжать как никель-кадмиевые, так и никель-металлогидридные аккумуляторы:

Схема предназначена для зарядки аккумулятора 12 В при токе 50 мА.

LM317 подает опорное напряжение 1,25 В между Vadj и Vout. Чтобы рассчитать значение R3 для получения определенного зарядного тока, используйте эту формулу:

R = V / I

Таким образом, с V при 1,25 В и I при 50 мА,

R = 1,25 В / 50 мА

R3 = 25 Ом , ноутбуки и блоки питания, потому что они могут иметь высокое напряжение и большую емкость для своего размера.

Аккумуляторы LiPo требуют осторожной и контролируемой зарядки. Батареи LiPo нельзя заряжать последовательно. Правильный цикл зарядки LiPo состоит из четырех последовательных этапов зарядки:

После подключения полностью разряженной батареи LiPo к зарядному устройству первым этапом является предварительная зарядка. На этом этапе зарядный ток устанавливается равным 10% от максимального зарядного тока. На следующем этапе к батарее подается постоянный ток, в то время как напряжение резко возрастает. В конечном итоге напряжение выравнивается на третьем этапе, когда к аккумулятору прикладывается постоянное напряжение. На заключительном этапе ток начинает падать. Когда ток заряда становится равным 10% от максимального тока заряда, зарядка прекращается:

Аккумуляторы LiPo можно заряжать с помощью модуля зарядки литиевых аккумуляторов TP4056. Модуль может питаться от 5В, подаваемого по кабелю micro USB, или через контакты на печатной плате.

Когда аккумулятор полностью заряжен, загорается зеленый светодиод.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>