Что такое угол опережения зажигания: Управление угла опережения зажигания и зачем он нужен
Управление угла опережения зажигания и зачем он нужен
Термин «угол опережения зажигания» современный автовладелец, да и механик, слышит не так уж часто. А опережение зажигания, несмотря на это, по-прежнему есть и играет важную роль в работе двигателя. Какую именно — разбираемся ниже с помощью Motordata OBD и знаний об устройстве двигателей внутреннего сгорания.Физический смысл
Для начала проговорим процесс работы двигателя. На такте сжатия, когда поршень подходит к верхней мертвой точке (ВМТ), свеча зажигания формирует искру, от которой воспламеняется топливовоздушная смесь. Смесь, однако, сгорает не моментально, а относительно медленно, поэтому если воспламенить ее непосредственно в ВМТ, основное давление газов будет достигнуто, когда поршень уйдет уже довольно далеко вниз. При этом от сгорания заряда смеси будет получено очень немного полезной работы.
А вот если поджечь смесь немного заранее, то можно сделать это так, чтобы к ВМТ газы создали максимальное давление и с максимальным усилием направили поршень вниз.
Возможна и обратная ситуация, когда воспламенение произойдет слишком рано. В этом случае давление газов при сгорании смеси разовьется еще до подхода поршня к ВМТ. Тогда тоже не выйдет получить от двигателя полную мощность.
Временной промежуток между достижением ВМТ и воспламенением называется опережением зажигания. Измеряется он, однако, не в единицах времени, а в градусах угла поворота коленчатого вала, поэтому и сам параметр называется «угол опережения зажигания» (или УОЗ).
Современные технологии позволили нам «заглянуть» внутрь камеры сгорания прямо во время работы двигателя, и теперь любой может собственными глазами увидеть опережение зажигания. Если попытаться зафиксировать это картинкой, то это будет выглядеть примерно так:
Красным выделено положение поршня в момент воспламенения, а синим — положение ВМТ. В динамике это можно увидеть на видео внизу.
На любом бензиновом двигателе угол опережения зажигания должен быть правильно выставлен. На самых первых автомобилях опережение зажигания выставлялось водителем прямо во время движения — для этого на руле был отдельный рычажок, наряду с рычагом акселератора. В документации тех лет особо подчеркивался этот аспект водительского мастерства — правильно выбрать режим работы двигателя. В некоторых документах (например, на автомобили Buick периода 1910-1920 годов) использовался термин «чувство лошади».
Времена показали, что водителю и без того хватает забот, поэтому со временем это бремя с него сняли. Если переместиться в советский автопром семидесятых годов, мы увидим, что опережение зажигания регулировалось уже механиком, с помощью поворота трамблера (прерывателя-распределителя) на определенный угол. В то время умение выбрать УОЗ уже не было обязательным для водителя, однако хорошим тоном считалось, когда автовладелец сам умел настроить этот угол правильно, а также снять, почистить, собрать, поставить и настроить карбюратор. Тем не менее, уже тогда в составе системы зажигания был механический и/или вакуумный корректор, сдвигающий УОЗ в зависимости от нагрузки на двигатель (фактически — от разрежения в задроссельном пространстве или от оборотов двигателя).
Совершим еще один скачок во времени. В наши дни управление УОЗ полностью отдано электронному блоку управления (ЭБУ) двигателем. На него не может влиять ни водитель, ни механик — автопроизводители не дают штатных средств управлять этим параметром. От этого, однако, данный параметр не стал менее важен для работы двигателя. А значит, и при диагностике нужно понимать, что означает этот параметр и как им управляет ЭБУ.
Принципы управления
УОЗ является одним из параметров, влияющих на экологичность выхлопа, поэтому он обязательно присутствует в наборе параметров, выдаваемых по стандартному протоколу OBD/EOBD. Зачастую его выдача выглядит очень упрощенной, так как ЭБУ нередко вычисляет его отдельно для каждого цилиндра, но и существущего параметра часто достаточно, чтобы оценить работу двигателя. Тем более ее достаточно, чтобы оценить зависимости.
Подключимся к автомобилю Opel Astra H (он выбран, потому что есть под рукой, а не из каких-то глубоких соображений) и посмотрим, как выглядит зависимость УОЗ от оборотов двигателя:
Видно, что на холостых оборотах УОЗ находится где-то в диапазоне 18-20 градусов. Это в наших условиях. При более холодной погоде, например, он будет сдвигаться, т. к. температура воздуха во впуске будет отличаться. На непрогретом двигателе УОЗ тоже будет отличаться, например, сразу после старта зажигание будет максимально поздним. Дело в том, что особых мощностных характеристики сразу после старта от мотора не требуется, а вот прогревать катализатор и лямбда-зонд как раз нужно скорее. Позднее зажигание приводит к тому, что в выпуск уходят максимально горячие отработавшие газы, что и способствует максимально быстрому разогреву датчика кислорода и катализатор.
При нарастании оборотов УОЗ увеличивается. Здесь очень простой физический смысл: на повышенных оборотах поршень движется быстрее, а скорость сгорания смеси не меняется. Значит, смесь надо поджигать раньше. Эта зависимость сохраняется как на холостом ходу, так и во время движения.
На автомобилях с трамблером и корректором зажигания зависимость УОЗ была только от одного параметра. Однако с ужесточением экологических требований появились более жесткие требования — стало необходимо учитывать гораздо больше факторов. Это и явилось одной из основных причин перехода на электронное управление зажиганием.
Поэтому, если нужно выразить зависимость УОЗ от внешних условий, она будет выглядеть как набор сложных трехмерных графиков типа таких:
Кстати, при чип-тюнинге, как правило, эти зависимости также затрагиваются. В зависимости от целей чип-тюнинга, прошивка может сдвигать эту зависимость либо в более экономичный режим, либо в более динамичный.
В штатном режиме смесь сгорает медленно, а при детонации — на порядок, а то и на два порядка быстрее. Это фактически взрыв смеси. Проблема этого режима в том, что давление тоже нарастает гораздо быстрее, чем при штатном сгорании. Это приводит к ударным нагрузкам на детали двигателя, в первую очередь — на поршень. Такие нагрузки могут привести к разрушению двигателя, поэтому детонации надо избегать.
Штатно работающая система с трамблером на тех же «Жигулях» и «Волгах», вообще говоря, допускала детонацию в определенных режимах, более того, ее наличие в этих режимах было признаком правильно настроенного УОЗ. Руководства по ремонту содержали рекомендацию разогнаться до скорости 50 км/ч и на прямой передаче и резко нажать педаль акселератора в пол. При правильно настроенном УОЗ должна была проявиться кратковременная детонация.
В современных системах ЭБУ тоже отслеживает детонацию, и чаще всего тем же «дедовским» способом, в буквальном смысле на слух.
Датчик детонации и его характерное расположение на блоке цилиндров
В случае возникновения характерных стуков в двигателе ЭБУ «слышит» их и принимает меры. На некоторых системах отдельного датчика детонации нет, и детонация отслеживается не «на слух», а посредством отслеживания тока, протекающего через свечи зажигания. Детальнее эту методику мы рассматривать не будем, обмолвимся лишь, что так сделано, например, на системе Trionic на автомобилях Saab 9000.
Так или иначе, после обнаружения детонации ЭБУ должен сделать так, чтобы детонации больше не было. Как правило, ЭБУ сдвигает зажигание позднее, то есть уменьшает УОЗ, до тех пор, пока не поймет, что детонации прекратились. Излишне позднее зажигание приведет к снижению мощности, о чем мы уже говорили в начале статьи, но снижение мощности гораздо лучше, чем механическое повреждение мотора.
Поэтому же являются несостоятельными все утверждения о том, что современный мотор способен «адаптироваться» под любой бензин и якобы можно лить АИ-92 в любой двигатель. Никакой адаптации нет. Случается примерно следующее: ЭБУ «слышит» детонацию и сдвигает УОЗ до ее пропадания, потом постепенно возвращает УОЗ обратно, снова «слышит» детонацию, и так по замкнутому кругу, пока в мотор не попадет бензин с правильным октановым числом. Основная проблема этого режима — детонация все равно происходит, только не постоянно, а с перерывами. Конечно, это позволяет мотору не развалиться сразу, но и пользы от этого никакой. К тому же позднее зажигание приводит к тому, что на выпуск попадают более горячие отработавшие газы, а то и еще горящая смесь, что может приводить и к прогару клапанов, и к перегреву катализатора, а перегрев катализатора — это почти гарантированное его разрушение.
На ряде двигателей с турбонаддувом ЭБУ также имеет возможность управлять давлением наддува. Конечно, не напрямую, а через управление электромагнитным клапаном в пневмомагистрали до актуатора вастгейта (wastegate) турбины. Как правило, это сделано в тех двигателях, где давление наддува достигает тех величин, которые при определенных ситуациях могут провоцировать детонацию. В этих системах при возникновении детонации при наличии высокого давления наддува помимо сдвига УОЗ будет открываться упомянутый электромагнитный клапан, приводя к открытию вастгейта и снижению давления наддува. Так сделано на уже упомянутых автомобилях Saab, а клапан этот называется APC.
Поэтому настоятельно рекомендуется использовать топливо с тем октановым числом, под которое двигатель спроектирован. В исправном двигателе с правильным топливом детонаций возникать не будет.
Калильное зажигание
Бывают ситуации, когда топливовоздушная смесь воспламеняется не от искры, а из-за того, что в камере сгорания присутствует место, нагретое выше допустимой температуры. Это может быть, например, нагар в камере сгорания, или свеча с неправильным калильным числом — как правило, это следствие ошибки при подборе свечей.
Эта ситуация называется «калильное зажигание» и плоха в первую очередь тем, что воспламенение происходит раньше, чем запланировано. Это плохо тем же, чем и излишне ранний УОЗ — фактически, часть работы газов будет направлена «против» полезной работы. Кроме того, такое воспламенение смеси может стать причиной детонации, а о связанных с этим проблемах мы уже говорили довольно много.
Проблема с калильными зажиганием, впрочем, является проблемой чисто «механической» — блок управления не имеет возможности как-то повлиять на этот процесс, поэтому и диагностический сканер тут не очень поможет.
Выводы
Получается, рано пока автомеханику и автовладельцу выкидывать знание об УОЗ на задворки сознания. Например, понимание этого параметра запросто поможет даже при наличии только стандартного протокола «поймать» факт детонации, а по заводскому протоколу на многих автомобилях доступны и такие параметры, как сдвиг УОЗ по детонации для каждого цилиндра. А понимание процессов, происходящих в двигателе и системе управления — главное условие для скорейшего понимания причин неисправности и ее устранения. А о других процессах мы продолжим рассказывать в следующих статьях.
Бочканов Евгений Александрович
© Легион-Автодата
Москва, г. Зеленоград
[email protected]
понятие, влияние на ДВС, настройка
С каждым годом вопрос об экологичности автомобилей стоит все острей: люди начинают больше заботиться об окружающей среде. Не считая автомобильного производства, основной урон экологии наносят выхлопные газы. Чтобы снизить выбросы ОГ в атмосферу, нужно добиться лучшего и полного сгорания топлива. Но такие смеси, скорее всего, будут бедными, а это увеличивает температуру. Полнота сгорания топлива, в свою очередь, определяется поддержанием стехиометрического состава смеси и моментом ее поджога, а это влияет не только на экологичность, но и на развиваемую мощность. Эта точка воспламенения может обозначается как угол опережения зажигания (УОЗ).
УОЗ — это угол, на который успевает повернуться коленчатый вал от момента возникновения искры до момента достижения поршнем верхней мертвой точки (ВМТ). При нормальном угле опережения зажигания смесь воспламеняется за 10–12ᴼ до попадания поршня в ВМТ.
При корректно выставленном УОЗ, энергия, высвободившаяся при сгорании смеси, должна с силой толкнуть поршень вниз. Для этого воспламенение должно происходить в момент до достижения поршнем ВМТ — на такте сжатия.
Если смесь поджечь раньше нужного времени в наиболее удаленной от точки начального воспламенения смеси, то энергия от сгоревших газов будет мешать поднимающемуся поршню, двигаясь навстречу ему. Из-за этого энергия, высвободившаяся от сгорания смеси, начинает бить по стенкам цилиндра и дну поршня. Вследствие этого и появляется неприятный звук, похожий на взрыв, отдающийся звоном в двигателе.
Влияние УОЗ на выбросы выхлопных газов
Угол опережения зажигания влияет не только на расход топлива и момент, но и на состав выхлопных газов: с его увеличением возрастает содержание углеводорода (НС) и окислов азота (NOx) в выхлопе. Это связано с ростом температуры сгорания.
При работе на обедненных смесях, используемых все чаще, требуется больший угол опережения зажигания, чтобы компенсировать меньшую скорость горения. Так будет обеспечено снижение потребления топлива и высокий крутящий момент, но смесью нужно управлять очень точно, чтобы добиться лучшего компромисса в отношении экологичности выхлопа.
Эффективность снижения выбросов отработавших газов при смещении УОЗ для бензина АИ-95-К5 Газпромнефть: а) изменение коэффициента Кge (удельный расход топлива), б) изменение коэффициента KCH (углеводорода), в) изменение коэффициента KNOx (окись азота)
В современных ДВС УОЗ меняется в зависимости режима работы мотора. При его росте значительно возрастает температура сгорания, что в свою очередь вызывает повышение окислов азота NOx. При уменьшении процесс сгорания смещается на такт расширения. Температура отработавших газов также повышается в конце расширения. Это способствует более полному окислению СН.
УОЗ и работа двигателя
Негативные последствия при раннем зажигании:
- перегрев деталей ДВС,
- падение мощности,
- разрушение прокладки под ГБЦ,
- разрушение перегородки поршневых колец.
Если поджечь смесь позже оптимального момента (позднее зажигание), когда поршень после достижения ВМТ начинает движение вниз, энергия от сгоревших газов уходит в выпуск, снижается эффективность работы мотора.
Неправильно подобранное зажигание негативно влияет на эффективность и ресурс двигателя, а также приводит к увеличению расхода топлива.
Возможные проблемы с неправильно выставленными углами зажигания:
- затрудненный пуск мотора,
- увеличенный расход топлива,
- плохая отзывчивость мотора на нажатие педали газа,
- детонация в ДВС,
- черный дым из глушителя.
Настройка угла зажигания при чип-тюнинге
На заводах настраивают УОЗ с расчетом на низкокачественное топливо, обычно оставив запас в пару градусов. Это позволяет обеспечить гарантийный ресурс двигателя даже при использовании топлива плохого качества. Но на таком топливе мощность и крутящий момент снижаются. При обычной езде владелец может и не заметить, что с авто что-то не так, но при активном педалировании проблема проявит себя.
Визуализация карты базового УОЗ в программе ChipTuningPRO
При чип-тюнинге калибровщик правит УОЗ, используя запасы, оставленные заводом-производителем. После чиповки повысятся требования к топливу: нужно будет заливать хороший АИ-95 или АИ-98. Из плюсов — автомобиль станет более динамичным и отзывчивым.
Подробнее о возможностях чип-тюнинга читайте в материале сайта.
Провести регулировку углов опережения зажигания и сделать чип-тюнинг можно у наших партнеров в любом городе России. Ближайших из них можно найти на карте ниже.
Рекомендуем посмотреть
Угол опережения зажигания на холостом ходу
Термин «угол опережения зажигания» современный автовладелец, да и механик, слышит не так уж часто. А опережение зажигания, несмотря на это, по-прежнему есть и играет важную роль в работе двигателя. Какую именно — разбираемся ниже с помощью Motordata OBD и знаний об устройстве двигателей внутреннего сгорания.
Для начала проговорим процесс работы двигателя. На такте сжатия, когда поршень подходит к верхней мертвой точке (ВМТ), свеча зажигания формирует искру, от которой воспламеняется топливовоздушная смесь. Смесь, однако, сгорает не моментально, а относительно медленно, поэтому если воспламенить ее непосредственно в ВМТ, основное давление газов будет достигнуто, когда поршень уйдет уже довольно далеко вниз. При этом от сгорания заряда смеси будет получено очень немного полезной работы.
А вот если поджечь смесь немного заранее, то можно сделать это так, чтобы к ВМТ газы создали максимальное давление и с максимальным усилием направили поршень вниз. В этом случае полезная работа будет максимальной.
Возможна и обратная ситуация, когда воспламенение произойдет слишком рано. В этом случае давление газов при сгорании смеси разовьется еще до подхода поршня к ВМТ. Тогда тоже не выйдет получить от двигателя полную мощность.
Временной промежуток между достижением ВМТ и воспламенением называется опережением зажигания. Измеряется он, однако, не в единицах времени, а в градусах угла поворота коленчатого вала, поэтому и сам параметр называется «угол опережения зажигания» (или УОЗ).
Современные технологии позволили нам «заглянуть» внутрь камеры сгорания прямо во время работы двигателя, и теперь любой может собственными глазами увидеть опережение зажигания. Если попытаться зафиксировать это картинкой, то это будет выглядеть примерно так:
Красным выделено положение поршня в момент воспламенения, а синим — положение ВМТ. В динамике это можно увидеть на видео внизу.
На любом бензиновом двигателе угол опережения зажигания должен быть правильно выставлен. На самых первых автомобилях опережение зажигания выставлялось водителем прямо во время движения — для этого на руле был отдельный рычажок, наряду с рычагом акселератора. В документации тех лет особо подчеркивался этот аспект водительского мастерства — правильно выбрать режим работы двигателя. В некоторых документах (например, на автомобили Buick периода 1910-1920 годов) использовался термин «чувство лошади».
Времена показали, что водителю и без того хватает забот, поэтому со временем это бремя с него сняли. Если переместиться в советский автопром семидесятых годов, мы увидим, что опережение зажигания регулировалось уже механиком, с помощью поворота трамблера (прерывателя-распределителя) на определенный угол. В то время умение выбрать УОЗ уже не было обязательным для водителя, однако хорошим тоном считалось, когда автовладелец сам умел настроить этот угол правильно, а также снять, почистить, собрать, поставить и настроить карбюратор. Тем не менее, уже тогда в составе системы зажигания был механический и/или вакуумный корректор, сдвигающий УОЗ в зависимости от нагрузки на двигатель (фактически — от разрежения в задроссельном пространстве или от оборотов двигателя).
Совершим еще один скачок во времени. В наши дни управление УОЗ полностью отдано электронному блоку управления (ЭБУ) двигателем. На него не может влиять ни водитель, ни механик — автопроизводители не дают штатных средств управлять этим параметром. От этого, однако, данный параметр не стал менее важен для работы двигателя. А значит, и при диагностике нужно понимать, что означает этот параметр и как им управляет ЭБУ.
УОЗ является одним из параметров, влияющих на экологичность выхлопа, поэтому он обязательно присутствует в наборе параметров, выдаваемых по стандартному протоколу OBD/EOBD. Зачастую его выдача выглядит очень упрощенной, так как ЭБУ нередко вычисляет его отдельно для каждого цилиндра, но и существущего параметра часто достаточно, чтобы оценить работу двигателя. Тем более ее достаточно, чтобы оценить зависимости.
Подключимся к автомобилю Opel Astra H (он выбран, потому что есть под рукой, а не из каких-то глубоких соображений) и посмотрим, как выглядит зависимость УОЗ от оборотов двигателя:
Видно, что на холостых оборотах УОЗ находится где-то в диапазоне 18-20 градусов. Это в наших условиях. При более холодной погоде, например, он будет сдвигаться, т. к. температура воздуха во впуске будет отличаться. На непрогретом двигателе УОЗ тоже будет отличаться, например, сразу после старта зажигание будет максимально поздним. Дело в том, что особых мощностных характеристики сразу после старта от мотора не требуется, а вот прогревать катализатор и лямбда-зонд как раз нужно скорее. Позднее зажигание приводит к тому, что в выпуск уходят максимально горячие отработавшие газы, что и способствует максимально быстрому разогреву датчика кислорода и катализатор.
При нарастании оборотов УОЗ увеличивается. Здесь очень простой физический смысл: на повышенных оборотах поршень движется быстрее, а скорость сгорания смеси не меняется. Значит, смесь надо поджигать раньше. Эта зависимость сохраняется как на холостом ходу, так и во время движения.
На автомобилях с трамблером и корректором зажигания зависимость УОЗ была только от одного параметра. Однако с ужесточением экологических требований появились более жесткие требования — стало необходимо учитывать гораздо больше факторов. Это и явилось одной из основных причин перехода на электронное управление зажиганием.
Поэтому, если нужно выразить зависимость УОЗ от внешних условий, она будет выглядеть как набор сложных трехмерных графиков типа таких:
Кстати, при чип-тюнинге, как правило, эти зависимости также затрагиваются. В зависимости от целей чип-тюнинга, прошивка может сдвигать эту зависимость либо в более экономичный режим, либо в более динамичный.
В штатном режиме смесь сгорает медленно, а при детонации — на порядок, а то и на два порядка быстрее. Это фактически взрыв смеси. Проблема этого режима в том, что давление тоже нарастает гораздо быстрее, чем при штатном сгорании. Это приводит к ударным нагрузкам на детали двигателя, в первую очередь — на поршень. Такие нагрузки могут привести к разрушению двигателя, поэтому детонации надо избегать.
Штатно работающая система с трамблером на тех же «Жигулях» и «Волгах», вообще говоря, допускала детонацию в определенных режимах, более того, ее наличие в этих режимах было признаком правильно настроенного УОЗ. Руководства по ремонту содержали рекомендацию разогнаться до скорости 50 км/ч и на прямой передаче и резко нажать педаль акселератора в пол. При правильно настроенном УОЗ должна была проявиться кратковременная детонация.
В современных системах ЭБУ тоже отслеживает детонацию, и чаще всего тем же «дедовским» способом, в буквальном смысле на слух. В состав системы входит датчик детонации, представляющий собой практически микрофон. Датчик этот крепится на блок цилиндров.
Раннее зажигание является одной из наиболее часто встречающихся неисправностей системы зажигания карбюраторных двигателей. Его суть заключается в слишком раннем (раньше чем требуется для нормальной работы двигателя) воспламенении топлива в камерах сгорания (намного раньше прихода поршня в верхнюю мертвую точку).
Изначальный угол опережения зажигания под определенный бензин выставляется при работе двигателя автомобиля на холостом ходу. Такое опережение необходимо для правильной работы двигателя. При его работе под нагрузкой необходимо еще большее опережение зажигания, что достигается за счет работы центробежного и вакуумного регуляторов опережения зажигания. Но, если начальный угол выставлен слишком рано, то работа регуляторов накладывается на этот неправильный угол, делая зажигание настолько ранним, что приводит к большим проблемам в работе двигателя.
Признаки раннего зажигания
В зависимости от того насколько угол опережения зажигания отклонился от нормы признаки раннего зажигания будит либо практически незаметны, либо видны практически невооруженным взглядом.
Проблема с запуском двигателя
Двигатель запускается не с первого-второго раза. Может быть обратное вращение коленчатого вала после выключения зажигания.
Двигатель автомобиля неустойчиво работает на холостом ходу
Выровнять обороты ХХ винтами на карбюраторе невозможно или двигатель работает устойчиво только при установке повышенных оборотов.
Вялая динамика автомобиля на скорости
При этом трогание с места и разгон могут быть вполне приемлемыми, а вот на скорости мощность и приемистость двигателя недостаточные («машину как-будто кто-то держит сзади»).
«Стучат пальцы»
Постоянная детонация (дробный, стрекочущий звук от двигателя) при движении автомобиля, усиливающаяся при нажатии на педаль «газа» и не пропадающая после ее отпускания.
Свечи зажигания черные
Плохо сгорающее топливо оседает черным нагаром на свечах зажигания приводя к их быстрому выходу из строя.
«Выстрелы» в глушитель при работе на холостом ходу
Не сгоревшее топливо догорает в глушителе хлопками. Пропуски зажигания через раз работающих свечей зажигания.
Черный дым из глушителя
Дымит не сгоревшее топливо.
Повышенный расход топлива
На выполнение своей работы в режиме слишком раннего зажигания двигателю требуется намного больше топлива.
Перечисленные выше признаки раннего зажигания могут быть признаками других неисправностей, например, с карбюратором («переливает»), топливной системы (слишком сильно качает бензонасос), системой зажигания и пр. Но, в любом случае при их появлении в первую очередь проверяем правильность установки угла опережения зажигания, а потом уже смотрим карбюратор и все прочее.
Причины появления раннего зажигания
— Причиной слишком раннего зажигания чаще всего является неверно выставленный момент опережения зажигания на холостом ходу двигателя. Все рекомендации и требуемые углы опережения зажигания см. в следующих статьях на сайте: «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099», «Установка угла опережения зажигания на ВАЗ 2101, 2102, 2103, 2104, 2105, 2106, 2107».
— Если начальный угол опережения зажигания выставлен правильно, а признаки слишком раннего зажигания все же имеются, то следует проверить центробежный регулятор опережения зажигания. Он должен включаться в работу на оборотах чуть выше оборотов холостого хода и постепенно, в зависимости от оборотов двигателя увеличивать угол. Ослабление или поломка пружин регулятора могут привести к тому, что центробежный регулятор будет сразу увеличивать угол опережения зажигания до недопустимых значений.
— На автомобилях ВАЗ 2105, 2107 с контактной системой зажигания следует проверить зазор между контактами прерывателя в трамблере, так как его величина напрямую влияет на угол опережения зажигания.
Примечания и дополнения
— Основной проверкой наличия раннего или наоборот позднего зажигания на автомобилях ВАЗ 2105, 2107, 2108, 2109, 21099 является проверка в движении. Когда, двигаясь со скоростью 40-50 км/ч, на ровном участке дороги, резко нажимаем на педаль «газа». Должна возникнуть небольшая кратковременная детонация (дробный, стрекочущий звук со стороны моторного отсека). Если она появилась и пропала, хорошо, зажигание выставлено верно. Появилась и не пропадает, зажигание слишком раннее. Нет никакой детонации — позднее зажигание.
Нужно понимать, что любое транспортное средство будет работоспособным лишь в том случае, если все его механизмы работают корректно и эффективно. Система зажигания – это достаточно важный узел автомобиля. Владельцы отечественных авто нередко сталкиваются с проблемой, связанной с опережением ее срабатывания либо задержкой. Данная неполадка может спровоцировать другие проблемы. Поэтому стоит рассмотреть, как исправить раннее либо позднее зажигание и из-за чего вообще появляются подобные аномалии.
Как выставить угол опережения зажигания своими руками
Выставить правильно зажигание — это значит, что нужно найти нужный угол опережения зажигания (УОЗ). Настройка производится на холостом ходу, хотя это и так понятно, но вдруг кто-то задумал поставить авто на домкрат и настраивать на скорости.
Для настройки зажигания, надо знать, что оптимальные хорошие обороты коленчатого вала двигателя на холостом ходу — это от 850 до 900 об/мин. Угол наклона момента зажигания должен находиться от -1 до +1 градуса. Это градус по отношению к верхней мертвой точке (ВМТ).
Популярный прибор, с помощью которого выставляют зажигание — это стробоскоп. Со стробоскопом настройка получается точнее. Но, если его нет, то настраивают с помощью контрольной лампочки.
Если используется лампочка для настройки, то ее подсоединяют к плюсовой клемме на распределителе зажигания (трамблер), а цоколь лампочки — с «массой». Разберем по отдельности варианты настройки.
Сейчас мы начали разбирать силовые автомобильные агрегаты. Напишите, пожалуйста, в комментариях, какой у автомобиль и с каким двигателем. Позже будут выходить материалы по таким двигателям с полезной информацией, например, если порвется ремень ГРМ, погнутся ли клапана, также технические характеристики, устройство, на каких машинах ставятся такие моторы и т.д. Мы уже рассмотрели двигатели ZC завода Honda, 3UZ-FE, 3S-FE, 1AZ-FE.
Настройка стробоскопом
- Запустить мотор, нагреть его до рабочей температуры и заглушить.
- Подключить стробоскоп к сети автомобиля.
Как выставить зажигание контрольной лампочкой
- Вращать коленвал мотора до тех пор, пока метка на его шкиве не совпадет с меткой ГРМ.
- При этом, бегунок трамблера зажигания должен быть направлен на первый цилиндр.
- Теперь надо ослабить гайку трамблера.
- Один провод соединяется с сердцевиной контрольной лампы (контролка) и с проводом катушки зажигания (бобина).
Автомобиль с ГБО
Главная причина установки ГБО – экономия на топливе. Практика показывает, что затраты на газ меньше приблизительно в два раза, чем на бензин, для многих это весомый аргумент. Однако полностью на этот вид топлива не перейти, поскольку необходимость в бензине остаётся для прогрева и работы на высоких нагрузках.
Баллон ГБО в запаске
Плюс ко всему, газ гораздо быстрее расходуется и имеет достаточно высокое октановое число, поэтому топливно-воздушная смесь догорает ещё на этапе выпуска, что оказывает отрицательное термическое влияние на тракт выпуска.
Регулировка зажигания и горения смеси на машинах с ГБО – это основная задача, хорошая настройка позволяет сэкономить ещё больше средств на топливе.
Регулировка зажигания на карбюраторных двигателях
Регулировка зажигания поворотом трамблера
Она производится поворотом корпуса распределителя зажигания (трамблёра), вал которого приводится в движение путем передачи крутящего момента от двигателя через промежуточные шестерни. На двигателях семейства ВАЗ 2108 вал трамблёра приводится во вращение путём непосредственного зацепления за распредвал, но это не имеет принципиального значения. Самое главное – точная согласованность системы зажигания с механикой ДВС.
Вращением трамблера регулируется желаемый момент зажигания. Устанавливать позднее или раннее зажигание это дело каждого и зависит от желания экономить топливо или манеры вождения.
Вне зависимости от того, какой трамблёр установлен – контактный или бесконтактный (с датчиком Холла), поворот его корпуса против направления вращения ротора увеличивает угол опережения зажигания. То есть, чтобы сделать зажигание «пораньше», нужно определить, в какую сторону вращается ротор – можно снять крышку с распределителя и провернуть коленвал. Куда крутить трамблёр для раннего зажигания – будет видно наглядно. Но не всегда требуемый угол опережения зажигания определяется заданными заводом характеристиками двигателя. На его величину также влияет октановое число топлива.
Очень наглядно это видно при использовании газобаллонного оборудования на авто с карбюраторными моторами. При первом переключении с бензина на газ машина отказывается разгоняться. Чтобы добиться нормальной работы двигателя, приходится не просто поставить зажигание пораньше, а повернуть трамблёр до предела против хода. И наоборот, при переключении обратно на бензин такое опережение зажигания будет излишним – об этом «скажет» стук поршневых пальцев, вызванных детонацией. Это объясняется большой разницей октановых чисел газа и бензина. Очень простой, но эффективный способ проверки точности установки угла опережения – это испытание работы мотора в движении. При резком нажатии педали газа в набирающем обороты двигателе должен появиться лёгкий кратковременный стук поршневых пальцев.
Момент зажигания запаздывает
Сбитые регулировки трамблера могут привести к тому, что разряд на электродах свечи образуется слишком поздно – когда поршень уже находится в верхней мертвой точке (ВМТ) либо начал движение вниз – рабочий ход. В данном случае наблюдаются следующие характерные признаки:
- Обороты коленчатого вала на холостом ходу снижаются.
- Заметно падает мощность силового агрегата, автомобиль разгоняется очень вяло. Причина – потеря энергии вспышки топлива, сгорающего на рабочем ходу поршня.
- Сильно запаздывающая искра дает выстрелы мотора в глушитель. Газы прорываются через открывающийся выпускной клапан.
- Двигатель сложнее завести «на холодную».
- Потребление горючего увеличивается.
Справка. Симптомы позднего искрообразования заметнее проявляются на автомобилях, оснащенных газовыми установками. Здесь очень важен момент вспышки, поскольку пропана подается в цилиндры больше и при запоздании разряда он догорает уже в коллекторе.
Следствием позднего зажигания на дизеле является затрудненный пуск даже на прогретом моторе и «чихание» черным дымом из выхлопной трубы. Поскольку впрыск топлива происходит в самом начале рабочего такта, солярка сгорает не полностью и выбрасывается наружу в виде копоти. Если подача топлива происходит чересчур поздно, силовой агрегат не заведется вовсе.
Как определить раннее или позднее зажигание двигателя автомобиля
Принцип действия любого автомобильного двигателя внутреннего сгорания основан на использовании энергии, получающейся вследствие динамичного расширения воспламенённой топливной смеси.Момент воспламенения топлива в цилиндре (цилиндрах) влияет на мощностные характеристики мотора, а также на то, запустится ли он вообще.Именно своевременность вспышки топливной смеси и является сутью определений «раннее» и «позднее» зажигание. Рассмотрим подробнее, как момент зажигания влияет на работу ДВС, а также, как определить раннее или позднее зажигание по характеру работы двигателя.
От правильной настройки и бесперебойной работы системы зажигания напрямую зависит стабильность работы двигателя, его мощность, топливная экономичность и т.д. В норме на четырёхтактных двигателях топливно-воздушная смесь должна воспламеняться в конце такта сжатия, то есть перед самым подъемом поршня в верхнюю мертвую точку. Такой момент зажигания обусловлен тем, что смеси требуется определенное время для сгорания, после чего энергия расширяющихся газов толкает поршень вниз и начинается рабочий ход.
Рекомендуем также прочитать статью о том, как выставить зажигание на дизельном двигателе. Из этой статьи вы узнаете о способах настройки угла опережения впрыска на дизельных моторах.
Под поздним или ранним зажиганием следует понимать задержку или опережение срабатывания системы зажигания по отношению к тому, в каком положении находится поршень в цилиндре. Другими словами, искра свечи зажигания образуется и поджигает топливно-воздушную смесь не в оптимальный момент приближения поршня к ВМТ, а раньше или позже этого момента. Такое явление получило название раннего или позднего зажигания. По этой причине владельцы транспортных средств, в которых реализована возможность самостоятельной регулировки УОЗ (угол опережения зажигания), часто сталкиваются с необходимостью настройки зажигания.
Какой должен быть угол опережения зажигания, корректировка угла на холостом ходу
Угол опережения зажигания должен быть оптимальным, то есть не слишком ранним и не слишком поздним. Регулировка момента зажигания на холостом ходу происходит следующим образом (двигатель, при этом, обязательно должен быть прогрет):
- Ослабляем гайку, которая фиксирует корпус трамблера, после чего он начинает медленно вращаться в различные стороны.
- В позиции, в которой обороты мотора будут наиболее максимальными, необходимо попробовать «погазовать». Если во время резкого нажатия на педаль не будет никаких выстрелов, хлопков и перебоев, а обороты будут стремительно ускоряться, значит требуемое положение найдено.
- От данной точки проверните корпус распределителя на один-два градуса по часовой стрелке, а затем зажмите его фиксатор. Последний пункт необходимо выполнить, чтобы зажигание было не слишком «ранним», в результате чего создается излишнее сопротивление вращению коленвала.
Что представляет собой система зажигания?
Система зажигания является совокупностью взаимосвязанных сложнейших механизмов и конструкций, которые при включении создают электрические искры, воспламеняющие топливную смесь в цилиндре агрегата внутреннего сгорания. На отечественных автомобилях нередко устанавливают классическую систему зажигания, состоящую из трех ключевых элементов. Речь идет о замке, контактной части и противоугонного элемента. Что касается модифицированных моделей, то они оснащены бесконтактными системами зажигания.
Раннее или позднее зажигание
Слишком ранний поджиг смеси в рабочих камерах цилиндров или слишком поздний является причиной плохой работой ДВС. Двигатель может не тянуть в гору, медленно разгоняться, сильно вибрировать и т.д.
Признаки не верно выставленного зажигания:
- мотор заводится с трудом;
- повышенный уровень расхода топлива;
- мотор не может развить мощность;
- в режиме холостого хода (ХХ) ДВС то глохнет, то перегазовывает;
- мотор слабо реагирует на нажатие педали газа;
- ДВС перегревается;
- мотор детонирует.
Легко можно определить, что зажигание надо настраивать, если слышны хлопки из глушителя, автомобиль «чихает». В таком режиме рекомендуется не эксплуатировать машину, а сразу отрегулировать. Тем более, одним из признаков является детонация, которая может разрушить клапана, поршни и цилиндры.
Дизельный автомобиль
Многие симптомы некорректной работы на бензиновых автомобилях переносятся и на дизель. Главное отличие между двумя этими автомобилями заключается в методе воспламенения топлива. Поджиг солярки заключается за счёт тесного контакта топлива со сжатым, горячим воздухом.
Регулировка на дизельном двигателе
Настойка зажигания на дизельных машинах состоит в поиске необходимого угла опережения для впрыска дизельного топлива, оно должно обязательно подаваться определённо в пиковый момент сжатия.
Если неправильно выставить угол, то впрыск будет несвоевременным. Это приведёт к некачественному сгоранию смеси, а работа двигателя будет осуществляться с нарушениями.
Бензиновые двигатели с впрыском топлива (инжекторные)
Признаки позднего зажигания на инжекторе те же, что и на карбюраторном двигателе. Но в этом случае самостоятельную регулировку угла опережения не сделать. Дело в том, что работой систем зажигания и впрыска топлива управляет электронный блок управления. Он подаёт управляющие импульсы системам после обработки сигналов от датчика положения распределительного вала и датчика коленвала. Корректировка момента искрообразования производится также с учётом сигнала от датчика детонации. Чтобы определить точную причину сбоев в работе, необходима профессиональная диагностика. Допустим, что прозвонка ДПРВ мультиметром не выявила неисправности. Но осциллограф может показать, что характеристики сигнала, исходящего от датчика, не соответствуют нормам. Сделать более раннее зажигание на инжекторе можно, изменив программу ЭБУ, то есть «перепрошив» «мозги».
Последствия езды с неправильными настройками
Помимо ухудшения эксплуатационных качеств автомобиля, слишком раннее зажигание вызывает другие пагубные последствия:
- Детонация – злейший враг мотора. Из-за постоянных ударов по поршням пальцы расшатываются, в соединении образуется люфт.
В результате разбиваются шатунные втулки и ускоряется выработка цилиндров.
- Стрельба в карбюратор наносит вред втулкам, на которых вращаются оси заслонок. Последние не закрываются плотно, отчего двигатель всасывает лишнее горючее на холостом ходу.
- Силовой агрегат склонен перегреваться и в случае неполадок системы охлаждения цилиндропоршневая группа может выйти из строя.
Современные двигатели, управляемые электроникой, оснащаются датчиками детонации. Когда элемент регистрирует вибрацию, блок управления автоматически корректирует угол опережения зажигания.
Ранний впрыск солярки в дизельный мотор чреват поломкой топливного насоса высокого давления (ТНВД) и форсунок. Представьте: насос качает топливо в одном направлении, а ему противодействует поршень, движущийся к ВМТ. Нетрудно догадаться, кому достанется удар.
Признаки позднего зажигания не менее опасны. Воспламенение топливной смеси на стадии расширения ведет к уменьшению КПД двигателя и возрастанию нагрузки на основные детали – поршни с кольцами, цилиндры и шатуны. Результат предсказать несложно – интенсивный нагрев и ускоренный износ.
Стрельба в выпускной тракт, вызванная запоздавшим искрообразованием, разрушает стенки выхлопной трубы и перегородки глушителя. Элементы придется ремонтировать с помощью сварки, а то и менять.
Другие способы настройки и проверка зажигания на автомобиле
Также можно выставить зажигание по искре или самостоятельно подобрать такой угол, когда двигатель будет работать наиболее стабильно и ровно. Самым простым и наименее точным способом является установка на основании работы мотора. Для настройки двигатель заводят, после чего ослабляется гайка фиксации корпуса трамблера. Далее понадобится провернуть корпус распределителя по часовой стрелке и против, найдя положение, при котором двигатель работает ровно и обороты ХХ самые высокие. После этого следует провернуть корпус прерывателя на пару градусов по часовой стрелке и затянуть гайку трамблера.
При настройке зажигания по искре следует совместить метки на шкиве коленвала и ГРМ, а метка на бегунке должна указать на провод первого цилиндра. Затем ослабляется гайка корпуса распределителя, после чего из крышки трамблера следует вынуть центральный высоковольтный провод.
Затем контакт провода следует расположить вблизи «массы» (расстояние около 5 мм.) и включить зажигание. После этого корпус прерывателя следует повернуть на 20 градусов по часовой стрелке. Теперь корпус нужно вращать обратно до момента, когда между «массой» и контактом провода появится искра. В этом положении корпус трамблера нужно зафиксировать крепежной гайкой прерывателя.
По окончании необходимо проверить правильность УОЗ в движении. На прогретом моторе машину следует разогнать до 40-45 км/ч, после чего включается четвертая передача и полностью нажимается педаль газа. Далее необходимо оценить степень детонации. Нормой считается, когда сразу после включения 4-й передачи детонация кратковременно присутствует (2-3 сек.), но исчезает с разгоном автомобиля. Если детонация после разгона продолжается, тогда высока вероятность раннего зажигания. Если детонации нет в момент включения 4-й передачи, тогда зажигание позднее. В таких случаях регулировку УОЗ следует повторять для получения оптимального результата.
Одним из главных отличий дизельного мотора от бензинового является принцип поджига дизтоплива. Зажигание топливно-воздушной смеси в дизельном двигателе реализовано посредством самовоспламенения солярки от контакта с предварительно сжатым и нагретым в результате такого сжатия воздухом в цилиндрах.
Выставление зажигания на дизельном двигателе подразумевает изменение угла опережения впрыска топлива, которое подается в четко заданный момент в конце такта сжатия. Если угол выставлен отлично от оптимальных параметров, тогда топливный впрыск окажется несвоевременным. Результатом станет неполноценное сгорание смеси в цилиндрах, что вызывает разрушительный дисбаланс в работе двигателя.
Следует помнить, что даже незначительные отклонения при выставлении угла впрыска топлива могут привести к серьезной поломке дизельного двигателя.
Получается, под системой зажигания дизельного двигателя стоит понимать важнейший элемент системы питания силового агрегата – топливный насос высокого давления (ТНВД). В большинстве дизелей именно данное устройство в комплексе с дизельными форсунками отвечает за своевременную дозированную подачу солярки в цилиндры мотора.
Рекомендуем также прочитать статью о том, как самому почистить и отрегулировать форсунки дизельного двигателя. Из этой статьи вы узнаете об основных способах очистки и настройки инжекторов.
Совет профи, как проверить качество настройки угла опережения зажигания
Чтобы проверить, правильно ли настроен угол опережения зажигания, необходимо руководствоваться следующими признаками:
- В работе прогретого силового агрегата не должно ощущаться никаких «провалов» на холостом ходу.
Правильная установка зажигания дает хорошие преимущества автолюбителям. От ее корректного функционирования зависит много факторов, которые благоприятно скажутся на других элементах. От них зависит правильная служба авто: от стабильности движка и увеличения срока его службы до возможности экономить топливо, ведь при правильной эксплуатации потребление топлива сокращается.
При нормальной работе четырехтактных моторов, вещество топливовоздушной смеси должно воспламеняться к концу акта сжатия, когда поршень должен подняться к кульминационной верхней точке. Так происходит из-за того, что веществу надлежит немного времени, чтобы сгореть и, по правилам физики, энергия от газов двигает поршень в низ, после чего авто движется.
В этой статье расскажем, как отрегулировать поджиг таким оптимальным способом, чтобы моторчик работал на всю мощность и при этом показывал стабильные, бесперебойные результаты.
Когда и зачем нужно настраивать?
Прежде чем перейти к ответу на вопрос, уделим немного внимания теоретическому пониманию предмета. Когда вещество в цилиндрических колбах двигателя сгорает, то делает это не сразу, а постепенно, при мгновенном распаде проблем с предварительным воспламенением не было бы. Но топливовоздушной смеси требуется время, исчисляемое в долях секунды. Если добавить к этому уравнению, что коленчатый вал вращается вокруг своей оси с непостоянной скоростью то, получаем проблему – вещество будет сгорать или раньше времени, или немного позднее. Итогом станет нестабильная служба движка он будет перегреваться, что приведет к детонации и завершению работы раньше эксплуатационного срока.
- Слишком ранее зажигание приведет к тому, что давление от газов будет мешать движению и попаданию поршня к верхней точке. Это приведет к тому, что мощность станет меньше, и будет больше потреблять топлива из-за нестабильного покачивания при малых оборотах.
- А позднее зажигание приведет к тому, что воздушно-топливные элементы будут долго сгорать, сердце транспорта из-за этого перегреется и топлива будет уходить больше.
Чтобы избежать этих неприятных последствий, не мешает сделать так, чтобы вещество воспламенялось и сгорало согласно количеству вращения вала и соответствовало оптимальной нагрузке мотора. Старые автомобили, придуманные Фордом, перебрасывали ответственность за регулировку на водителя. В конструкции предусмотрен специальный рычаг-рукоятка.
Современные модели оснащены трамблером с деталью центробежного механизма.
Эта вещь представляла собой регуляторную конструкцию с несколькими нетяжелыми грузиками и пружинами для равновесия внутренних элементов. Когда вращательное число возрастало, грузы распределялись по сторонам и приводили в движение опорную деталь-прерыватель. Чем сильнее разгонялся вал, тем больше грузы распределялись по области и как следствие увеличивался угол опережения. Но эти предохранительные функции плохо функционируют, если октановое число горючего не соответствует требованием производителя двигателя даже при удовлетворении рассматриваемых факторов, не те октановые значения приведут к детонации.
В прошлом веке при такой ситуации можно было просто открыть крышку капота и своими руками манипулировать трамблер в необходимую сторону. При использовании низко октанового горючего, нужно было сделать, что свеча срабатывала позднее. На нынешних моделях это регулирует специальный датчик, который следит и регулирует температуру, обороты и другие подкапотные процессы.
Как определить раннее или позднее зажигание
Чтобы предотвратить сбои в моторчике любимого транспорта, надлежит понять запаздывает или опережает возжигание. Чтобы помочь в диагностировании и поставить правильный диагноз следует пройтись по этим пунктам плана проверок:
- Насколько сложно запустить машину?
- Насколько увеличился расход топлива за последнее время?
- Мотор стал слабее работать. Причина потеря приемистости.
- Угол опережения зажигания на холостом ходу провоцирует непредсказуемую службу.
- При давлении ногой на педаль газа теряется прежняя отзывчивость, кажется, что есть какие-то преграды в нажатии.
- Слышны неприятные звуки под капотом во время езды, что является одним из признаков детонации.
- Когда выставлен неправильный зажигательный угол, то это повлечет за собой появление характерных звуков, от карбюратора и выпускающей системы, если эту проблему не решить, то это повлечет за собой серьезные поломки, помните, что регулярная детонация усугубит проблемы!
Признаки раннего зажигания
Для диагностики следует пройтись по пунктам:
- Сердце внутреннего сгорания издает неприятный металлический треск, как будто какие-то стальные детали ударяются друг об друга.
- Обороты выполняют свою функцию некорректно и плавают.
- При резком задействовании газа, сердце автомобиля не справляется с подачей большого количества горючего.
Позднее зажигание признаки
Теперь рассмотрим обратный пример, когда химическое вещество зажигается гораздо позже, поршня, который уже находится внизу. И горючее догорает, когда деталь возвращается вверх. Признаки данной проблемы:
- Сердце внутреннего сгорания не разгоняет скорость. Воздействие на педаль идет туго или вообще не реагирует на воздействие.
- Топливо расходуется быстрее, чем было при нормальной работе и начале эксплуатационного срока.
- На стенках цилиндрического бака можно заметить нагар, который затрудняет нормальную эксплуатацию авто, есть вероятность, что это приведет к детонации.
- ДВС перегревается из-за нестабильного сгорания топливовоздушного вещества.
Раннее зажигание на дизеле
Симптомы характерные для автомобилей, работающих на нефтепродукте похожи на раннее зажигание на дизеле. Но причины неисправности следует искать совсем в других местах. Главное отличие дизельного мотора от бензинового это то как поджигается горючее. В первом это связано с воспламенением солярки, которая вступает в реакцию с излишне перегретым O2. Во втором — отличие состоит в установке правильного угла опережения для подачи топливной смеси, при правильной службе оно подается в период сжимания. Если установить угол не с тем градусным значением, то впрыск будет подаваться не в нужное время, что ведет к некорректному сгоранию энерго образующего вещества и нарушению функции движка. Ранее зажигание на дизеле зависит от того насколько форсунки и топливный насос своевременно осуществляют подачу горючего в топливную емкость.
Признаки позднего зажигания на дизеле
Хотя дизельные модели отличатся от бензиновых, но симптом болезни у них схожи. Отличием является, то что при позднем зажжении на дизельных двигателях затрудняется старт даже при предусмотрительно нагретом моторе. Неприятным симптомом будет периодическое появление смольного дыма из выхлопной системы. Так как впрыск горючего начинается при старте, то керосин не успевает сгореть и находит выход через выхлопную трубу в виде черных смол. Если машина заводится слишком поздно, то она не заведется совсем!
Как выставить зажигание на дизеле видео
УОЗ что это?
Угол опережения – это анахронизм, которого давно не встретишь на современных моделях авто, ведь они оснащены контролерами, чипами. Они самостоятельно регулируют процесс впрыска, но в странах СНГ большинство транспортных средств все еще снабжены этой древней деталью. Если общаться на языке технических терминов, то УОЗ – это угол поворота коленчатого вала движка от места, где появляется искра до перемещения поршня к верхней точке.
Начальный угол опережения зажигания
Как выставить зажигание регулируя УОЗ?
- Необходимо уменьшить силу крепления у прерывателя(трамблера).
- Нужно понять, и вычислить, когда начинается сжатие в цилиндрической емкости. Чтобы провести расчеты, выверните свечу из емкости двигателя, а затем отверстие цилиндра заткните пробкой, подойдет даже тряпка или скомканное бумажное полотенце. Теперь нужно провернуть коленвал, пока импровизированная пробка, под давлением не покинет окружность бака.
- Проворачиваем деталь коленчатого вала пока он не совместится со штифтом.
- Когда бегунок находится на уровне с крышкой трамблера, присоединяем небольшую лампочку, малой мощности одной стороной к клемме с прерывателем.
- Теперь можно запускать свечу и повернуть прерыватель пока контакты не замкнутся. После этих действий лампочка должна перестать гореть.
- Теперь нужно приложить небольшую силу и повернуть бегунок по часовой стрелке, чтобы убрать пустоты в механизме привода. Теперь медленно меняем положение прерывателя, пока лампочка не начнет свечение.
- Фиксируем крепление вибратора, и убираем лампочку.
как настроить угол зажигания видео
Вопросы, на которые полезно знать ответы
Как выставить зажигание на слух?
Некоторые автолюбители чьи уши не были повреждены лапой медведя, одарены методом настройки на слух. Как они это делают? Они вращают прерыватель, и затем получают представление о работе мотора. Рассмотрим схему проверки детальнее:
- Необходимо включить двигатель.
- Затем немного попустить крепление вибратора. Позже гаечным ключом немного поворачиваем гайку против часовой стрелки.
- Трамблер нужно поворачивать самому, для понимания как действует сердце внутреннего сгорания.
- Идеальный градус должен функционировать, плавно не издавая резких звуков и не вибрируя. Но показывать самые высокие результаты по оборотам холостого движения.
- Когда идеальный угол найден следует зафиксировать положение гайкой, закрепляя ее гаечным ключом по часовой стрелке.
Как выставить зажигание методом искры?
Требуется сделать так, чтобы метки коленвала совпадали со знаками газораспределительного механизма. Стрелка ГРМ должна указывать на основной цилиндр. После чего не плохо было бы ослабить скрепляющую гайку вибратора и забрать провод из-под люка трамблера. Теперь высоковольтный проводок должен находиться рядом с массой на расстоянии не больше 6 мм. Включаем свечу. Теперь поворачиваем прерыватель приблизительно на 20-25 градусов по часовой стрелке, пока не увидите искру между массой и вибратором. На каком градусном значении увидели искру, там и фиксируйте положение закручивая гайку.
Как настроить зажигание точнее?
Чтобы диагностировать проблему рекомендуем воспользоваться этими пунктами плана:
- Перед началом диагностирования хорошо прогрейте область под капотом.
- Разгоните транспортное средство до скорости в 50 км в час.
- Переключите коробку передач на значение четвертой скорости, а затем надавите на педаль газа.
- Оцените обстановку как ведет себя моторчик, издает ли он металлические звуки, нет ли детонации?
- Если УОЗ скорректирован правильно, тогда после четвертой передачи на скорости 50 км в час, под капотом должна произойти небольшая детонация и длиться не больше трех секунд, она должна прекратиться после повторного нажатия на педаль движения.
Помните, если взрывы быстро не исчезли, то было установлено слишком ранняя затопка.
Признаки позднего зажигания, если детонации не происходило вовсе.
Если не удалось произвести настройку с первого раза, то следует повторять прием до тех пор, пока не получится корректного результата. Это поможет не только добиться правильной настройки, но и отточить навык корректировки внутренней системы, без вспомогательных приборов, используя только собственную наблюдательность и слух. Эти методы помогут использовать свое любимое имущество на колесах весь эксплуатационный срок и сохранить средства на посещение автомастерских.
Как выставить угол опережения зажигания
Опережение зажигания топливно-воздушной смеси на бензиновом и дизельном двигателе является воспламенением рабочей смеси в цилиндре в строго заданный момент. Под таким моментом следует понимать нахождение поршня в ВМТ.
Правильно выставленный момент зажигания сильно влияет на исправную работу мотора. Отклонения приводят к потере мощности и неустойчивой работе ДВС. В четырехтактном двигателе смесь воспламеняется в конце такта сжатия, а также перед тем моментом, когда поршень окажется в верхней мертвой точке.
Содержание статьи
Что такое угол опережения зажигания
В бензиновых агрегатах смесь поджигается от искры, которую создает свеча зажигания. Перед началом рабочего хода поршня происходит расширение газов и воспламенение. Стоит отметить, что смесь в цилиндре сгорает не моментально. После образования искры процесс сгорания и максимальное расширение газов в рабочей камере занимает определенный промежуток времени. Указанный временной отрезок небольшой, но с учетом высокой частоты вращения коленвала поршень успевает дополнительно пройти определенное расстояние от той точки своего нахождения в тот момент, когда топливно-воздушная смесь только загорелась.
Перед началом рассмотрения УОЗ (угол опережения зажигания) давайте подробнее рассмотрим схему работы системы зажигания. Как уже было сказано выше, момент зажигания оказывает огромное влияние на исправность работы ДВС. Поджиг смеси реализуется в тот момент, когда поршень на такте сжатия подходит к ВМТ. Далее происходит сгорание смеси воздуха и бензина, результатом чего становится расширение газов. Эти газы толкают поршень вниз (рабочий ход), благодаря чему энергия сгорания преобразуется в механическую полезную работу на коленвале.
Вполне очевидно, что если воспламенение произойдет в момент нахождения поршня в ВМТ, тогда топливо еще будет догорать уже в начале его рабочего хода (позднее зажигание). Это приведет к тому, что давление газов частично будет приходиться на двигающийся вниз поршень. Закономерно наблюдается потеря мощности двигателя.
Если подать искру и поджечь рабочую смесь заметно раньше достижения поршнем ВМТ (раннее зажигание), тогда максимум давления расширившихся газов не толкнет его вниз, а будет препятствовать его поднятию в ВМТ. Получается, энергия газов в такой ситуации не выполняет полезной работы. Более того, сопротивление газов по отношению к движущемуся поршню оказывает запредельные нагрузки на сам поршень и КШМ. Такое неправильно выставленное зажигание буквально разрушает двигатель. Чтобы избежать подобных отклонений зажигание необходимо регулировать.
Самостоятельная регулировка УОЗ
Правильно выставленный угол опережения зажигания предполагает воспламенение топливно-воздушной смеси и ее сгорание до момента, когда поршень окажется в верхней мертвой точке. Такой момент определяется по положению коленчатого вала двигателя и обозначается в градусах. Получается, моментом зажигания является угол между ВМТ и коленвалом. Если сдвигать угол к ВМТ, тогда получается позднее зажигание, а если сдвинуть угол в противоположном направлении, тогда такой угол станет ранним.
Давайте рассмотрим на примере «классики» ВАЗ, как выставить УОЗ на карбюраторном двигателе. Настройку необходимо осуществлять при помощи следующего минимального набора инструментов:
- гаечный ключ;
- ключ маховика для проворачивания коленвала;
- свеча зажигания;
Порядок действий следующий:
- Двигатель необходимо заглушить, а сам автомобиль нельзя ставить на передачу (используется стояночный тормоз) Ключ также необходимо вынуть из замка зажигания.
- Далее потребуется обнаружить метки, которые находятся рядом с шестерней ГРМ (длинная 0 градусов, средней длины метка 5 градусов, короткая 10 градусов). После этого также понадобиться выявить метку на маховике.
- Затем нужно отсоединить высоковольтный провод со свечи зажигания 1-го цилиндра (ближний к радиатору). В этот провод вставляется заготовленная ранее свеча, после чего она крепится на массу (для удобства можно воспользоваться держателем топливного шланга на клапанной крышке).
- После этого необходимо снять крышку трамблера, подойти с левой стороны машины и надеть ключ коленвала на гайку маховика. Далее коленвал нужно крутить строго на себя, так как попытка вращения в противоположную сторону приведет к откручиванию маховика.
- В процессе вращения коленвала нужно следить за бегунком трамблера и подгонять положение так, чтобы бегунок находился в области контакта 1-го цилиндра.
- Что касается меток на шестерне ГРМ и клапанной крышке, для моторов ВАЗ 2103-2106, выставляется 0 или 1 градус, для мотора ВАЗ 2101 ставится 1-3 градуса.
- После выставления меток ГРМ и проверив нахождение бегунка трамблера в области контакта 1 цилиндра, ключ с маховика коленвала убирается, крышка трамблера возвращается на место.
- Далее зажигание можно включить, но двигатель не запускается. Затем гайку крепления трамблера можно отпустить, после чего трамблер проворачивается против часовой стрелки.
- Следующим шагом становится проворачивание трамблера по часовой стрелке до того момента, пока не появится искра. Данную процедуру лучше повторить несколько раз.
- После этого трамблер необходимо зафиксировать в том положении, когда проскакивает искра. Затем провод можно вернуть на вкрученную свечу 1-го цилиндра.
Завершающим этапом становится проверка правильности выставленного угла опережения зажигания. Проверить это значение можно при езде. Перед началом пробного заезда двигатель необходимо прогреть до рабочей температуры.
Далее автомобиль потребуется разогнать на ровной дороге до 40-50 км/час, после чего включается 4-я скорость и осуществляется резкое нажатие на педаль газа. Появление «звона пальцев» (детонация) и быстрое его исчезновение (около 2 секунд) при разгоне до 60-65 км/час укажет на то, что угол опережения зажигания выставлен правильно.
Рекомендуем также прочитать статью о том, что такое датчик распредвала ДПРВ. Из этой статьи вы узнаете о назначении данного устройства и неисправностях, которые возникают в результате его выхода из строя.Постоянный детонационный стук будет означать, что зажигание раннее. В этом случае процедуру настройки необходимо повторить, проворачивая трамблер в «минус» на одно деление. Отсутствие детонации позволяет осуществлять проворот в «плюс». Другими словами, трамблер сдвигают на несколько миллиметров по часовой стрелке или против часовой стрелки, что будет зависеть от того, какое зажигание нужно выставить в конкретной ситуации.
Стоит добавить, что подстройку угла опережения зажигания на карбюраторных моторах также можно автоматизировать при помощи вакуумного регулятора. Указанное решение служит для коррекции угла опережения зажигания с учетом нагрузок на ДВС в том или ином режиме.
Угол опережения зажигания на моторах с электронным впрыском
Работа современного бензинового и дизельного двигателя с электронным впрыском контролируется при помощи прошивок, которые зашиты в ЭБУ. Вся система основана на взаимодействии контроллера, электронных датчиков и исполнительных устройств. По этой причине зажигание на таких автомобилях не выставляют.
Для нормальной работы систем топливоподачи и зажигания ЭБУ получает сигнал от датчиков, после чего полученная информация проходит обработку и сопоставляется со специальными топливными картами, которые находятся в прошивке блока управления. Основные сигналы поступают от датчиков коленвала и распредвала. С учетом положения коленвала и распредвала ЭБУ рассчитывает момент топливного впрыска инжекторной форсункой, а также момент поджига топливно-воздушной смеси (только для бензиновых ДВС) в цилиндре с поправкой на обороты и нагрузку на двигатель.
Электронное управление зажиганием означает то, что изменить угол зажигания (угол опережения топливного впрыска для дизеля) и топливные карты на таких системах можно только при помощи компьютера, к которому осуществляется подключение ЭБУ. Делается это в случае необходимости программного чип-тюнинга ДВС, а также после внесения различных изменений в устройство двигателя.
На штатных автомобилях сбои в работе электронного зажигания могут возникнуть по причине неисправностей электроники, которые диагностируют в реальном времени путем анализа сигналов от датчиков. После выявления неисправного датчика или проблем с проводкой осуществляется устранение причины или замена электронного устройства на заведомо исправное.
Дополнительно следует обратить внимание на то, чтобы все метки на маховике и шкивах ГРМ точно совпадали. В дизеле также необходимо отдельно проверить состояние привода ТНВД. Неправильно выставленные метки приведут к тому, что на ЭБУ будут подаваться ошибочные сигналы, в результате чего появятся сбои зажигания и нарушится синхронность работы устройств и механизмов.
Угол опережения зажигания на двигателях с ГБО
Установка газобаллонного оборудования означает, что ряд характеристик будет отличаться при работе мотора на газу. Хотя в современных автомобилях регулировка параметров осуществляется посредством ЭБУ, в случае с газом систему необходимо дорабатывать.
Дело в том, что на инжекторных двигателях угол опережения зажигания блок управления выставляет с учетом детонации бензина. Что касается газа, то детонация данному виду топлива не свойственна. По этой причине для правильного выставления угла опережения зажигания на двигателях, которые работают на газе, дополнительно устанавливается вариатор угла опережения зажигания для ГБО. Устройство способно изменять УОЗ автоматически зависимо от режима работы двигателя.
Читайте также
угол опережения зажигания
Угол опережения зажигания имеется на любом бензиновом двигателе, и для чего он нужен и как он устанавливается, или изменяется в зависимости от оборотов и будет рассмотрено в этой статье. Как известно из википедии, опережение зажигания — это воспламенение топливной смеси в цилиндре двигателя внутреннего сгорания немного раньше, чем поршень подойдёт к верхней мёртвой точке. И распределитель зажигания устанавливается на заводе (или после разборки и ремонта мотора) так, чтобы вспышка в первом цилиндре происходила немного раньше, чем поршень этого цилиндра достигнет верхней мёртвой точки (подробнее как выставить распределитель чтобы отрегулировать зажигание описано вот тут).
Но кроме установки распределителя зажигания так, чтобы он распределял искру в цилиндрах с некоторым опережением до прихода поршней к ВМТ, так же в процессе работы мотора необходимо изменять угол опережения зажигания в зависимости от оборотов коленвала и от положения дроссельных заслонок (от нагрузки двигателя). Необходимость установки в распределителе зажигания (трамблёре) специального устройства, которое на современных двигателях автоматически регулирует момент воспламенения рабочей смеси в камерах сгорания двигателя, диктуется следующими обстоятельствам.
Сгорание рабочей смеси в цилиндрах и в камерах сгорания происходит мгновенно (примерно в течении 1/500 — 1/1000 доли секунды) и с увеличением оборотов коленчатого вала, скорость сгорания смеси остаётся почти неизменной, а вот средняя скорость движения шатунов с поршнями сильно возрастает. И за время сгорания горючей смеси, поршень (поршни) успевает значительно отойти от верхней мёртвой точки (ВМТ) и в следствии этого сгорание смеси произойдёт в большем объёме, давление газов на поршень изменится, и в итоге двигатель не будет развивать полную мощность.
Значит необходимо, с увеличением оборотов коленвала, воспламенять горючую смесь с некоторым опережением (до того, как поршень подошёл в ВМТ) и с таким расчётом, чтобы рабочая смесь полностью сгорела к моменту перехода поршнем ВМТ (при наименьшем объёме), то есть сделать зажигание более ранним.
Причём, чем выше обороты коленвала при работе двигателя, тем бóльшим должно быть опережение зажигания. И это далеко не всё — при одних и тех же оборотах коленвала, угол опережения зажигания должен уменьшатся с открытием дроссельных заслонок в карбюраторе или в системе впрыска, а при закрытии заслонок угол опережения должен увеличиваться.
Это объясняется тем, что при открытии дроссельных заслонок увеличивается количество рабочей смеси, которая поступает в цилиндры, и одновременно уменьшается количество примешиваемых к смеси остаточных отработанных газов, в следствии чего повышается скорость сгорания горючей смеси.
А при закрытии заслонок, наоборот количество топливной смеси уменьшается, а количество остаточных газов в цилиндрах мотора увеличивается, и от этого скорость сгорания топлива уменьшается.
Благодаря чему изменяется угол опережения зажигания.
Центробежный регулятор зажигания 1 — кулачок, 2 — грузик, 3 — пластина, 4 — валик привода, 5 — штифт, 6 — возвратная пружина, 7 — ось грузика
Контактная система. Угол опережения зажигания на двигателях c контактным прерывателем автоматически изменяется, в зависимости от оборотов коленвала, при помощи специального устройства, которое называется центробежным регулятором и которое показано на рисунке слева и ниже (на рисунке ниже показан вакуумный регулятор опережения зажигания).
Центробежный регулятор состоит из двух грузиков 2, которые надеваются на оську 7 и которые укреплены на пластине 3 приводного валика 4 и которые стягиваются двумя пружинками 6. Так же на грузиках впрессованы штифты 5, которые входят в прямоугольные вырезы пластины кулачка 1 прерывателя.
При работе мотора и повышении оборотов коленвала грузики под действием центробежной силы начинают расходится в стороны, и чем больше обороты коленвала, тем больше расходятся грузики (на рисунке «а» слева показан полукруглой стрелкой угол опережения зажигания на малых оборотах, а на рисунке «б»показан поворот пластины и кулачка на больший угол при больших оборотах коленвала).
Когда грузики расходятся, они поворачивают пластину 3 с кулачком (по направлению его вращения) на некоторый угол, чем и обеспечивается более раннее размыкание контактов прерывателя. То есть увеличивается опережение зажигания (угол опережения зажигания).
При уменьшении оборотов коленчатого вала, действие центробежной силы уменьшается и грузики от действия пружин 6 сходятся, возвращая (поворачивая) пластину с кулачком в обратную сторону.
Вакуумные регуляторы опережения зажигания.
в — при малой нагрузке, г — при большой нагрузке.
8 — вакуумная трубка, 9 — пружина диафрагмы, 10 — диафрагма, 11 — корпус, 12 — тяга, 13 — подвижный диск прерывателя, 14 — кулачок, 15 — контакты прерывателя
От степени открытия дроссельных заслонок и нагрузки на двигатель угол опережения зажигания тоже автоматически изменяется, но уже при помощи дополнительного устройства, называемого вакуумным регулятором (см. рисунок слева). Полость вакуумного регулятора с одной стороны диафрагмы 10 сообщается с атмосферой, а с другой стороны при помощи трубки 8 с диффузором карбюратора (или с диффузором воздушной заслонки на инжекторах).
При закрытии дроссельной заслонки, разряжение в корпусе 11 вакуумного регулятора увеличивается, при этом диафрагма, преодолевая сопротивление пружины 9, прогибается наружу и через тягу 12 начинает поворачивать подвижный диск 13 навстречу вращению кулачка прерывателя, в сторону увеличения угла опережения зажигания.
А при открытии дроссельной заслонки, разряжение наоборот уменьшается, при этом пружина выгибает диафрагму в противоположную сторону, при этом с помощью тяги поворачивая диск прерывателя 13 по ходу вращения кулачка, в сторону уменьшения угла опережения зажигания.
Кроме автоматического регулирования опережения зажигания, распределители на современных машинах имеют и ручную регулировку, с помощью октан-корректора.
Бесконтактная система. Аналогично работает центробежный регулятор и на бесконтактной электронной системе зажигания.
Распределитель зажигания бесконтактной системы переднеприводных вазов.
1 — крышка распределителя (трамблёра), 2 — центральная клемма, 3 — угольный контакт, 4 — боковая клемма, 5 — ротор, 6 — защитный экран, 7 — держатель переднего подшипника валика, 8 — опорная пластина, 9 — экран, 10 — ведомая пластина центробежного регулятора, 11 — грузик, 12 — ведущая пластина, 13 — корпус датчика, 14 — валик привода, 15 — муфта привода, 16 — корпус вакуумного регулятора, 17 — штуцер привода разряжения, 18 — диафрагма, 19 — тяга вакуумного регулятора, 20 — датчик Холла, 21 — клеммная колодка.
Только пластина, поворачивающаяся от действия центробежной силы и грузиков, связана не с кулачком, а с экраном 9 (см. рисунок слева). От действия центробежной силы и расхождения грузиков, пластина поворачивает экран на некоторый угол (который зависит от оборотов коленвала) и шторки экрана начинают входить в прорезь датчика Холла немного раньше, или позже, в зависимости от оборотов коленвала и распредвала (на переднеприводных ВАЗах конец распредвала крутит валик привода 14).
И соответственно датчик Холла начинает выдавать импульс на искру немного раньше или позже, в зависимости от оборотов коленвала и распредвала двигателя (валик привода 15 здесь вращается от вращения распределительного вала).
Так же следует учесть, что угол опережения зажигания следует немного изменять при переходе (при использовании) на топливо с другим октановым числом, чтобы исключить детонацию. И на какой угол нужно изменить опережение зажигания чтобы предотвратить детонацию, я написал вот в этой статье.
В современных автомобилях и мотоциклах с системой впрыска топлива (так называемые в народе инжекторные двигатели), за корректировку угла опережения зажигания (в зависимости от оборотов и нагрузки двигателя) занимается электронный блок управления (бортовой компьютер) на основе специальной программы и считывая показаний с нескольких датчиков (например датчик коленвала, датчик распредвала, датчик расхода воздуха — подробнее о датчиках впрыскового двигателя и как их проверить можно почитать вот тут) и поэтому установка механических устройств, как на карбюраторных машинах (центробежных регуляторов, вакуумного регулятора, октан-корректора не требуется.
А на самых свежих двигателях современных мотоциклов и автомобилей каждая свеча имеет собственную катушку зажигания, установленную в свечном колпачке и бортовой компьютер вполне может изменять угол опережения зажигания для каждого цилиндра по отдельности. Хотя и на некоторых машинах с общей катушкой зажигания и распределителем (трамблёром), или с четырёхвыводной катушкой, такое тоже возможно благодаря электронике (датчикам) и заложенной в бортовой компьютер специальной программы.
Надеюсь данная статья позволит начинающим водителям подробнее узнать, что такое угол опережения зажигания, почему он так важен и зачем нужно его изменять, в зависимости от режимов работы двигателя, успехов всем.
Угол опережения зажигания | Twokarburators.ru
Для того чтобы самостоятельно эффективно диагностировать и устранять неисправности в работе двигателя своего автомобиля необходимо знать и понимать несколько базовых моментов его работы. Один из таких «китов» на котором держится весь авторемонт – угол опережения зажигания.
Что такое угол опережения зажигания?
Расстояние от момента поджига (момента зажигания) топливной смеси до момента прихода поршня в верхнюю мертвую точку (ВМТ), на такте сжатия, называется углом опережения зажигания.
Он измеряется в градусах. Так как поршень перемещается в цилиндре за счет кругового движения кривошипного механизма коленчатого вала (шатунная шейка с нижней головкой шатуна описывают окружность). Полный круг и ход поршня вниз-вверх (от ВМТ до ВМТ) это 360º. Если топливная смесь воспламенилась за 10º до прихода поршня в ВМТ, то эти 10º и будут углом опережения зажигания.
Для чего необходим угол опережения зажигания?
Для получения необходимой мощности двигателя топливную смесь необходимо поджечь до прихода поршня в ВМТ, тем самым обеспечивая ее полное и своевременное сгорание, и последующее оптимальное давление образовавшихся после сжигания газов на поршень, движущийся вниз на рабочем такте.
Как и зачем регулировать угол опережения зажигания?
В зависимости от режима работы двигателя автомобиля угол опережения зажигания должен меняться в большую или меньшую сторону. Например, на режиме холостого хода обороты коленчатого вала небольшие, топливная смесь имеет определенную пропорцию воздуха и бензина, а на мощностном режиме (разгон) она более богатая, при этом обороты коленчатого вала возрастают, снижая эффективность вентиляции цилиндров. В такой ситуации необходим более ранний угол опережения зажигания, который позволит поджечь смесь раньше и она успеет сгореть до прихода поршня в ВМТ.
На карбюраторном двигателе регулировкой угла опережения зажигания занимаются вакуумный и центробежный регуляторы опережения зажигания расположенные в распределителе зажигания (трамблере). Они позволяют автоматически увеличить угол опережения зажигания в зависимости от величины оборотов двигателя. На инжекторном двигателе угол опережения зажигания устанавливается блоком управления (ЭБУ) системы управления двигателя. Он является определенным параметром «зашитым» в его программное обеспечение и рассчитывается исходя из показаний датчиков.
Начальный угол опережения зажигания на карбюраторных двигателях устанавливается по меткам и регулируется вращением трамблера. На инжекторном двигателе установкой угла «заведует» все тот же блок управления ЭСУД.
Подробнее о регулировке угла опережения зажигания: «Регулировка угла опережения зажигания на двигателях автомобилей ВАЗ 2108, 2109, 21099», «Регулировка угла опережения зажигания на двигателях автомобилей ВАЗ 2105, 2107».
Неисправности в работе двигателя автомобиля вызванные неверным углом опережения зажигания
В основе всех неисправностей, связанных с углом опережения зажигания лежат всего две причины: либо угол опережения зажигания слишком ранний (раннее зажигание), либо слишком поздний (позднее зажигание). Признаки неверного угла опережения зажигания: двигатель не запускается, запускается и глохнет, «троит», «стреляет» в карбюратор или глушитель, дымит, не тянет, возникает детонация и пр. Подробнее: «Признаки раннего зажигания», «Признаки позднего зажигания».
Примечания и дополнения
— Для управления моментом искрообразования и преобразованием электрического тока низкого напряжения в электрический ток высокого напряжения карбюраторные и инжекторные двигателя оборудованы системами зажигания: контактными, бесконтактными и пр. Подробнее: «Контактная система зажигания автомобилей ВАЗ 2101, 2102, 2103, 2106», «Бесконтактная система зажигания автомобилей ВАЗ 2108, 2109, 21099».
Еще статьи по системам зажигания автомобилей
— Фазы газораспределения двигателя внутреннего сгорания
— Система зажигания инжекторного двигателя 2111
— Свечи зажигания для контактной и бесконтактной систем зажигания, отличия
— Холодные и горячие свечи зажигания
Система зажигания инжекторного двигателя авто
Система зажигания авто служит для поджигания смеси в определенный период, вследствие чего начинается процесс сгорания. От её работы зависит мощность двигателя, содержание вредных веществ в выхлопе и экономия топлива.
Процесс воспламенения
Когда поршень сжимает топливовоздушную смесь, давление в камере сгорания достигает 20-40 бар, а температура смеси 400 — 600°С. Но чтобы смесь загорелась, т.е. произошел бы процесс горения этого недостаточно и нужно на нее воздействовать. Для этого служит искра, которая возникает между центральным и боковым электродами свечи зажигания. Но если искровой заряд будет маломощным, то возгорание может и не произойти. Чтобы смесь поджигалась нужен очень мощный разряд. К примеру, для стехиометрической смеси он составляет 0.2 мДж, а для «бедной» или «богатой» смеси он должен быть равным 3.0 мДж. Необходимо, чтобы около искры находилось оптимальное количество топливовоздушной смеси. Именно это количество и поджигает всю оставшуюся смесь в цилиндре, а дальше начинается процесс сгорания топлива.В системе зажигания автомобиля присутствует катушка зажигания, которая накапливает энергию и передает ее на свечу зажигания для возникновения напряжения. Особенность катушки зажигания состоит в том, что напряжение, которая она создает, намного превышает величину пробоя в зазоре свечи зажигания. Катушки зажигания способны накапливать энергию в районе 60 — 120 мДж и обеспечивают напряжение равное 25 — 40 кВ.
Условия для качественного горения топлива:
- Достаточная продолжительность искрового разряда;
- Оптимальное распыление топливовоздушной смеси;
- Однородность топливовоздушной смеси;
- Стехиометрический состав топливовоздушной смеси.
Угол опережения зажигания (УОЗ). Что это такое
Три миллисекунды — именно столько проходит между моментом начала воспламенения смеси и ее полным сгоранием.
При повышении частоты вращения коленвала время сгорания остается постоянным, но средняя скорость перемещения поршня возрастает. Это ведет к тому, что когда поршень отходит от ВМТ, сгорание смеси произойдет в большем объеме и давление газов на поршень уменьшиться. Из-за этого упадет мощность двигателя.Кроме того, при одной частоте вращения коленвала с увеличением нагрузки на двигатель момент воспламенения должен наступать позже. Это объясняется тем, что увеличивается количество горючей смеси, поступающей в цилиндры, и одновременно уменьшается количество примешиваемых к ней остаточных отработавших газов, вследствие чего повышается скорость сгорания. Искра должна возникнуть в тот момент, когда давление сгорания при разных рабочих режимах будет наиболее оптимальным.
Это вызывает необходимость воспламенять рабочую смесь с опережением (до прихода поршня к ВМТ) с таким расчетом, чтобы смесь полностью сгорела к моменту перехода поршнем ВМТ.
Момент зажигания принято определять по положению коленчатого вала относительно ВМТ и обозначать его в градусах до ВМТ. Этот угол называют углом опережения зажигания (УОЗ). Сдвиг момента зажигания в сторону ВМТ считается поздним (УОЗ уменьшается), а сдвиг от ВМТ — ранним (УОЗ увеличивается). Чем выше частота вращения коленвала, тем более ранним должен быть угол опережения зажигания.
Момент зажигания является важным показателем в работе двигателя. От него зависит экономичность мотора, максимальная мощность и содержание вредных веществ в выхлопных газах.
В инжекторных моторах система самостоятельно рассчитывает угол опережения зажигания в зависимости от работы мотора в определенный период. Угол опережения зажигания определяется на основании скорости вращения коленвала, режима работы мотора и нагрузки на двигатель. На основании этих данных система управления двигателем подбирает оптимальный УОЗ.
Что такое детонация двигателя
Детонация — это непредсказуемый взрыв в моторе, который происходит в неположенное время и может загубить двигатель. Возникает при высокой степени сжатия двигателя и носит опасный характер. Происходит из-за самопроизвольного сгорания топливовоздушной смеси в камере сгорания. Детонация свидетельствует, что момент зажигания очень ранний. Могут пострадать детали двигателя из-за повышенной температуры и давления паров. В первую очередь страдают поршни, прокладка головки цилиндров и головка в зоне клапанов. Может приводить к полному ремонту двигателя.Детонация мотора можно возникать:
- При большой нагрузки на двигатель и повышенных (близким к критическим) оборотов коленчатого вала.
- При разгоне. Она слышна как металлический звон и стуки в двигателе («стучат пальчики»). Она бывает при повышенной нагрузке, но при малых оборотах мотора. Именно она считается как самая опасная, т.к. её не слышно из-за повышенного шума мотора на больших оборотах.
- Из-за конструкции двигателя авто, а также от плохого топлива.
Время опережения и замедление зажигания
1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.
3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета около 6700 человек были трудоустроены в течение одного года после даты выпуска, в общей сложности 84%. В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации, а также работающие на должностях. которые были получены до или во время обучения по ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.
7) Для завершения некоторых программ может потребоваться более одного года.
10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.
11) См. Подробную информацию о программе для получения информации о требованиях и условиях, которые могут применяться.
12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.
14) Программы поощрения и право сотрудников на участие в программе остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.
15) Оплачиваемые производителем программы повышения квалификации проводятся Группой специального обучения UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI.
16) Не все программы аккредитованы ASE Education Foundation.
20) Льготы VA могут быть доступны не на всех территориях кампуса.
21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.
22) Грант «Приветствие за службу» доступен всем ветеранам, имеющим право на участие, на всех кампусах. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.
24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.
25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, смог. инспектор и менеджер по запасным частям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников автомобильного сервиса и механиков в штате Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотрено в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.
28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве ремонтников автомобилей и связанных с ними (49-3021) в Содружестве Массачусетс, составляет от 31 360 до 34 590 долларов. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Тем не мение, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве техников по дизельным двигателям . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в Содружестве Массачусетса составляет от 29 730 до 47 690 долларов (Массачусетс по труду и развитию рабочей силы, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата квалифицированных дизельных техников в Северной Каролине составляет около 50%, опубликованная в мае 2019 года, и составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.
30) Расчетная годовая средняя зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетс: Средняя годовая заработная плата начального уровня для лиц, занятых в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28 700 долларов США (данные по развитию трудовых ресурсов штата Массачусетс, май 2018 г., просмотр на 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата составляет 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, просмотр 14 сентября 2020 г.)) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.
31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков моторных лодок и техников по обслуживанию (49-3051) в Содружестве Массачусетса. составляет от 31 280 до 43 390 долларов (данные за май 2018 г., Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.
34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по обработке с ЧПУ. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, оператор ЧПУ, подмастерье. слесарь-механик и инспектор обработанных деталей. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, США). 2020).Информация о зарплате в Северной Каролине: согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.
38) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемые общие числа к 2029 г. — 728 800 техников и механиков по обслуживанию автомобилей; Сварщики, резаки, паяльщики и паяльщики — 452 500 человек; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 290 800 человек; Ремонтники кузовов автомобилей и сопутствующие товары — 159 900; и компьютер в числовом отношении Контролируемые операторы инструмента, 141 700.
41) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое среднее количество вакансий в год, Классификация должностей: Автомеханики и механики — 61 700 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.
42) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотр 8 сентября 2020 г.Прогнозируемое среднее количество рабочих мест в год вакансий по классификации должностей: сварщики, резаки, паяльщики и паяльщики — 43 400 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.
43) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое среднее количество годовых вакансий по классификации должностей: Механики автобусов и грузовиков и специалисты по дизельным двигателям, 24 500 человек.Вакансии включают вакансии, связанные с ростом и чистым замещением.
46) Студенты должны иметь средний балл не ниже 3.5 и посещаемость 95%.
47) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое общее число Техников и механиков по обслуживанию автомобилей к 2029 году составит 728,8 тыс. человек.
48) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. Предполагаемое общее количество механиков автобусов и грузовиков и специалистов по дизельным двигателям к 2029 году составит 290 800 человек.
49) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое общее число ремонтов кузовов и связанных с ними автомобилей к 2029 году составит 159 900 человек.
50) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. Предполагаемое общее количество сварщиков, резчиков, паяльщиков и паяльщиков к 2029 году составит 452 500 человек.
51) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое общее количество компьютеров в числовом выражении Контролируемых операторов инструмента к 2029 году составит 141 700 человек.
Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.
Как увеличить время зажигания для значительного прироста производительности
Если моторный отсек не обтянут пластиком, велика вероятность того, что вы сможете изменить угол опережения зажигания, чтобы повысить производительность двигателя. Это бесплатно и довольно просто. Вот как …
Увеличение угла опережения зажигания — это бесплатный и простой мод, который можно сделать за считанные минуты.Прежде чем мы перейдем к , как сделать мод, давайте быстро обсудим , что на самом деле означает «опережение времени »…
Что это?
Увеличение угла опережения зажигания на означает, что свеча зажигания зажигает топливовоздушную смесь в цилиндре раньше (измеряется в градусах до верхней мертвой точки), чем на заводе. Это дает двигателю более высокую производительность, потому что он заставляет поршень в цилиндре опускаться сильнее (потому что искра зажигается раньше) после того, как он достигает верхней мертвой точки (ВМТ).
Верхняя мертвая точка (ВМТ) — это точка, в которой поршень находится в самой верхней части цилиндра.Задержка момента зажигания означает, что у искры меньше времени для возбуждения перед верхней мертвой точкой (ВМТ), и поэтому сила, с которой поршень возвращается в исходное положение после достижения ВМТ, уменьшается.Это означает, что вы потеряете производительность, и этого никто не хочет (кроме копов).
Как изменить угол опережения зажигания?
Mazda MX-5 — одна из самых простых машин для увеличения угла опережения зажигания, поэтому мы будем использовать ее в качестве руководства.Вам понадобятся пара гаечных ключей, немного проволоки, отвертка и, что немаловажно, индуктивный индикатор времени.
Общее правило заключается в том, что вы можете увеличить угол опережения зажигания для большинства автомобилей с крышкой распределителя, включая старые Honda и VW.
Первый шаг в увеличении угла опережения зажигания — это погрузиться под капот и найти диагностический блок.Для этих шагов я буду использовать изображения из очень полезного руководства, загруженного на MX-5 Nutz.
После того, как диагностический блок был обнаружен, откройте его и соедините контакты TEN и заземления (GND) с помощью куска провода (это переводит компьютер в режим диагностики, трюк, который, по сути, заставляет автомобиль учиться).
Следующий шаг — найти винт регулировки холостого хода (как указано выше) и снизить скорость холостого хода до 850 об / мин. Следуя этому шагу, вам необходимо подключить индуктивную лампу таймера — один разъем идет к проводу № 1 HT, а другой — к источнику питания.Если ваша батарея находится в багажнике, как в MX-5, то крепление к задней части генератора переменного тока является хорошей заменой для питания. Наконец, подключите заземляющий провод к металлическому кронштейну на двигателе.
Затем вам нужно найти датчик угла поворота кулачка (CAS), который удерживается на месте с помощью болта (в данном случае 12 мм).Ослабьте болт не более чем на один оборот, чтобы обеспечить его свободное движение при включении светового индикатора.
Теперь, когда вы включаете автомобиль, найдите шкив кривошипа (он же гармонический балансир), который находится рядом с кронштейном с нужными вам метками синхронизации. На изображении MX-5 ниже самая длинная линия временной метки соответствует заводской настройке.
Шкив коленчатого вала находится рядом с кронштейном с метками синхронизации, которые вам понадобятся в ближайшее время…Посветите индикатором синхронизации на кронштейн с метками синхронизации и очень осторожно поверните датчик угла поворота кулачка (CAS), пока не достигнете желаемого угла (в данном случае две метки влево, что означает, что вы достигли 14 градусов).
Все, что вам нужно сделать, это снова затянуть болт датчика угла поворота распредвала и убедиться, что угол по-прежнему составляет 14 градусов. Тогда все готово!
Не забудьте провести исследование перед изменением угла опережения зажигания вашего автомобиля, включая определение местоположения датчика угла распредвала, шкива коленчатого вала, меток времени и блока диагностики.Убедитесь, что вы также знаете, в какой степени вы можете изменить угол опережения зажигания. Слишком сильно измените зажигание, и ваш двигатель может получить стук, который нарушит сгорание и может поджечь ваш двигатель!
Взгляните на это подробное руководство по MX-5 Nutz для получения дополнительной информации.
Момент зажигания — обзор
Функции цифрового управления двигателем
Вспомните из главы 4, что одной из основных целей электронной системы управления двигателем является регулирование смеси (т.е.е., воздух-топливо), угла опережения зажигания и системы рециркуляции отработавших газов. Практически все основные производители автомобилей, продаваемых в США (как иностранные, так и отечественные), используют трехкомпонентный каталитический нейтрализатор для соблюдения ограничений по выбросам выхлопных газов. Для таких автомобилей, работающих только на бензине, соотношение воздух / топливо поддерживается как можно ближе к стехиометрическому значению около 14,7 в течение максимально возможного времени. Время зажигания и система рециркуляции отработавших газов регулируются отдельно для оптимизации производительности и экономии топлива.
Фиг.6.1 иллюстрирует основные компоненты электронной системы управления двигателем. На этом рисунке система управления двигателем представляет собой микроконтроллер, обычно реализованный со специально разработанным микропроцессором или микроконтроллером и работающий под программным управлением. В главе 3 обсуждается современная среда программирования для автомобильных электронных систем (AUTOSAR). В этой главе представлены алгоритмы управления трансмиссией. Эти алгоритмы типичны для тех, которые включены в программные модули.Свечи зажигания для этого примера с четырьмя цилиндрами обозначены S.P.
Рис. 6.1. Компоненты двигателя с электронным управлением.
Часто контроллер включает оборудование для операций умножения / деления и ПЗУ (см. Главу 3). Аппаратное обеспечение умножения значительно ускоряет процедуры умножения, которые обычно являются громоздкими и медленными при реализации подпрограммой в программном обеспечении. Соответствующее ПЗУ содержит программу для каждого режима, параметры калибровки и справочные таблицы.Микроконтроллер под программным управлением генерирует выходные электрические сигналы для управления топливными форсунками, чтобы поддерживать желаемую смесь и зажигание для оптимизации производительности. Для заданной выходной мощности двигателя (которая задается водителем с помощью педали акселератора) правильная смесь получается путем регулирования количества топлива, подаваемого в каждый цилиндр во время такта впуска, в соответствии с соответствующей массой всасываемого воздуха, как объяснено в главе 4.
Что касается функции управления подачей топлива, цифровая система управления двигателем получает измерение массового расхода воздуха, как правило, с использованием датчика массового расхода воздуха (MAF).Как показано в главе 5, датчик массового расхода воздуха генерирует выходное напряжение на клеммах v o , определяемое по формуле
(6.4) vot = fmM.a
, где Ma — мгновенный массовый расход воздуха во впускную систему двигателя (кг / с).
Как объяснено в главе 5, функция f m для типового серийного датчика массового расхода воздуха определяется выражением
voM.a = vo20 + KMAFM.a
Однако цифровая система управления подачей топлива может инвертировать нелинейную функцию. для получения значения M.a массового расхода воздуха:
(6.5) M.a = fm − 1vo
Как объяснялось в главе 4, на входе в двигатель имеется система рециркуляции отработавших газов и воздух. Как будет показано ниже, цифровая система управления двигателем способна определять массовый расход MEGR EGR, поскольку она управляет потоком EGR. В некоторых случаях скорость рециркуляции отработавших газов определяется по датчику дифференциального давления (DPS). Таким образом, поправка на M.EGR на выходе датчика массового расхода воздуха является несложным вычислением.
Идеальное управление двигателем должно определять массу воздуха, всасываемого в м -й цилиндр во время n -го цикла двигателя M a ( n , m ).Этот идеальный контроллер будет мгновенно впрыскивать топливо с равномерным распределением в конце процесса впуска для этого цилиндра для достижения однородной стехиометрической смеси по всему цилиндру для подготовки к воспламенению от сжатия и выработке энергии. Этот идеальный впрыск топлива достигается в некоторых современных двигателях за счет прямого впрыска, как будет объяснено далее в этой главе.
Субоптимальный впрыск топлива, очень близкий к идеальному, достигается за счет хорошо спроектированного многоточечного впрыска топлива, при котором топливо впрыскивается во время такта впуска с помощью форсунки, которая распыляет топливо во впускной канал рядом с впускным клапаном.Как будет показано далее в этой главе, регулирование подачи топлива с обратной связью обеспечивает достаточное регулирование смеси для соответствия самым строгим нормам по выбросам. Позже в этой главе также будет показано, что управление подачей топлива работает в нескольких возможных режимах. Однако, прежде чем перейти к этому обсуждению, полезно объяснить некоторые основные вопросы при разработке окончательной конфигурации системы и алгоритмов управления подачей топлива.
На практике датчик массового расхода воздуха размещается где-то в верхней части впускной системы двигателя, в трубках, которые направляют поток воздуха к отдельным цилиндрам.Обычно эта система впуска (называемая «впускной коллектор») предназначена для достижения максимально равномерного распределения между всеми цилиндрами в максимально широком рабочем диапазоне. Для настоящего обсуждения полезно предположить, что равномерное распределение воздуха достигается для каждого цикла двигателя.
В любой момент времени t , общая масса воздуха, закачанного в двигатель во время предыдущего цикла двигателя продолжительностью T e (соответствует вращению коленчатого вала на 4 π радиан), равна
(6 .6) MaTt = ∫θet − 4πθetM.aθedθe
, где θ e ( t ) — мгновенное угловое положение коленчатого вала в момент времени t , а T e — период цикла двигателя. при мгновенных оборотах
Te = 120 об / мин
Для упрощения и без серьезной потери общности удобно предположить, что двигатель работает при постоянной нагрузке и оборотах. Согласно нашим предположениям, количество воздуха, всасываемого в любой данный цилиндр ( м ) в течение n -го цикла двигателя M a ( n , m ), определяется как
(6.7) Manm = MaTMcm = 1,2,…, Mc
, где M c — количество цилиндров.
Обратите внимание, что если частота вращения и нагрузка изменяются, но с достаточно низкой скоростью, то, по крайней мере, в течение периода одного цикла, вышеуказанная модель является достаточно точной, чтобы вычислить желаемую подачу топлива для стехиометрической смеси.
Масса топлива, которая должна подаваться в цилиндр m во время n -го цикла двигателя F ( n , m ), определяется как
(6.8) Fnm = ManmRa / f
, где R a / f — желаемое отношение массы воздуха к массе топлива. Как поясняется ниже, правильный R a / f зависит от рабочего режима управления. Желательно, чтобы R a / f для бензинового топлива находились на стехиометрии (т. Е. R a / f = 14,7) на протяжении всего периода работы двигателя. возможно для оптимального регулирования выбросов выхлопных газов.
Как объяснялось в главе 5, подача топлива в современных двигателях обеспечивается топливными форсунками. Следует напомнить, что топливная форсунка — это электромагнитный клапан, который открывается электрическим управляющим сигналом в нужное время в цикле двигателя на период времени τ f ( n , m ) (для цилиндра м во время цикла n ), который вычисляется в цифровой системе управления двигателем. В главе 5 также объяснялось, что топливо под регулируемым давлением поступает на входную сторону клапана топливной форсунки через топливную рампу.
Расход топлива M.f является функцией давления в топливной рампе и открытой площади клапана, а также смещения стержня соленоидом. Последние два параметра фиксируются конструкцией топливной форсунки. Количество топлива, подаваемого топливной форсункой F ( n , m ) для m -го цилиндра во время n -го цикла двигателя, равно
(6,9) Fnm = ∫tn, mtn , m + τFnmM.fdt
где t n , m — время начала бинарного сигнала управления подачей топлива, t n , m + τ F ( n , m ) — конец периода впрыска топлива, а M.f — расход топлива для топливной форсунки.
В современной конструкции двигателя обычная практика заключается в размещении топливной форсунки рядом с впускным клапаном так, чтобы брызги топлива во время периода открытия топливной форсунки направлялись в цилиндр через отверстие впускного клапана. Управляющее напряжение двоичного впрыска топлива синхронизируется таким образом, чтобы топливо подавалось в течение оптимальной части такта впуска.
Динамика открытия и закрытия топливных форсунок достаточно короткая, за исключением очень маленького F ( n , m ), у которого подача топлива составляет примерно
(6.10) Fnm≅M.fτFnm
Хотя уравнение. (6.9) дает правильный расчет подачи топлива, с целью упрощения объяснения управления топливом, модель, приведенная в формуле. (6.10) достаточно точен для обсуждения операции управления подачей топлива.
Следует отметить, что для постоянной нагрузки и числа оборотов обычно τ F должно быть постоянным; однако для переменной нагрузки и ускорения / замедления двигателя τ F может изменяться как с n, так и с m.Следовательно, обозначение τ F сохраняет оба индекса.
Момент зажигания свободный л. Вот как получить максимум!
Кривые зажигания — ключ к достижению оптимальной производительности.
Установка угла опережения зажигания — это, пожалуй, самая важная настройка двигателя внутреннего сгорания, но концепция кривых зажигания по-прежнему остается неуловимой для многих энтузиастов. Тем не менее, все, что нужно для настройки крутящего момента, мощности и управляемости, — это простой индикатор времени и осознанный процесс настройки.Думайте об этом как о «бесплатных» лошадиных силах. Слишком долгое время может вызвать серьезное повреждение двигателя, поэтому лучше быть информированным тюнером.
План оптимизации угла опережения зажигания не изменился с тех пор, как Николаус Отто начал дурачиться с четырехтактным двигателем внутреннего сгорания в 1870-х годах. Идея состоит в том, чтобы зажечь заряд в цилиндре за достаточное время (опережение), чтобы создать максимальное давление в цилиндре в идеальной точке после верхней мертвой точки (ВМТ), чтобы толкнуть поршень вниз, оказывая давление на кривошип.Общепризнано, что пиковое давление в цилиндре должно происходить примерно при 15-18 градусах после верхней мертвой точки, чтобы максимизировать нагрузку на коленчатый вал.
Если синхронизация зажигания инициируется слишком рано, цилиндр может взорваться и потенциально вызвать повреждение. Если искра возникает слишком поздно, двигатель работает ровно, вырабатывает меньше мощности и может перегреться. Это обсуждение будет сосредоточено на типичном уличном двигателе с газовым насосом, оборудованном дистрибьютором.
Требования к моменту зажигания двигателя будут варьироваться в зависимости от множества переменных, таких как степень сжатия, октановое число топлива, соотношение воздух-топливо, форма камеры сгорания, движение смеси и температура воздуха на впуске, и это лишь некоторые важные моменты.Но если свести это к простейшим аспектам: синхронизация зависит от частоты вращения двигателя и нагрузки. Нагрузка определяется дроссельной заслонкой и легко контролируется вакуумметром. Когда дроссельная заслонка почти не открывается, двигателю требуется больше воздуха, чем позволяет дроссельная заслонка, создавая вакуум во впускном коллекторе (низкое давление). Типичный уличный автомобиль с мягким кулачком может работать на холостом ходу при давлении от 12 до 16 дюймов ртутного столба (Hg) на вакуумметре. Когда дроссельная заслонка открывается, вакуум в коллекторе начинает падать. При полностью открытой дроссельной заслонке (WOT) вакуум в коллекторе падает почти до нуля.Большинство двигателей будет создавать около 0,5 дюйма ртутного столба вакуума в коллекторе на WOT.
Следующим шагом является разделение опережения зажигания на три основных компонента: начальное опережение, механическое опережение и опережение вакуума. Наш подход к этому двигателю состоит в том, чтобы оптимизировать время зажигания во всем рабочем диапазоне двигателя, сводя к минимуму вероятность детонации.
Все обсуждение угла опережения зажигания начинается с начального угла опережения зажигания. Это величина опережения на холостом ходу при срабатывании искры до верхней мертвой точки (BTDC).Большинство стандартных уличных двигателей требуют от 6 до 8 градусов начального подъема, но это не высечено в камне. Двигатели с более длинными распредвалами и другими модификациями часто требуют большего начального времени. Для двигателей с большими кулачками нет ничего необычного в том, чтобы ввести от 14 до 18 градусов начальной синхронизации. Это время проверяется с помощью индикатора синхронизации, который сравнивает положение отметки ВМТ первого цилиндра на гармоническом балансировщике с указателем синхронизации, чаще всего расположенным на крышке цепи привода ГРМ. Начальная синхронизация устанавливается ослаблением прижимного болта распределителя и вращением корпуса распределителя.Это изменяет соотношение между корпусом распределителя и вращающимся ротором. Поворот распределителя против направления вращения увеличивает начальный момент времени.
Это начальное время используется в качестве отправной точки для нашего следующего шага — механического продвижения. Механическое продвижение напрямую связано с оборотами двигателя. Механическое продвижение определяется использованием центробежного механизма продвижения, который впервые был использован в паровых двигателях Джеймса Ватта в 1780-х годах. Но даже Ватт признает, что позаимствовал эту идею из более ранней конструкции, появившейся на мельнице 1600-х годов.
Типичное центробежное продвижение использует пару грузов, которые поворачиваются на штифтах. Грузы прикреплены к пластине, на которой установлен штифт, перемещающийся в фиксированной прорези. Расстояние, которое проходит штифт, представляет собой величину механического продвижения, достигаемого за счет продвижения положения ротора. На типичном дистрибьюторе Chevrolet, который вращается по часовой стрелке, при открытии механических опережающих грузов ротор перемещается в том же направлении, опережая синхронизацию. Частота вращения, при которой грузы начинают двигаться, и точка их максимального хода в основном определяется силой пружин, удерживающих грузы на месте.Более легкие пружины позволяют начинать продвижение и достигать максимального продвижения при более низких оборотах. Более тяжелые пружины задерживают начало и замедляют скорость продвижения.
Таким образом, типичная кривая механического опережения может начинаться с 1500 об / мин и достигать полного продвижения к 2600 об / мин. Если это полное опережение перемещает ротор на 25 градусов коленчатого вала, а наше начальное время было установлено на 10 градусов до ВМТ, то общее механическое показание опережения на гармоническом балансировщике при 2600 об / мин или выше будет 35 градусов (10 начальных + 25 механических = 35 градусов. общее).Мы можем скорректировать эту сумму, добавляя или вычитая начальное или механическое продвижение. Изменение механического продвижения требует модификации паза или изменения диаметра втулки, которая подходит к штифту в пазу. Таким образом, дистрибьюторы MSD позволяют легко вносить изменения в механическое продвижение своих дистрибьюторов.
Важно отметить, что проверка механического опережения с помощью светового индикатора всегда должна выполняться при отсоединенной емкости опережения вакуума. Если канистру не отсоединить, показания будут представлять собой комбинацию начального, механического и вакуумного опережения.
Теперь мы можем ввести вакуумное продвижение в эту систему. Среди многих энтузиастов существует популярное, но ошибочное мнение о том, что вакуумное продвижение предназначено только для двигателей с ограниченными выбросами и / или костями. Более осознанный способ взглянуть на вакуумное продвижение — это рассматривать его как время, основанное на нагрузке. Стоит заглянуть в кроличью нору процесса сгорания, чтобы понять, почему так важен выбор времени на основе нагрузки.
Давайте возьмем пример типичного карбюраторного маленького блока, который едет по автостраде со скоростью 70 миль в час и 2800 об / мин по ровной поверхности.Двигатель мог создавать вакуум от 12 до 18 дюймов. Как упоминалось ранее, высокий вакуум означает низкую нагрузку и почти закрытый дроссель. Малоизвестным фактом является то, что большинство легких уличных двигателей движутся по автостраде, вытягивая топливо из контура холостого хода карбюратора. Это не опечатка. Двигатели с кулачками длительного действия или автомобили с высокими передачами повышающей передачи на повышающей передаче могут переходить в главный контур, но большинство мягких уличных двигателей с высоким вакуумом в крейсерском режиме фактически будут работать на холостом ходу.
При минимальном количестве воздуха и топлива, поступающих в каждый цилиндр, это означает, что смесь не плотно упакована. Здесь все становится непросто. Обычно процесс горения воспринимается как взрыв — искра гаснет и гул — горение происходит как бомба. Это не то, что происходит. Реальность такова, что свеча зажигания загорается, и требуется много времени, чтобы газы сгорания полностью сгорели через верхнюю часть поршня, как огонь в прерии в большой долине. Чем плотнее трава, тем быстрее она горит, а редкие участки горят медленнее.
Мы можем применить эту аналогию прерийного огня к пространству горения. В WOT воздух и топливо плотно упакованы и быстро сгорают, поэтому нам не нужно так много времени. При 2800 об / мин при WOT угол поворота от 32 до 34 градусов может быть примерно правильным для типичного уличного бензинового двигателя. Однако при почти закрытой дроссельной заслонке (14-16 дюймов вакуума в коллекторе) воздух и топливо гораздо менее плотно упакованы в цилиндр. Чтобы получить максимальную мощность при частичном открытии дроссельной заслонки, нам нужно начать процесс сгорания намного раньше — возможно, до 40 градусов до ВМТ или более, в зависимости от индивидуальных требований двигателя.
Но нам нужно столько времени, когда двигатель находится под очень небольшой нагрузкой. Поскольку вакуум в коллекторе является отличным индикатором нагрузки, первые конструкторы двигателей использовали небольшой вакуумный баллон, прикрепленный к распределителю, чтобы ускорить синхронизацию при высоком вакууме в коллекторе, чтобы создать временную кривую на основе нагрузки, которая была бы в дополнение к механическому прогрессу.
Мы создали два графика, которые иллюстрируют очень простые механические кривые и кривые подачи вакуума. Механическое продвижение полностью зависит от частоты вращения двигателя, в то время как продвижение вакуума контролируется исключительно нагрузкой двигателя.Нам нужны и то, и другое, потому что на улице мы можем иметь низкую нагрузку при очень высоких оборотах двигателя — скажем, 6000 при едва открытой дроссельной заслонке — или очень высокую нагрузку (WOT) при очень низких оборотах двигателя, например 1500 об / мин. У этих двух ситуаций очень разные требования к моменту зажигания.
Теперь давайте представим критическую переменную синхронизации кулачка. Давайте возьмем крайний пример с двигателем малого объема, таким как карбюраторный Ford 5.0L с большим гидравлическим роликовым кулачком с продолжительностью 230 градусов при 0,050 дюйма и 0.565 дюймов подъема клапана. Даже с 16 градусами начального момента, допустим, наш двигатель почти не работает на холостом ходу при 8 дюймах вакуума в коллекторе, и он поддерживается герметичным преобразователем крутящего момента, потому что в нем также есть закись азота.
Даже при сжатии 9,5 или 10,0: 1 применение распределительного вала длительного действия означает, что давление в цилиндре на низких скоростях будет значительно снижено по сравнению с более мягким кулачком. Этот двигатель будет реагировать на большее увеличение вакуума на крейсерских скоростях при частичном открытии дроссельной заслонки, чтобы улучшить его управляемость и реакцию на газ.Наш опыт показывает, что подключение механизма подачи вакуума к источнику вакуума в коллекторе увеличивает синхронизацию на холостом ходу и улучшает качество холостого хода на передаче с автоматической коробкой передач. Более мягкие приложения также могут извлечь выгоду из этой идеи, но потребуют некоторых экспериментов. Некоторые компании, такие как Crane, Moroso, Pertronix и Summit Racing, предлагают регулируемые канистры с опережением вакуума, которые позволяют настраивать кривую опережения в соответствии с требованиями вашего двигателя.
Давайте воплотим эти идеи в жизнь на конкретном примере.Мы бросили очень мягкий малый блок 383ci в ранний El Camino, протолкнув трансмиссию Th450 и очень плотный 11-дюймовый преобразователь. При 16 градусах начальной синхронизации и правильно отрегулированной цепи холостого хода в карбюраторе Холли двигатель изо всех сил пытался работать на холостом ходу, при этом вакуум в передаче упал до уровня ниже 8 дюймов рт. Добавление большего начального времени означало внесение серьезных изменений в распределитель HEI, чтобы ограничить механическое продвижение, которое было идеальным при 20 градусах (16 начальных + 20 механических = 36 градусов в сумме).
Распределитель был оснащен регулируемой канистрой опережения вакуума, поэтому мы просто соединили баллон с вакуумом в коллекторе, что добавило 14 градусов вперед, создав 30 градусов опережения на холостом ходу. Вакуум холостого хода мгновенно улучшился до 12 дюймов на передаче и позволил нам снизить скорость холостого хода, чтобы свести к минимуму этот раздражающий лязг двигателя при включении передачи. Дополнительное опережение вакуума также позволило нам еще немного обеднить смесь холостого хода. У этого двигателя было только сжатие 8,5: 1, поэтому он предпочитает больше времени.После дополнительной езды и настройки мы доработали эту комбинацию с 14 градусами начального, 20 градусов механического опережения и 14 градусов опережения вакуума для 48 градусов на крейсерских скоростях шоссе, но она отлично работает на топливе с октановым числом 87.
В конце концов мы добавили более свободный преобразователь, который позволил нам убрать опускание вакуума в коллекторе на холостом ходу. Этот более свободный преобразователь позволил нам уменьшить общее опережение на холостом ходу на передаче до более консервативных начальных 18 градусов, что улучшило качество холостого хода на передаче из-за уменьшенной нагрузки.
Каждый двигатель будет иметь разные требования к синхронизации, основанные на комбинации параметров конструкции камеры сгорания, сжатия, октанового числа, фаз газораспределения и кривой зажигания. Лучший способ определить идеальную кривую — внести небольшие изменения и оценить их в течение нескольких дней вождения, прежде чем предпринимать дальнейшие изменения. Обратите внимание на то, что сообщает ваш движок, и запишите изменения в блокнот.
Это всего лишь один пример, но он служит для иллюстрации того, как можно манипулировать синхронизацией зажигания для улучшения характеристик двигателя с неполным дросселем.Недавно HOT ROD опубликовали колонку To The Rescue, в которой малоблочный двигатель Ford с плохим ходовым ходом радикально улучшил реакцию на дроссельную заслонку просто за счет простого применения тайминга и впрыска. Очень мало журналов посвящено характеристикам неполного газа, но это критически важно для уличных двигателей. Если задуматься, уличный двигатель легко тратит 95 процентов своей жизни на частичном открытии дроссельной заслонки и на холостом ходу. Почему бы вам не потратить время на то, чтобы ваш двигатель работал наилучшим образом там, где он будет проводить почти весь свой срок службы? Потратьте немного времени на лампочку таймера, и мы гарантируем, что ваш двигатель будет рад, что вы это сделали.
Просмотреть все 12 фотографий Просмотреть все 12 фотографий Это типичный механический механизм подачи на распределителе HEI с парой грузов, которые перемещаются наружу при увеличении частоты вращения двигателя. Вы можете создать собственную кривую, смешав пружины из комплекта пружин на вторичном рынке. Один из двух слотов обозначен стрелкой. Единственный способ уменьшить общее механическое продвижение — уменьшить длину паза. Для этого потребуется разборка, пайка или сварка. См. Все 12 фото. Распределители MSD используют один паз и штифт со втулкой, которая удерживается гайкой.Изменение диаметра втулки позволяет тюнеру увеличивать или уменьшать механическое продвижение. Распределители MSD на заводе оснащены самой большой (черной) втулкой, которая сводит к минимуму механическое продвижение. Втулки меньшего размера поставляются с распределителем. При замене втулки не забудьте нанести пятно Loctite на резьбу. Мы видели, как эти гайки отваливались. См. Все 12 фотографий. Канистры с опережением вакуума перемещают пластину в распределителе, когда вакуум применяется к внутренней диафрагме.Вакуум, приложенный к диафрагме, увеличивает положение звукоснимателя, изменяя синхронизацию. Регулируемые вакуумные канистры доступны для самых популярных дистрибьюторов и обычно идентифицируются по восьмиугольной форме. В этом случае используется шестигранный ключ на 3/32 дюйма для регулировки скорости подачи. См. Все 12 фотографий См. Все 12 фотографий Это цифровой индикатор времени Innova с обратным переключением от Summit Racing. На дисплее отображается как общий подъем (32 градуса), так и частота вращения двигателя (2580). Чтобы использовать этот обратный светильник, просто нажимайте кнопки «Вперед» (стрелка вверх) или «Задержка» (стрелка вниз), пока отметка ВМТ не совместится с нулевой отметкой на вкладке синхронизации двигателя.Затем дисплей сообщает нам, что у нас есть угол поворота на 32 градуса при 2580 об / мин. См. Все 12 фотографий. Вот небольшой совет по определению вращения на любом распределителе с вакуумным баллоном. Расположите руку параллельно баллону подачи вакуума, как показано на рисунке. Ваши пальцы будут указывать в направлении вращения распределителя. Этот распределитель Chevrolet HEI вращается по часовой стрелке. Дистрибьюторы Ford размещают вакуумный баллон на противоположной стороне корпуса, что означает, что они вращаются против часовой стрелки. См. Все 12 фотографий Вы можете купить ленту синхронизации в MSD, которая будет отображать метки синхронизации так же, как балансировщик с пониженной степенью защиты, поэтому вам не понадобится подсветка циферблата.Или вы можете сделать свою собственную ленту, как мы сделали здесь. Умножьте диаметр балансира на 3,1417 () и разделите это значение на 180, чтобы получить расстояние на 2 градуса. Для балансира диаметром 8 дюймов мы округлили это значение в 2 градуса до 0,140 дюйма. Таким образом, 30-градусная отметка находится на расстоянии 2,1 дюйма от нулевой отметки на ленте. См. Все 12 фотографий. Вся эта настройка предполагает, что система зажигания уже находится в оптимальном состоянии. Всегда используйте высококачественную крышку распределителя с латунными соединениями, такими как эта деталь MSD, вместо дешевых алюминиевых и тратьте деньги на качественные провода свечей зажигания, такие как MSD, Moroso и другие.Посмотреть все 12 фото Даже мелочи могут иметь значение. Свечи зажигания с выступом (слева) перемещают искру немного ближе к середине камеры и имеют небольшое преимущество перед стандартными свечами (справа). См. Все 12 фотографий Этот график иллюстрирует типичную механическую кривую опережения, которая включает начальную синхронизацию 10 градусов, всего 32 градуса. Это соответствует механическому подъему на 22 градуса. См. Все 12 фотографий На этом графике показана кривая опережения вакуума, добавляющая до 14 градусов дополнительного времени при 18 дюймах рт.Комбинируя эти две кривые, можно получить до 46 градусов при крейсерской скорости 3000 об / мин, если вакуум в коллекторе составляет 18 дюймов рт. Ст. Или выше (32 + 14 = 46).5.3L LS Время в зависимости от карты нагрузки
Нагрузка (Дроссельная заслонка в процентах) | 1 000 90 420 | 2 000 | 3 000 | 4 000 | 5 000 | 6 000 |
10% | 40 | 50 | 53 | 52 | 49 | 44 |
20% | 32 | 34 | 38 | 40 | 36 | 32 |
30% | 24 | 28 | 31 | 33 | 32 | 30 |
40% | 18 | 25 | 28 | 32 | 31 | 29 |
50% | 10 | 16 | 21 | 26 | 29 | 29 |
60% | 4 | 12 | 17 | 26 | 28 | 28 |
70% | -11 | 8 | 14 | 26 | 28 | 28 |
80% | -11 | 6 | 14 | 26 | 28 | 28 |
90% | -11 | 6 | 14 | 26 | 28 | 28 |
100% | -11 | 4 | 14 | 26 | 28 | 28 |
Если вы обратитесь к графикам, вы заметите, что они обе являются линейными (прямолинейными) кривыми.Двигатели с электронным управлением обладают преимуществом нелинейных кривых зажигания. Эта диаграмма представляет собой упрощенный пример временной карты на основе нагрузки, созданной для двигателя грузовика GM 5.3L LS с октановым числом 87. По сути, эта карта представляет собой комбинацию начального, механического и вакуумного продвижения. Вертикальная шкала представляет собой процент открытия дроссельной заслонки (нагрузки), в то время как обороты представлены на горизонтальной шкале. Как и следовало ожидать, по мере увеличения нагрузки время уменьшается. В качестве крайнего примера, вы никогда бы не достигли WOT (100 процентов) при 1000 об / мин, но если бы это произошло, вы можете видеть, что карта минимизирует время до -11 градусов, что составляет 11 градусов после ВМТ, который резко замедляется до предотвратить детонацию.И наоборот, при 10-процентном открытии дроссельной заслонки при 3000 об / мин время составляет 53 градуса до ВМТ. Это время на основе нагрузки.
Описание | Номер детали: | Источник: | Цена: |
Индикатор хронометража с электронным циферблатом Innova | 3568 | Summit Racing | $ 99.97 |
Кран HEI прил. Vac. комплект тазов и пружин | 99600-1 | Summit Racing | 35 долларов.40 |
Регулируемая вакуумная канистра ACCEL HEI | 31035 | Summit Racing | 24,32 долл. США |
Регулируемая вакуумная канистра Pertronix HEI | D9006 | Summit Racing | $ 18.97 |
Регулируемая вакуумная канистра Summit HEI | 850314 | Summit Racing | $ 12.97 |
Стандартный мотор SB Ford прил. Vac. канистра | VC192 | Summit Racing | $ 36.97 |
Summit LA Mopar adj. вакуумная канистра | 850426 | Summit Racing | $ 19.97 |
Кран GM очков расст. вакуумная реклама комплект | 99601-1 | Summit Racing | $ 35,43 |
Лента синхронизации MSD | 8985 | Summit Racing | $ 4,25 |
Однако в сложных реальных приложениях идеальный момент для зажигания свечи зажигания может быть не тогда, когда поршень находится в ВМТ. Вместо этого системы газораспределения двигателя пытаются учитывать различные условия движения, чтобы двигатель сжигал топливо полностью и эффективно.В старых автомобилях использовались полностью или частично механические системы газораспределения, но в современных двигателях используются системы зажигания без распределителя.
Основы Без распределителя Системы зажигания
В старых системах зажигания использовались распределители и провода свечей зажигания. В этих конструкциях вращающийся ротор внутри распределителя посылал высокое напряжение по отдельным проводам к каждой свече зажигания. Со временем ротор, крышка распределителя и кабели могут изнашиваться.Вместо этого в последних конструкциях автомобилей используются более надежные и эффективные системы зажигания с электронным управлением.
В системе зажигания без распределителя дискретная катушка подает напряжение на каждую свечу зажигания. Компьютер вашего автомобиля может определить точный момент зажигания каждого цилиндра. Помимо обеспечения большего контроля, эта система также удаляет все движущиеся механические компоненты. Без изнашивания этих деталей системы зажигания без распределителя будут более надежными.
Необходимость точного выбора времени
В пассажирских транспортных средствах используются четырехтактные двигатели внутреннего сгорания, что означает, что каждый полный цикл двигателя требует, чтобы поршень дважды перемещался в верхнюю и нижнюю часть камеры сгорания.Свеча зажигания должна зажигаться только в верхней части рабочего такта. Точная синхронизация свечей зажигания обеспечивает плавную подачу мощности, предотвращает повреждение двигателя и обеспечивает топливную экономичность.
Если ваша свеча зажигания загорится слишком рано, любое топливо, оставшееся в камере сгорания, может самопроизвольно взорваться, поскольку поршень сжимает его. Детонация может вызвать серьезные внутренние повреждения, поэтому многие современные автомобили оснащены датчиками детонации для обнаружения этого состояния. Свечи зажигания, которые загораются слишком поздно, будут истощать мощность при каждом такте, а раннее зажигание также может привести к тому, что ваш двигатель будет работать резко или колебаться.
К сожалению, синхронизация двигателя не является проблемой с универсальным решением. Идеальная величина опережения синхронизации будет варьироваться в зависимости от нагрузки двигателя, температуры и других факторов. Современные системы зажигания используют данные, собранные с датчиков двигателя и входа дроссельной заслонки, чтобы выбрать, когда зажигать каждую свечу зажигания.
Признаки отказа
Проблемы с синхронизацией в старых системах часто могут приводить к выраженным (а иногда и катастрофическим) проблемам с управляемостью.Современные блоки управления двигателем (ЭБУ) лучше адаптируются к отказам отдельных компонентов, опережению или замедлению времени для предотвращения повреждения двигателя. Хотя это помогает сохранить внутренние компоненты двигателя, это не означает, что производительность вашего автомобиля не пострадает.
Проблемы с синхронизацией двигателя обычно проявляются в виде плохого ускорения, внезапных толчков или колебаний под нагрузкой, а также снижения расхода топлива. Конкретные симптомы, которые вы испытываете, не обязательно будут результатом неисправного компонента, скорее, ваш ECU выберет консервативный режим синхронизации для предотвращения повреждений.В результате выявить первопричину не всегда просто.
Во многих случаях проблемы с синхронизацией возникают из-за того, что датчик сообщает неверные данные. Ваш ECU полагается на различные датчики, чтобы знать точную скорость и положение критически важных компонентов двигателя. Без этих данных компьютер не может принимать соответствующие решения по времени. Даже такая, казалось бы, несвязанная вещь, как датчик массового расхода воздуха, может привести к проблемам с синхронизацией зажигания.
Из-за важности правильной синхронизации двигателя и сложности диагностики проблем, вы всегда должны доверять решение этих проблем профессионалу.Letcher Bros. Auto Repair имеет опыт и знает, как справляться со сложностями современных систем опережения зажигания. Связаться с нами сегодня, чтобы восстановить мощность и эффективность вашего автомобиля!
Момент зажигания
Двигатель — это то, что обеспечивает необходимую мощность для всех частей движущегося транспортного средства. Даже когда в двигатель подается необходимое количество топлива и воздуха, крайне важно, чтобы топливовоздушная смесь зажигалась в нужное время, чтобы получить от нее максимальную мощность.Именно здесь момент зажигания приобретает значение. Искра зажигания должна возникать в точное время, чтобы топливовоздушная смесь сгорела полностью. В этой статье объясняется значение угла опережения зажигания для работы двигателя и подробно рассказывается о том, что может пойти не так в автомобиле с неправильным углом опережения зажигания.
Установка угла опережения зажигания устанавливает правильную точку, в которой воспламеняется топливовоздушная смесь в камере сгорания двигателя. Время измеряется в градусах до или после достижения поршнем верхней мертвой точки (ВМТ).Если система зажигания настроена на воспламенение топлива точно тогда, когда поршень достигает ВМТ, считается, что угол зажигания равен 0 градусам. Если система зажигания настроена на создание искры до того, как поршень достигнет ВМТ, то время зажигания считается опережающим. Чтобы получить оптимальную мощность для различных оборотов двигателя, следует соответственно изменить угол опережения зажигания. Как правило, угол опережения зажигания увеличивается, чтобы получить от двигателя максимальную мощность.
Обычно искра зажигается за 10-30 градусов до того, как поршень достигает верхней мертвой точки (ВМТ).Топливно-воздушная смесь горит с одинаковой скоростью независимо от оборотов двигателя. Чем быстрее работает двигатель, тем больше будет опережение угла опережения зажигания для достижения максимального давления в той же точке цикла двигателя. Старые автомобили требовали ручной настройки угла опережения зажигания. Они использовали либо вакуумное, либо центробежное, чтобы установить правильное время подачи. Принимая во внимание, что в современных автомобилях есть блок управления двигателем (ЭБУ), который определяет необходимое ускорение при заданных оборотах двигателя. В некоторых автомобилях угол опережения зажигания будет замедлен.Обычно это делается там, где сокращение выбросов имеет приоритет перед производством большей мощности.
На правильное время зажигания топлива влияют различные факторы, такие как рабочий объем двигателя, октановое число топлива, степень сжатия двигателя, состояние свечей зажигания и давление на впуске двигателя. Как правило, угол опережения зажигания регулируется, когда в двигатель вносятся какие-либо изменения или обновления.
Неправильная установка угла опережения зажигания может вызвать ряд проблем в двигателе, таких как детонация или свист, затрудненный запуск, перегрев, повышенный расход топлива и снижение выходной мощности.
Это один из распространенных симптомов в двигателе. Детонация происходит, когда момент зажигания устанавливается раньше идеального момента опережения. В этих случаях свечи зажигания создают искру, когда двигатель все еще находится в фазе сжатия, что приводит к неправильному сгоранию топливовоздушной смеси. Для предотвращения детонации двигателя в современных автомобилях используются датчики детонации. Чтобы найти подробное описание датчиков детонации, щелкните здесь.
Это может быть связано с опережающим или отложенным зажиганием. В обоих случаях двигатель не развивает оптимальную мощность, что вызывает затруднения при запуске автомобиля.
Перегрев — один из симптомов воспламенения топливовоздушной смеси до рабочего такта. Это заставляет двигатель выделять больше тепла, чем обычно.
В общем, неправильная установка угла опережения зажигания снижает мощность и эффективность двигателя. Топливно-воздушная смесь, которая воспламеняется в любое время, кроме идеального, приведет к неправильному сгоранию. Это также приведет к снижению экономии топлива.
Все о системе зажигания: время зажигания и опережение.
Для правильного момента зажигания каждый цилиндр должен получать искру на электродах свечи, когда поршень приближается к вершине своего хода сжатия (на несколько градусов до ВМТ). Это возможно, если приводить вал распределителя так, чтобы он поворачивался с частотой вращения коленчатого вала в один холл. Вал распределителя может вращаться взаимно однозначно с распределительным валом, который уже вращается на половине скорости вращения двигателя. На некоторых двигателях, использующих ремень ГРМ, распределитель приводится в движение ремнем.
Шестерня распределительного вала синхронизируется так, что искра возникает, когда цилиндр готов к зажиганию. Затем ротор будет направлен в сторону цилиндра, готового к срабатыванию. Клемма пробки крышки цилиндра. К этой клемме прикреплен штекерный провод. Провода прикреплены к крышке, глядя на цилиндр номер один и следуя порядку зажигания в направлении вращения вала распределителя. При вращении двигателя вращается вал распределителя. Каждый раз, когда вал распределителя поворачивается достаточно, чтобы ротор указывал на клемму свечи, система зажигания вырабатывает искру.Этот цикл повторяется снова и снова. Изготовитель двигателя указывает время в зависимости от того, на сколько градусов до ВМТ должен сработать цилиндр номер один. Все остальные цилиндры сработают на такое же количество градусов до ВМТ. Если свеча срабатывает позже указанного значения, считается, что отсчет времени замедлен. Если вилка срабатывает раньше, чем указано, время считается опережающим.
Установка базовой синхронизации.
Большинство старых двигателей и многие новые имеют установочные метки в виде линии, нанесенной на обод демпфера крутильных колебаний.Некоторые двигатели переднеприводных автомобилей имеют установочные метки на маховике. К крышке ГРМ прикреплен указатель. Когда отметка находится точно под указателем, двигатель готов к запуску цилиндра номер один. Искра возникнет, когда ротор будет направлен на клемму крышки номер один. Время обычно устанавливается с помощью стробоскопа, который представляет собой свет, который приводится в действие скачками высокого напряжения от провода свечи зажигания. Стробоскоп обычно называют просто таймером.
Типичные метки опережения зажигания имеют градусы
до и после верхней мертвой точки.Эта установка также
включает в себя гнездо магнитного датчика времени.
Чтобы синхронизировать двигатель, датчик лампы газораспределения зажимается над проводом вилки номер один (или другим цилиндром, если это может быть указано). на большинстве двигателей перед установкой начального времени необходимо предпринять специальные меры, такие как отсоединение вакуумной линии от распределителя или заземление электрического разъема компьютера. При заказе двигателей с точками контакта зазор между точками должен быть установлен перед синхронизацией двигателя. Затем двигатель запускается и работает на холостом ходу.Многие современные автомобили не имеют возможности установки времени. Прежде чем искать метки ГРМ, проверьте наклейку на выбросы в моторном отсеке.Использование стробоскопа для синхронизации зажигания. Каждый раз, когда срабатывает штекер № 1
, стробоскоп будет загорать метки времени.
Использование таймера.
Световой индикатор времени загорится указателем над демпфером колебаний. Время проверяется по указателю света на метках времени. Каждый раз, когда загорается вилка номер один, загорается стробоскоп.Каждый раз, когда он срабатывает, когда демпфер находится в одном и том же положении по отношению к стрелке, метка времени демпфера смотрит сквозь него, когда он стоит на месте. Чтобы отрегулировать синхронизацию, ослабляют зажим распределителя и поворачивают распределитель вручную. При его повороте метка времени будет перемещаться. При повороте в правильном направлении отметка совпадет с указателем. Когда они выровнены, двигатель синхронизируется и зажим распределителя может быть затянут. Не забудьте повторно подключить все вакуумные линии или электрические разъемы, если это применимо.
Магнитный счетчик времени.
Многие двигатели последних моделей могут быть рассчитаны с помощью магнитного измерителя времени. Этот измеритель имеет датчик времени, который установлен в магнитной розетке времени рядом с обычными метками времени. В измерителе времени также используется индуктивный датчик, который зажимает свечу зажигания номер один. Как только все подключения будут выполнены, двигатель запустится, и время можно будет считать прямо со шкалы счетчика.
Механизмы продвижения по времени.
По мере увеличения оборотов двигателя необходимо быстрее зажигать смесь.Если этого не сделать, поршень достигнет ВМТ и запустится до того, как воздушно-топливная смесь сможет правильно воспламениться. Чтобы правильно запустить заряд топливовоздушной смеси, необходимо устройство для опережения синхронизации двигателя (запуск на большее количество градусов до ВМТ) по мере увеличения частоты вращения двигателя. Также необходимо замедлить синхронизацию, чтобы контролировать выбросы выхлопных газов и предотвратить детонацию искры. Когда двигатель работает на холостом ходу, необходимо очень небольшое продвижение. При более высоких оборотах двигателя необходимо несколько раньше зажигать смесь.Чтобы увидеть эту концепцию, взгляните на следующий рисунок: давление горящего топлива закончится, когда поршень достигнет 23 градусов после ВМТ. Обратите внимание на рисунок A, что цикл сгорания должен начинаться при 18 градусах до ВМТ, чтобы завершиться на 23 градуса после ВМТ. На рисунке B частота вращения двигателя увеличилась втрое. Теперь необходимо зажечь заряд при 40 градусах перед ВМТ, чтобы завершить сгорание на 23 градуса после ВМТ. Три распространенных метода изменения угла опережения зажигания — это опережение центробежным движением, опережение вакуума и электронное опережение.
По мере увеличения мощности двигателя искра должна быть рассчитана раньше.
Замечание только в A 41 (требуется ход коленчатого вала)
В положении B при 3600 об / мин. 63 градуса необходима.
Centrifugal Advance.
Один из способов увеличения времени — использование центробежного механизма, который установлен на валу распределителя. Фактически, распределительный вал разделен на верхнюю и нижнюю части, причем верхняя часть может выдвигаться относительно нижней части.Когда вал распределителя вращается, он вращает центробежный узел, который поворачивает либо кулачок (контактное зажигание), либо реактор или заслонку (электронное зажигание). Центробежное продвижение вперед опережает синхронизацию двигателя по отношению к частоте вращения двигателя.
Два разных типа распределителя с центробежным передним механизмом.
Когда двигатель работает на холостом ходу, давление пружины удерживает два груза вместе, и вал остается в положении для синхронизации на низкой скорости. Когда двигатель набирает обороты, центробежная сила вытягивает грузы.Когда грузы расходятся, они заставляют верхнюю часть вала перемещаться в направлении движения вперед по отношению к нижней части вала. Если верхняя часть вала выдвинута вперед, пусковое устройство запускает катушку раньше, в результате чего свечи зажигаются на большее количество градусов до ВМТ. Чем быстрее вращается двигатель, тем дальше друг от друга перемещаются грузы, пока, наконец, не достигнут предел своего хода.
Когда частота вращения двигателя уменьшается, центробежная сила груза уменьшается, и пружины стягивают грузы вместе, замедляя синхронизацию.Рассчитав усилие пружин и размер грузов, можно правильно изменить синхронизацию в большом диапазоне оборотов. На следующем рисунке показано, как управление весами продвигается, изменяя веса и пружины. Делать это нужно очень осторожно, чтобы снизить вероятность поломки двигателя.
Распределитель центробежного продвижения до начала работы. A — Двигатель работает на холостом ходу
и пружины не выдерживают нагрузки, не имеет опережения
. B — Двигатель работает на высоких оборотах.Центробежный
оттянул грузы наружу. Когда они поворачиваются, концы пальцев
груза заставляют кулачок поворачиваться, опережая синхронизацию.
Вакуумное продвижение.
Было обнаружено, что в частично открытом положении дроссельной заслонки желательно дополнительное продвижение сверх того, которое обеспечивается центробежным механизмом. Это связано с тем, что во впускном коллекторе возникает высокий вакуум, когда дроссельная заслонка частично открыта. Этот высокий вакуум потребляет меньше воздуха и топлива.Более мелкая воздушно-топливная смесь будет меньше сжиматься и будет гореть медленнее.
Чтобы максимизировать экономию от этой части заправки топлива, необходимо опередить время, превышающее то, что обеспечивается центробежными грузами. Это обеспечивается механизмом опережения вакуума, опережение вакуума используется для опережения синхронизации в зависимости от нагрузки двигателя. Любая выгода от дополнительного продвижения относится только к частично открытому положению дроссельной заслонки. Во время резкого ускорения или работы с полностью открытой дроссельной заслонкой в коллекторе отсутствует разрежение для работы механизма опережения вакуума.
График подачи вакуума. Обратите внимание на частичное опережение вакуума дроссельной заслонки
в дополнение к обычному опережающему центробежному движению.
Работа в вакууме.
Электронный датчик или контактные точки установлены на подвижной пластине. Эту пластину можно снимать как на центральной втулке, так и на шарикоподшипнике на ее внешнем крае. Для любого типа пластины опережение по времени может быть достигнуто путем поворота пластины против вращения вала распределителя. Пластина вращается с помощью диафрагмы опережения вакуума.Это штампованный стальной контейнер с тканевой диафрагмой, покрытой неопраном, протянутой по центру. Один конец герметичен и соединен с карбюратором ниже или немного выше закрытого положения дроссельной заслонки. Другой конец открыт к его центру. Шток рычага соединен с подвижной пластиной.
Работа механизма подачи вакуума, A — Дроссельная заслонка карбюратора
находится в положении частичной дроссельной заслонки, создавая сильный вакуум. При
разрежение слева, атмосферное давление перемещает диафрагму
влево.Звено диафрагмы потянет контактную пластину кулачка около
и опередит синхронизацию. B — Когда дроссельная заслонка открывается и разрежение
понижается, первичная пружина контактной пластины оттягивает контактную пластину
назад и замедляет синхронизацию. Вакуумная пружина также контролирует пределы
продвижения.
Когда дроссельная заслонка частично открыта, как показано на рисунке A, во впускном коллекторе имеется высокий вакуум. Вакуум толкает диафрагму обратно в сторону вакуума.Это, в свою очередь, поворачивает пластину и увеличивает время. Когда дроссельная заслонка открывается, разрежение падает, и пружина тянет диафрагму обратно к распределителю. Это поворачивает подвижную пластину в направлении замедления, рис. B. Когда двигатель работает на холостом ходу, дроссельная заслонка закрывается ниже отверстия опережения вакуума. Это устраняет вакуумную тягу, и искра будет задерживаться на холостом ходу. Механизм опережения вакуума постоянно перемещается, поскольку вакуум изменяется с перемещением дроссельной заслонки.
На некоторых автомобилях вакуум регулируется.Если подача вакуума не работает, это может повлиять на работу двигателя и расход топлива. На некоторых старых автомобилях вакуум может быть перенесен или не активирован, пока дроссельная заслонка не будет частично открыта.
Этот вакуум распределителя продвигается, пока не использует вакуум двигателя
для перемещения контактной пластины распределителя.
Зажигание с компьютерным управлением
Пусковое устройство электронного зажигания может находиться внутри распределителя или это может быть датчик положения распредвала или коленчатого вала.Поскольку весь процесс производства свечей зажигания выполняется электронным способом, отсюда следует, что синхронизация зажигания также может быть изменена электронным способом. В то время как многие старые электронные системы зажигания используют центробежное и вакуумное опережение, в большинстве современных систем используется бортовой компьютер управления двигателем для создания электронного опережения.
Новейшие бортовые компьютеры контролируют все параметры двигателя и внешние переменные, такие как частота вращения и температура двигателя, давление, скорость воздушного потока, температура воздуха, открытие дроссельной заслонки, кислород в выхлопных газах, трансмиссионная передача, скорость автомобиля, напряжение системы и состояние двигателя. стучится.Компьютер ускоряет или замедляет синхронизацию, чтобы точно соответствовать потребностям двигателя и автомобиля. В компьютеризированных системах зажигания нет вакуумных или центробежных механизмов продвижения. В некоторых системах компьютер содержит модуль зажигания и напрямую управляет катушкой. В других системах модуль управления зажиганием отделен и взаимодействует с компьютером управления двигателем. В любом случае размер аванса устанавливается компьютером и не может быть изменен.
.