Коробка автомат как работает видео: Типтроник коробка автомат — что это и как работает + Видео

Типтроник коробка автомат — что это и как работает + Видео

Форма поиска

Поиск

Вы здесь

Главная → Коробка передач ремонт и замена → Что такое коробка типтроник и как он работает?

Если раньше типтроник был отдельным способом переключения передач, то сейчас он есть практически в любом автомобиле, оборудованной автоматической коробкой передач. Тем не менее, им оборудованы далеко не все автомобили, поэтому рассмотрим, что такое типтроник и как он работает. Также разберем плюсы и минусы типтроника.

Как работает типтроник?

История появления данного типа трансмиссии началась, естественно с автоспорта, когда применение секвентального типа передач было бы самым уместным. Однако автогонщики хотели совместись два устройства в одном – это удобство автоматической коробки передач и секвентальной. Таким образом, появилась трансмиссия, которая подразумевала последовательное переключение передач без перехода на нейтраль. При этом, включение передачи «через одну» становится невозможным.

Изначально, типтроником занималась компания ЗФ, а ее реализацией компания Porshe. Именно с этого периода, все автоматические КПП носили название типтроника.

Всем известно, что автоматическая коробка передач использует в своей работе планетарные передачи, а секвентальные просто подразумевает шестерни, установленные в последовательном порядке. Такой метод позволяет получить огромный крутящий момент и сохранить прочность механизма. Перед конструкторами стояла задача скрестить два способа и получить типтроник.

Естественно, скрестить два механизма стало невозможной задачей, поэтому при изготовлении типтроника за основу взяли обычную АКПП, усилили планетарные передачи при помощи специальных материалов и обеспечили наиболее жесткую связь при помощи обычного трансмиссионного гидротрансформатора. Таким образом, водитель переводит рычаг переключателя вверх и получает повышенную передачу, а при движении вниз – пониженную. Все действия осуществляются при помощи электроники, а для подключения ее в работу, необходимо перевести селектор в специальное положение.

 

Преимущества и недостатки типтроника

Если просматривать недостатки типтроника, по сравнению с автоматической коробкой передач, то их попросту нет. Дело в том, что эта функция автомата, которая является его модернизацией. Если и есть недостатки у этой системы, то их нужно искать на фоне других типов трансмиссий.

Наравне с этим, типтроник имеет хорошие преимущества:

  • Вспомним, что на типтрониках используется упрочненная планетарная передача, что делает его в сотни раз надежнее автоматической КПП.
  • Многие типтроники комплектуются специальными режимами работы, к примеру, зимним и летним. У обычной АКПП этого нет.
  • Есть такой вид типтроника, который имеет свои подрулевые переключатели. Эта функция поможет совершить экстренное торможение двигателем при движении на голом льду.
  • Типтроник помогает быстро освоиться с управлением даже неопытным водителям, что обеспечивается удобством работы и надежностью.
  • Типтроник позволяет очень быстро включить пониженную при обгоне, что позволит быстро выполнить маневр и остаться невредимым.

Как видите, типтроник имеет больше достоинств, чем недостатков. Наверняка им будут оснащать практически все виды трансмиссий, а пока эта разработка коснулась только дорогих автомобилей.

Похожие материалы

Причины снижения уровня масла в АКПП

В автомобиле все системы являются тесно связанными между собой.

Схема коробки передач «ВАЗ 2109»

Основополагающим принципом, которому должно отвечать конструктивное устройство коробки

Замена масла в коробке автомат

Приобретая автомобиль достаточно большое количество отечественных автолюбителей (особен

АКПП или механика: преимущества и недостатки

В настоящее время можно встретить коробки передач трех видов: классические, адаптивные и…

Как проверить уровень масла в АКПП?

С внедрением новых технологий, управление автомобилем стало облегченным и более. ..

Как заменить коробку передач на ВАЗ?

Как Работает Автоматическая Коробка Передач: Схемы И Видео



Содержание:

  • Что такое АКПП
  • Механика или АКПП
  • Принцип работы
  • Гидротрансформатор
  • Гидромуфта
  • Состав
  • Виды АКПП
  • Отличия
  • Видео

Каждый автовладелец знает, что выбор трансмиссии является ключевым фактором, который влияет на динамические показатели автомобиля. Разработчики постоянно пытаются совершенствовать коробки передач, но большинство автолюбителей все же отдают предпочтение МКПП, так как, из-за сложившегося стереотипа, считают, что она более надежная и простая в использовании. Однако причина кроется в другом – большинство людей просто не знакомы с принципом работы автомата, поэтому и опасаются ее.

В сегодняшней статье мы попытаемся максимально подробно и доступно описать принцип работы автоматической трансмиссии.

Что такое АКПП?

АКПП – это основной элемент конструкции трансмиссии автомобиля, главной целью которой является изменение крутящего момента, а также изменения скорости движения.

Различают три варианта автоматической трансмиссии:

  • Вариатор;
  • Гидроавтомат;
  • Роботизированная;

Что лучше – механика или автомат?

Как многие уже могли заметить, большинство российских автолюбителей отдают предпочтение МКПП. Одни эксперты считают, что это связано с менталитетом нации, другие – с установленными негативными стереотипами.

Другое дело американцы, 95% которых не представляют себе процесс вождения автомобиля, без наличия автоматической коробки. Но это совсем не удивляет, ведь АКПП была придумана американскими инженерами, которые хотели упростить жизнь водителей.

Такая же ситуация и в Европе. Если 15-20 лет назад все поголовно использовали механику, то уже сейчас она почти вытеснена из рынка.

В России также наблюдается рост популярности автомата, но, как утверждают эксперты и аналитики, россияне не умеют правильно использовать автоматическую коробку. Каждый день в автомастерские обращается масса автолюбителей с неисправностями, основной причиной которых как раз и является неправильная эксплуатация.

Как работает АКПП?

Для того, чтобы принцип работы автоматической трансмиссии стал более понятным, мы условно разобьем ее на три части: механическая, электронная и гидравлическая.

Начнем обсуждение, конечно же, с механической, так как именно данный элемент и переключает передачи.

Гидравлическая часть является неким посредником, который является связующим звеном.

И, наконец, электронная, которая считается мозгом трансмиссии, отвечающим за переключение режимов, а также обратную связь.

Все понимают, что сердцем автомобиля является мотор. Трансмиссия вовсе не претендует на эту роль, ведь ее смело можно называть мозгом автомобиля. Главной целью АКПП считается преобразование КМ мотора в силу, которая создает условия для движения ТС. Немаловажную роль в этом процессе выполняет гидротрансформатор и планетарные передачи.

Гидротрансформатор

По аналогии с МКПП, гидротрансформатор выполняет функции сцепления, а также регулирует КМ, с учетом частоты вращения и продуцируемой мощности двигателя.

Конструкция гидротрансформатора состоит из трех частей:

  • Центростремительная турбина;
  • Центробежный насос;
  • Направляющий аппарат-реактор;

За счет того, что турбина и насос максимально сближены друг с другом, рабочие жидкости находятся в постоянном движении. Именно благодаря этому удается добиться минимальных потерь энергии. К тому же, гидротрансформатор может похвастаться очень компактными размерами.

Стоит отметить, что коленвал напрямую связан с насосным колесом, а коробочный вал – с турбиной. Именно за счет этого, в гидротрансформаторе отсутствует жесткая связь между ведущими и ведомыми элементами. Рабочие жидкости передают энергию от мотора к трансмиссии, которая, в свою очередь, через лопатки насоса передает ее на лопасти турбины.

Гидромуфта

Если говорить о гидромуфте, то ее принцип работы очень похож – она также передает КМ, не влияя на его интенсивность.

Гидротрансформатор оснащен реактором в первую очередь для того, чтобы изменять КМ. По сути, это такое же колесо с лопатками, разве что жестче посаженное и менее маневренное. По нему масло возвращается из турбины в насос. Некоторые особенности имеют лопатки реактора, каналы которых постепенно сужаются. За счет этого скорость движения рабочих жидкостей существенно увеличивается.

Из чего состоит АКПП?

Гидротрансформатор – взаимодействует со сцеплением, и не контактирует с водителем.

Планетарный ряд – взаимодействует с шестернями в коробке, и при переключении передач изменяет конфигурацию трансмиссии.

Тормозная лента, задний и передний фрикцион – напрямую переключают передачи.

Устройство управления – это узел, который состоит из насоса, клапанной коробки и маслосборника.

Гидроблок – система клапанных каналов, которые контролируют и управляют нагрузкой двигателя.

Гидротрансформатор – предназначен для передачи крутящего момента от силового агрегата до элементов автоматической трансмиссии.

Расположен он между коробкой и мотором, и таким образом выполняет функцию сцепления. Он наполнен рабочей жидкостью, которая улавливает и передает усилия двигателя в масляный насос, находящейся непосредственно в коробку.

Что касается масляного насоса, то он уже передает рабочую жидкость в гидротрансформатор, создавая, таким образом, наиболее оптимальное давление в системе. Поэтому, миф о том, что автомобиль с коробкой-автомат можно завести без стартера – чистая ложь.

Шестеренчатый насос получает энергию прямо от двигателя, из чего можно сделать вывод, что при выключенном моторе давление в системе полностью отсутствует, даже если рычаг переключения АКПП находиться не в начальном состоянии. Поэтому, принудительное вращение карданного вала не сможет завести двигатель.

Планетарный ряд – используется зачастую в автоматической трансмиссии, так как считается более современным и технологичным, нежели параллельный вал, используемый в механике.

Части фрикциона – поршень заставляет двигаться чрезмерное давление масла. Сам поршень очень плотно прижимает ведущие элементы к ведомым, заставляя их вращаться как единое целое, и передавать КМ ко втулке. Стоит отметить, что в АКПП находится сразу несколько таких планетарных механизмов.

Фрикционные диски передают КМ непосредственно колесам автомобиля.

Тормозная лента – используется для блокировки элементов планетарного механизма.

Гидроблок – один из наиболее сложных механизмов в АКПП, который называют «мозгами трансмиссии». Стоит отметить, что ремонт данного элемента очень дорогостоящий.

Виды АКПП

Перманентная гонка технического оснащения автомобилей, заставляет разработчиков придумывать все более изощренные технологии и конструкции, для того, чтобы обогнать конкурентов. Стоит отметить, что это положительно сказывается на развитии ходовой части ТС. Одним из наиболее важных открытий, стало изобретение автоматической коробки передач. Она сразу же начала пользоваться невероятно большим спросом, так как заметно упрощает процесс управления.

К тому же она весьма простая в эксплуатации и надежная. Аналитики утверждают, что в скором будущем она полностью вытеснит из рынка МКПП.

На сегодняшний день коробка-автомат используется, как в легковых автомобилях, так и грузовиках, в независимости от типа привода.

Известно, что при управлении автомобилем с МКПП, приходится постоянно держать руку на переключателе передач, что значительно снижает концентрацию на дороге. Коробка-автомат практически лишена подобных недостатков.

Основные преимущества коробки-автомат:

  • Повышается эффективность управления;
  • Более плавный переход между передачами даже на высокой скорости;
  • Двигатель не перегружается;
  • Передачи можно переключать как вручную, так и в автоматическом режиме;

Современные АКПП, с точки зрение системы контроля и управления, можно разделить на два типа:

  • Трансмиссия с гидравлическим устройством;
  • Трансмиссия с электронным устройством, или так называемая роботизированная коробка;

Более понятным это должно стать после ознакомления с приведенным ниже примером:

«Представьте себе ситуацию, что автомобиль двигается по ровной дороге и постепенно приближается к крутому подъему. Если какое-то время просто со стороны наблюдать за этой ситуацией, то можно заметить, что после увеличения нагрузки, машина начинает терять скорость, и, следовательно, интенсивность вращения турбины также снижается. Это приводит к тому, что рабочая жидкость начинает противодействовать движению. В таком случае резко возрастает скорость циркуляции, что способствует увеличению КМ до того показателя, при котором возникнет равновесие в системе».

Такой же принцип работы и в момент начала движения автомобиля. Единственное отличие в том, что в данном случае еще задействуется и акселератор. Благодаря ему увеличивается интенсивность оборотов коленвала и насосного колеса, при том, что турбина остается неподвижной, что позволяет двигателю работать в холостом режиме. Стоит отметить, что КМ резко возрастает, и при достижении определенной отметки, гидротрансформатор начинает выполнять функции звена, которое соединяет воедино ведомый и ведущий элементы. Именно все эти моменты, позволяют во время движения значительно уменьшать уровень потребления горючего, и более эффективно проводить торможение двигателем в случае надобности.

Так для чего же тогда подключать АКПП к гидротрансформатору, если тот самостоятельно способен изменять интенсивность КМ?

Вот почему: коэффициент изменения крутящего момента с помощью гидротрансформатора обычно не превышает 2-3.5. Этого мало для полноценной работы автоматической коробки.

В отличие от механической, автоматическая коробка переключает скорости с помощью фрикционных муфт и ленточных тормозов. Система автоматически определяет нужную скорость с учетом скорости движения и усилия на педаль акселератора.

Помимо планетарного механизма и гидротрансформатора, АКПП включает в себя также насос, который смазывает коробку. Охлаждением масла занимается радиатор охлаждения.

Разница между коробкой-автомат у заднеприводных и переднеприводных ТС

Существует ряд отличий между компоновкой АКПП автомобилей с передним и задним приводом. Автоматическая трансмиссия переднеприводных автомобилей более компактная, и имеет отдельное отделение, которое называют – дифференциал.

Во всех других аспектах обе трансмиссии идентичны, как в конструктивном, так и функциональном плане.

Для эффективного выполнения всех функций, коробка автомат имеет следующие элементы: гидротрансформатор, узел контроля и механизм выбора режима движения.

Надеемся, что наша статья стала максимально полезной для вас, и помогла вам разобраться в принципах работы АКПП.

Вот как работает автоматическая коробка передач

Вы когда-нибудь задумывались, как ваша коробка передач умеет переключать передачи? Почему при остановке двигатель не глохнет? Мы здесь, чтобы показать вам, как работают автомобили. Недавно мы рассмотрели механические коробки передач. На этой неделе обычное время для хлама.

Эта история была впервые опубликована 1 июля 2013 года

Как работает трансмиссия

Добро пожаловать на воскресный утренник, где мы освещаем обзоры классических автомобилей или другие более длинные видео, которые я нахожу на…

Читать дальше

Автоматические коробки передач — это настоящая черная магия. Огромное количество движущихся частей делает их очень трудными для понимания. Давайте немного упростим это, чтобы получить общее представление о том, как все это работает в традиционной системе на основе гидротрансформатора.

Ваш двигатель соединяется с трансмиссией в месте, называемом корпусом колокола. Корпус колокола содержит преобразователь крутящего момента для автомобилей с автоматической коробкой передач, в отличие от сцепления на автомобилях с механической коробкой передач. Гидротрансформатор представляет собой гидравлическую муфту, работа которой заключается в соединении двигателя с трансмиссией и, следовательно, с ведущими колесами. Коробка передач содержит планетарные передачи, которые отвечают за обеспечение различных передаточных чисел. Чтобы получить хорошее представление о том, как работает вся система автоматической трансмиссии, давайте взглянем на гидротрансформаторы и планетарные передачи.

Гидротрансформатор

Прежде всего, гибкий диск вашего двигателя (фактически маховик для автоматической коробки передач) соединяется непосредственно с гидротрансформатором. Таким образом, при вращении коленчатого вала вращается и корпус гидротрансформатора. Целью гидротрансформатора является предоставление средств, с помощью которых можно подключать и отключать мощность двигателя от ведомой нагрузки. Преобразователь крутящего момента заменяет сцепление на обычной механической коробке передач. Как работает преобразователь крутящего момента? Что ж, взгляните на видео выше. В нем объясняются основные принципы гидромуфты. После просмотра продолжайте читать, чтобы узнать, чем гидротрансформатор отличается от стандартной гидромуфты.

Основными компонентами гидротрансформатора являются: рабочее колесо, турбина, статор и блокировочная муфта. Рабочее колесо является частью корпуса гидротрансформатора, соединенного с двигателем. Он приводит в движение турбину за счет сил вязкости. Турбина соединена с входным валом коробки передач. По сути, двигатель вращает крыльчатку, которая передает силу жидкости, которая затем вращает турбину, передавая крутящий момент трансмиссии.

Трансмиссионная жидкость течет по контуру между рабочим колесом и турбиной. Гидравлическая муфта на видео выше страдает от серьезных потерь при перемешивании (и, как следствие, накопления тепла), поскольку жидкость, возвращающаяся из турбины, имеет составляющую скорости, которая противодействует вращению крыльчатки. То есть жидкость, возвращающаяся из турбины, работает против вращения крыльчатки и, следовательно, против двигателя.

Статор находится между крыльчаткой и турбиной. Его цель состоит в том, чтобы свести к минимуму потери при перемешивании и увеличить выходной крутящий момент за счет перенаправления жидкости, когда она возвращается от турбины к рабочему колесу. Статор направляет жидкость так, что большая часть ее скорости приходится на крыльчатку, помогая крыльчатке двигаться и, таким образом, увеличивая крутящий момент, создаваемый двигателем. Благодаря этой способности увеличивать крутящий момент мы называем их гидротрансформаторами, а не гидромуфтами.

Статор закреплен на муфте свободного хода. Он может вращаться в одном направлении только тогда, когда турбина и рабочее колесо движутся примерно с одинаковой скоростью (как при движении по шоссе). Статор либо вращается вместе с рабочим колесом, либо не вращается вообще. Однако статоры не всегда увеличивают крутящий момент. Они обеспечивают больший крутящий момент, когда вы стоите на месте (например, притормаживаете на светофоре) или ускоряетесь, но не во время движения по шоссе.

В дополнение к обгонной муфте в статоре некоторые гидротрансформаторы содержат блокировочную муфту, задача которой заключается в блокировке турбины с корпусом гидротрансформатора, чтобы турбина и рабочее колесо были механически соединены. Устранение гидравлической муфты и замена ее механическим соединением гарантирует, что весь крутящий момент двигателя будет передаваться на входной вал трансмиссии.

Планетарные шестерни

Итак, теперь, когда мы выяснили, как двигатель передает мощность на трансмиссию, пришло время выяснить, как при включении он переключает передачи. В обычной трансмиссии переключение передач осуществляется составным планетарным механизмом. Понять, как работают планетарные редукторы, немного сложно, поэтому давайте взглянем на базовый планетарный ряд.

Планетарная передача (также известная как планетарная передача) состоит из солнечной шестерни в центре, планетарных шестерен, вращающихся вокруг солнечной шестерни, водила планетарной передачи, соединяющего планетарные шестерни, и внешнего зубчатого венца, входящего в зацепление с планетарными шестернями. Основная идея планетарной передачи заключается в следующем: используя муфты и тормоза, вы можете предотвратить движение определенных компонентов. При этом вы можете изменить вход и выход системы и, таким образом, изменить общее передаточное число. Подумайте об этом так: планетарная передача позволяет вам изменять передаточное число без включения других передач. Они все уже обручены. Все, что вам нужно сделать, это использовать муфты и тормоза, чтобы изменить, какие компоненты вращаются, а какие остаются неподвижными.

Конечное передаточное число зависит от того, какой компонент зафиксирован. Например, если зубчатый венец фиксирован, передаточное число будет намного короче, чем если бы солнечная шестерня была фиксированной. Прекрасно зная о рисках, связанных с составлением уравнения, я все равно его добавлю. Следующее уравнение покажет вам ваши передаточные числа в зависимости от того, какой компонент зафиксирован, а какой находится в движении. R, C и S представляют зубчатый венец, водило и солнечную шестерню. Омега просто представляет угловую скорость шестерен, а N — количество зубьев.

Это работает следующим образом: допустим, мы решили оставить водило неподвижным и сделать солнечную шестерню нашим входом (таким образом, зубчатый венец является нашим выходом). Планеты могут вращаться, но не могут двигаться, так как не может двигаться носитель. Omega_c равно нулю, поэтому левая часть приведенного выше уравнения отсутствует. Это означает, что когда мы вращаем солнечную шестерню, она передает крутящий момент через планетарные шестерни на коронную шестерню. Чтобы выяснить, каким будет передаточное число, мы просто решим приведенное выше уравнение для Omega_r/Omega_s. Мы получаем -N_s/N_R, то есть передаточное отношение, когда мы фиксируем водило и делаем зубчатый венец нашим выходом, а солнечную шестерню нашим входом, представляет собой просто отношение количества зубьев между солнечной шестерней и зубчатым венцом. Это отрицательно, так как кольцо вращается в направлении, противоположном солнечной шестерне.

Вы также можете заблокировать зубчатый венец и сделать входным сигналом солнечную шестерню, а также заблокировать солнечную шестерню и сделать водило своим входом. В зависимости от того, что вы заблокируете, вы получите разные передаточные числа, то есть вы получите разные «шестерни». Чтобы получить передаточное отношение 1:1, вы просто сцепляете компоненты вместе (для этого вам нужно сцепить только два), чтобы коленчатый вал вращался с той же скоростью, что и выходной вал трансмиссии.

Так как тормоза и муфты двигаются при переключении передач? Что ж, преобразователь крутящего момента также отвечает за привод насоса трансмиссионной жидкости. Давление жидкости активирует муфты и тормоза в планетарной передаче. Насос часто представляет собой насос геротерного типа (шестеренчатый насос), что означает, что ротор вращается в корпусе насоса и, вращаясь, «зацепляется» с корпусом. Это «зацепление» создает камеры, которые меняют свой объем. При увеличении объема создается вакуум – это вход насоса. Когда объем уменьшается, жидкость сжимается или перекачивается за счет зацепления шестерен — это выход насоса. Гидравлический блок управления посылает гидравлические сигналы для переключения передач (через ленточные тормоза и сцепления) и для блокировки гидротрансформатора.

Обратите внимание, что в большинстве современных автоматических трансмиссий используется составная планетарная передача Ravigneaux. Эта передача имеет две солнечные шестерни (малую и большую), два комплекта планет (внутреннюю и внешнюю) и одно водило планетарной передачи. По сути, это две простые планетарные передачи в одной.

Итак, теперь, когда мы рассмотрели гидротрансформаторы и планетарные передачи, давайте посмотрим видео ниже, чтобы увидеть, как все это работает вместе:

Видео CC: Как работают автоматические коробки передач

В нашем недавнем посте с видеороликами, показывающими, как работают механические коробки передач, было несколько комментаторов, говорящих, что работа автоматических коробок передач до сих пор для них загадка. Что ж, вот пара хорошо анимированных видео, которые должны помочь.

Они ориентированы на наиболее распространенный тип; автоматический преобразователь крутящего момента с планетарной передачей, в данном случае шестиступенчатая коробка передач Allison 1000, используемая в дизельных пикапах GM HD и т.п. Конечно, есть и другие типы, но давайте сосредоточимся на этом, даже если обычные автоматы начинают все чаще заменяться вариаторами, которые на самом деле очень просты для понимания.

Это первое видео довольно хорошее, оно охватывает основы с большим количеством 3D-графики.

Попытка в совершенстве понять танец планетарных передач, особенно когда их несколько, может быть немного сложной. Ключевыми элементами являются понимание того, как работает гидротрансформатор (ниже), и базовое концептуальное понимание магии планетарных передач.

 

Вот два видео о гидротрансформаторах. У меня смешанные чувства по этому поводу, так как он начинается немного назад из-за способности гидротрансформатора отключать двигатель от колес при торможении. Мне кажется, что объяснение того, как машина едет, должно стоять на первом месте.

 

Этот немного более узконаправленный, но в хорошем смысле, возможно, с лучшей графикой в ​​некоторых ключевых аспектах. Между ними вы должны иметь довольно хорошее представление о том, как они работают.

Если для вас это слишком… гм, современно, со всей этой причудливой графикой, вот армейский фильм 1954 года о гидромуфтах.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Авто