Компрессор и турбина вместе: Пять самых крутых машин с турбиной и компрессором – Обзор – Autoutro.ru

Содержание

Пять самых крутых машин с турбиной и компрессором – Обзор – Autoutro.ru

«Твинчарджинг» — это технология, которая не слишком часто попадает в центр внимания. Но недавно она вырвалась из пыльных архивов и снова вернулась в производство.

Для тех из вас, кто не знаком с этим термином, мы постараемся объяснить, что это такое, откуда взялось и почему имело такое важное значение.

В давние времена большинство автомобилей имели атмосферные моторы. Компрессоры были редким явлением, в то время как турбины были чуть более распространены.

В конечном итоге повышающиеся требования к перфомансу в Чемпионате мира по классическому ралли привели к внедрению компрессоров и турбин на серийные автомобили.

Каждая система имела свои плюсы и минусы. Турбины главным образом критиковались за турболаг – феномен, который все еще проявляется даже на современных автомобилях. Компрессоры не имели таких запаздываний, но обеспечивали меньше буста и лишний раз обременяли двигатель, поскольку были связаны ремнем со шкивом коленвала.

В конце концов, автопроизводители разработали автомобиль, который имел и компрессор, и турбину. Идея заключалась в том, что обе системы сбалансировали бы друг друга и обеспечили бы всестороннюю выгоду – больше прироста мощности без единой задержки и при любых оборотах. Так и родилась первая машина с двойным наддувом. На дворе стоял 1985 год… Итак, переходим к нашему списку.

Lancia Delta S4 и S4 Stradale. Lancia была первым брендом, предложившим твинчарджинг на автомобиле. Сначала технология была принята в гонках – в рамках болида WRC, заменившего Lancia 037.       

Двигатель был также разработан на основе двигателя от 037, но знайте, что эта Delta не имела ничего общего с «Дельтами», которые продавались простым смертным. Peugeot – соперник Lancia в WRC – применили похожую стратегию на 205 T16.

Короче говоря, ради омологации «Лянче» пришлось продавать публике Delta S4 в форме, близкой к гоночным машинам из WRC. Всего было изготовлено и продано 200 единиц под именем Lancia Delta S4.

У этих машин было всего 250 л. с., но при этом они имели пространственную раму на стальных трубках, кузовные панели из стекловолокна и полноприводную систему с тремя дифференциалами.

Небольшие объемы производства моментально сделали Delta S4 объектом коллекционирования. Эта модель имела веские основания стать коллекционной, так как стоила в пять раз дороже Delta HF Turbo – топовой модификации в линейке на тот момент.   

А тем временем мощность гоночной версии оценивалась в 480 л. с., однако некоторые утверждали, что мотор выдавал более 500 л. с. В том же году, когда итальянцы запустили Delta S4 в WRC, они протестировали версию с максимальным давлением наддува 5 бар. Экспертам удалось выжать около 1000 л. с. с тех же 1,8 литров, но лишь в демонстрационных целях.

1000-сильный двигатель никогда не гонялся, а вот 480-сильные машины выиграли 5 гонок из 12 и заработали 15 подиумов. Их участие в WRC закончилось после трагической аварии на ралли Корсики 1986 года, унесшей жизни пилота Хенри Тойвонена и его штурмана Серджио Кресто.  

Nissan March Super Turbo (подогретая Micra). У Nissan были свои безумные моменты в прошлом, и компания все еще удивляет всех раз в несколько лет такими автомобилями, как Juke. В конце 80-х Nissan разработал модель с двойным наддувом, которая была основана на крошечной Micra (также известна под именем March).

Автомобиль обладал 930-кубовым мотором мощностью 110 л. с. Уровень примерно схож с современной Micra, однако по меркам 80-х годов и для такой маленькой машины это было невероятно.

Nissan позаботился о том, чтобы компрессор и турбина не работали сообща долгое время. Первый приводился в действие электромагнитной муфтой, которая активировалась в зависимости от положения дроссельной заслонки.

По сравнению с Delta S4 “Stradale”, Nissan March Super Turbo был достаточно дешевым. К сожалению, японский автопроизводитель продал всего 10 000 дорожных машин в этой спецификации и отказался от наследника.

1,4-литровый TSI Twincharger от Volkswagen Group. После «ниссановских» экспериментов данная конфигурация двигателя долгое время была мертва. Volkswagen воскресил ее на своем 1,4-литровом моторе, который предлагался на многих автомобилях линейки бренда.

Блок назывался 1.4 TSI, однако лишь определенные его версии обладали технологией двойного наддува. У остальных же была единственная турбина, доводившая мощность до 120 л. с.

Как и Nissan, Volkswagen использовал электромагнитную муфту для компрессора Roots. В отличие от Nissan и Lancia, VW Group разработали контрольный клапан, который блокировал нагнетатель в некоторых ситуациях (например, при высоких оборотах), чтобы максимизировать эффективность двигателя.

С этим мотором Volkswagen завоевал несколько наград «Двигатель года». Он устанавливался на Polo, Audi A1, Ibiza, Golf, Jetta, Passat, Sharan, Tiguan, Eos и Touran. C этой точки зрения VW может гордиться тем, что внедрил свою систему двойного наддува на такой широкий спектр машин.

Мотор был снят с производства в 2011 году из-за его сложности и стоимости. А тем временем «турбинные» TSI и TFSI становились все лучше, постепенно устраняя турболаг.   

Двигатели T6 и T8 от Volvo. В рамках повсеместного даунсайзинга Volvo перешел с 5- и 6-цилиндровых моторов на турбированные 4-цилиндровики. Индекс T6, который раньше подразумевал 6-цилиндровый силовой агрегат, теперь обозначает 4-цилиндровый мотор, но с большим бонусом – компрессором и турбиной (а вот его младший брат T5 имеет в своем арсенале лишь турбину).

С мотора объемом 2 литра выдавлены 320 л. с. и 400 Нм. Клиенты могут заказать T6 на втором поколении XC90, S90 и V90. Двигатель сопряжен с 8-ступенчатым автоматом Geartronic от японской компании Aisin. Как бы то ни было Volvo пошел еще дальше и соединил T6 с электромотором, создав в конечном итоге T8 Twin Engine.  

Audi SQ7 V8 TDI. Эта модель интересна тем, что данная технология применена к дизельному двигателю. Audi создал самый мощный в мире дизельный кроссовер с помощью двух турбин и электрического нагнетателя. Для питания последнего пришлось задействовать отдельную 48-вольтовую электрическую систему.

Да, мы признаем, что электрический нагнетатель – это совсем не то же, что механический, однако не упомянуть этот мотор было бы кощунством. Мы имеем дело с 4-литровым V8 мощностью 435 л. с. и моментом 900 Нм. Даже самый ярый ненавистник дизелей будет впечатлен, поскольку максимальная мощность доступна в диапазоне от 3 750 до 5 000 об/мин, а максимальный крутящий момент – и вовсе между 1 000 и 3 250 об/мин.

Хотя материал рассчитан на 5 серийных автомобилей, есть еще одна модель, которая обязана быть в нашем списке. Это датский суперкар Zenvo ST1. К сожалению для Zenvo, производственные цифры крайне низки. За все время было продано менее 20 машин. И тем не менее с завода они шли с турбиной и компрессором.   

Турбины компрессоры и все о них. — Тюнинг и самострой

Для общего развития:

Конструктивно различают три вида турбокомпрессоров:

• нагнетатель с перепуском отработавших газов;

• нагнетатель с изменяемой геометрией турбины;

• нагнетатель с дросселированием турбины.

Нагнетатель с перепуском отработавших газов.

При высоких нагрузках на двигатель часть потока отработавших газов через перепускной клапан направляется мимо
турбины в систему выпуска отработавших газов. Вследствие этого поток газов через турбину уменьшается,
что снижает как степень сжатия воздуха компрессором, так и излишне высокую частоту вращения вала
турбонагнетателя. При низких нагрузках на двигатель клапан закрывается, и весь поток отработавших
газов направляется в турбину.

Нагнетатель с изменяемой геометрией турбины.

Нагнетатель с изменяемой геометрией турбины (система VNT) дает возможность ограничить поток отработавших

газов через турбину при высокой частоте вращения коленчатого вала двигателя. Подвижные направляющие лопатки
соплового аппарата изменяют поперечное сечение каналов, через которые отработавшие газы устремляются на
крыльчатку турбины. Этим они согласовывают возникающее в турбине давление газа с требуемым давлением наддува.
При низкой нагрузке на двигатель подвижные лопатки открывают небольшое поперечное сечение каналов так,
что увеличивается противодавление отработавших газов. Поток газов развивает в турбине высокую скорость,
обеспечивая высокую частоту вращения вала нагнетателя. При этом поток отработавших газов действует на более
удаленную от оси вала область лопаток крыльчатки турбины. Таким образом, возникает большее плечо силы,
которое дополнительно увеличивает крутящий момент. При высокой нагрузке направляющие лопатки открывают
большее поперечное сечение каналов, что уменьшает скорость течения потока отработавших газов. Вследствие
этого турбонагнетатель при равном количестве отработавших газов меньше ускоряется и работает с меньшей
частотой при большем количестве газов. Этим способом ограничивается давление наддува.

Нагнетатель с дросселированием турбины.

Нагнетатель с дросселированием турбины (система VST) устанавливают на небольших двигателях легковых
автомобилей. Регулировочная заслонка постепенным открытием подводящих каналов изменяет в этой конструкции
проходное сечение для потока отработавших газов к турбине.

При небольших частотах вращения коленчатого вала или малых нагрузках на двигатель открыт только один канал.
Меньшее поперечное сечение приводит к высокому противодавлению отработавших газов, высокой скорости течения
газов и тем самым к высокой частоте вращения вала газовой турбины.

При достижении желаемого давления наддува регулирующая задвижка плавно открывает второй канал.
Скорость течения отработавших газов, а вместе с тем частота вращения вала турбины и давление наддува

уменьшаются. Регулятор двигателя задает положение указанной задвижки с помощью пневматического цилиндра.

Через встроенный в корпус турбины перепускной канал можно также отвести почти весь поток газов от турбины
и таким образом получить очень небольшое давление наддува.

© стырено 🙂

Компрессор и турбина вместе — Автомобильный портал AutoMotoGid

В наше время очень актуально увеличивать скоростные показатели своего автомобиля. Наиболее распространённые варианты это установка компрессора или турбины: что лучше пробуем разобраться в этой статье.

Но для начала разберёмся с принципами работы, плюсами и минусами данных улучшений для двигателя.

Принцип работы компрессора

Существуют объёмные нагнетатели, они подают воздух в двигатель равными порциями независимо от скорости, что даёт преимущества на низких оборотах.

Компрессоры внешнего сжатия, очень хорошо подходят там, где требуется много воздуха на низких оборотах. Минус, это то, что давления он сам не создаёт и может создать обратный поток. Его сжатие имеет довольно низкий КПД.

Компрессоры внутреннего сжатия довольно хороши на высоких оборотах и имеет намного меньший эффект обратного потока. Из-за высоких требований к изготовлению имеют высокую цену, а при перегреве имеют шанс заклинивания.

Динамические нагнетатели работают при достижении, определённых оборотов, но зато с большой эффективностью.

Компрессоры работают от коленчатого вала двигателя с помощью дополнительного привода. И поэтому обороты компрессора зависят от оборотов двигателя.

Видео: устройство и принцип работы винтового компрессора.

Так, переходим к турбо-наддуву, чтобы определиться, что лучше компрессор или турбина.

Принцип работы турбины

Турбина работает за счёт энергии отработавших газов. Турбокомпрессор — это комбинирование турбины и центробежного компрессора.

Выхлопные газы с большей скоростью вращают колесо турбины на валу, а в другом конце вала находится центробежный насос, который нагнетает больше воздуха в цилиндры.

Чтобы охладить сжатый турбиной воздух, используют дополнительный радиатор — интеркулер.

Недостатки компрессора и турбины

Турбина хорошо подходит для обогащения кислородом топливной смеси. Но всё же имеет свои минусы:

  • турбина — это стационарное устройство и требует полную привязку к двигателю;
  • на малых оборотах она не даёт большой мощности, а только на больших способна показать всю свою мощь;
  • переход с малых оборотов до высоких называется турбо — ямой, чем большую мощность имеет турбина, тем больше будет эффект турбо — ямы.

В наше время уже имеются турбины, отлично работающие на высоких и на низких оборотах двигателя, но и цена у них соответственно приличная. При выборе компрессора или турбины, многие отдают предпочтение турбо-наддуву, независимо от цены.

Что же лучше — компрессор или турбина

С компрессором намного проще при установке и эксплуатации. Работает он на низких и на высоких оборотах. Также он не требует больших усилий или затрат при ремонте, так как в отличие от турбины, компрессор независимый агрегат.

Чтобы настроить турбину, понадобится хороший специалист для настройки под топливную смесь. А что бы настроить компрессор не нужно больших усилий, или каких либо профессиональных знаний, всё настраивается топливными жиклёрами.

Помимо всего, турбо-наддув довольно сильно нагревается, из-за своей особенности, развивать очень высокие обороты.

У приводных нагнетателей (компрессор), давление не зависит от оборотов и поэтому автомобиль очень чётко реагирует на нажатие педали газа, а это довольно ценное качество, когда машина разгоняется. Ещё они очень просты в своей конструкции.

Но есть недостатки и у компрессоров, моторы оборудованные нагнетателями с механическим приводом имеют большой расход топлива и меньший КПД, в сравнении с турбиной.

Также имеются большие различия в цене. Любая мощная турбина популярного производителя будет иметь большую стоимость и будет дорога в обслуживании. И к тому же требуется для её установки, немало дополнительного оборудования. Компрессору же, нужен только дополнительный привод.

Видео: как работает турбина и компрессор.

В любом случае решать вам, что лучше компрессор или турбина, взвесьте все положительные и отрицательные качества, и сделайте правильное решение!

Давайте вместе разберемся, что лучше турбина или компрессор? Еще со школы нам знакомо, что чем меньше агрегат, тем меньшую мощность он способен выдать (в силу своих характеристик). Но как сделать обратное? Вот эта вот проблема длительное время изнуряла инженеров.

Выход нашелся спустя многие годы в виде установки дополнительного «гаджета» в мотор, который назывался компрессор. Теперь можно было «заливать» в камеру сгорания большее кислорода и тем самым повышая давление в поршне, что ведет к увеличению мощности.

Наряду с компрессором, начали активно использовать и турбину, назначение которой сводилось к обогащению топлива. Получается и то и другое имеют одну и ту же цель?! Да, но есть небольшая разница, о которой немного позже.

Сфера применения и особенности эксплуатации

Что лучше турбина или компрессор? Для полноценного ответа давайте разберем оба устройства по частям.

Конструктивно турбина – это двигатель, который находится постоянно в движении за счет преобразования энергии жидкости или пара в механическую. Сразу необходимо сказать, что механизмы привода у обоих совсем разные.

Компрессор питается от коленвала движка и имеет автономную единицу, а турбина газами от выхлопного коллектора и не имеет автономности.

Турбину может настроить только специально обученный высококвалифицированный специалист, а для компрессора достаточно человека разбирающегося в инжекторах и карбюраторах. Так как весь процесс настройки связан с жиклерами.

Разница в цене ощутима: за турбину хорошего качества выложите около 550 баксов, а компрессор всего лишь 200, а мощность в процентном соотношении одинаковая, от 15 до 25% максимально. Дополнительно необходимы будут затраты на установку и налаживание агрегата в автосервисе.

Разница оборотов

Одно важное отличие от остальных это, то что компрессор может работать на низких и минимальных оборотах, а турбина вовсе нет. Как правило, для нее необходимы обороты от 3500 об/мин. для создания давления. Но компрессор не способен экономно расходовать топливо. При разгоне эффективность компрессора будет видна не так долго как хотелось бы. Турбина начинает работать немного позже, так как замечается «яма» при старте, но после небольшого разгона все исчезает.

Компрессор призван постоянно подавать смесь для воспламенения, но влияет на потерю мощности, чего не скажешь о «сестре». Для поддержания работоспособности турбины, необходимо раз или два появляться в автосервисе для диагностики, в противном случае получите неработающую систему.

Для турбины необходима установка дополнительного охладителя – интеркулера (см. статью – «Что такое интеркулер»), так как поток воздуха имеет высокую температуру.

Установка дополнительного радиатора также приносит сложности в плане поиска места для монтажа. КПД компрессора несколько меньше, чем у турбины.

Сейчас преимущественное большинство владельцев переходят от прожорливых и громоздких авто к миниатюрным и экономичным (см. Список экономичных малолитражек). В виду того, что стоимость топлива только растет с геометрической прогрессией, популярными среди большинства населения будут силовые агрегаты с турбинной установкой.

Таким путем многие будут стремиться экономить на содержании машины. Вопрос на тему, что лучше турбина или компрессор, раскрыт и не требует дальнейшего обсуждения. Каждый для себя должен сделать выводы по поводу типа установки в соответствии со своими финансовыми возможностями.

You are using an outdated browser. Please upgrade your browser or activate Google Chrome Frame to improve your experience.

Пять самых крутых машин с турбиной и компрессором

«Твинчарджинг» – это технология, которая не слишком часто попадает в центр внимания

«Твинчарджинг» – это технология, которая не слишком часто попадает в центр внимания. Но недавно она вырвалась из пыльных архивов и снова вернулась в производство.

Для тех из вас, кто не знаком с этим термином, мы постараемся объяснить, что это такое, откуда взялось и почему имело такое важное значение.

В давние времена большинство автомобилей имели атмосферные моторы. Компрессоры были редким явлением, в то время как турбины были чуть более распространены.

В конечном итоге повышающиеся требования к перфомансу в Чемпионате мира по классическому ралли привели к внедрению компрессоров и турбин на серийные автомобили.

Каждая система имела свои плюсы и минусы. Турбины главным образом критиковались за турболаг – феномен, который все еще проявляется даже на современных автомобилях. Компрессоры не имели таких запаздываний, но обеспечивали меньше буста и лишний раз обременяли двигатель, поскольку были связаны ремнем со шкивом коленвала.

В конце концов, автопроизводители разработали автомобиль, который имел и компрессор, и турбину. Идея заключалась в том, что обе системы сбалансировали бы друг друга и обеспечили бы всестороннюю выгоду – больше прироста мощности без единой задержки и при любых оборотах. Так и родилась первая машина с двойным наддувом. На дворе стоял 1985 год. Итак, переходим к нашему списку.

Lancia Delta S4 и S4 Stradale. Lancia была первым брендом, предложившим твинчарджинг на автомобиле. Сначала технология была принята в гонках – в рамках болида WRC, заменившего Lancia 037.

Двигатель был также разработан на основе двигателя от 037, но знайте, что эта Delta не имела ничего общего с «Дельтами», которые продавались простым смертным. Peugeot – соперник Lancia в WRC – применили похожую стратегию на 205 T16.

Короче говоря, ради омологации «Лянче» пришлось продавать публике Delta S4 в форме, близкой к гоночным машинам из WRC. Всего было изготовлено и продано 200 единиц под именем Lancia Delta S4.

У этих машин было всего 250 л. с., но при этом они имели пространственную раму на стальных трубках, кузовные панели из стекловолокна и полноприводную систему с тремя дифференциалами.

Небольшие объемы производства моментально сделали Delta S4 объектом коллекционирования. Эта модель имела веские основания стать коллекционной, так как стоила в пять раз дороже Delta HF Turbo – топовой модификации в линейке на тот момент.

А тем временем мощность гоночной версии оценивалась в 480 л. с., однако некоторые утверждали, что мотор выдавал более 500 л. с. В том же году, когда итальянцы запустили Delta S4 в WRC, они протестировали версию с максимальным давлением наддува 5 бар. Экспертам удалось выжать около 1000 л. с. с тех же 1,8 литров, но лишь в демонстрационных целях.

1000-сильный двигатель никогда не гонялся, а вот 480-сильные машины выиграли 5 гонок из 12 и заработали 15 подиумов. Их участие в WRC закончилось после трагической аварии на ралли Корсики 1986 года, унесшей жизни пилота Хенри Тойвонена и его штурмана Серджио Кресто.

Nissan March Super Turbo (подогретая Micra). У Nissan были свои безумные моменты в прошлом, и компания все еще удивляет всех раз в несколько лет такими автомобилями, как Juke. В конце 80-х Nissan разработал модель с двойным наддувом, которая была основана на крошечной Micra (также известна под именем March).

Автомобиль обладал 930-кубовым мотором мощностью 110 л. с. Уровень примерно схож с современной Micra, однако по меркам 80-х годов и для такой маленькой машины это было невероятно.

Nissan позаботился о том, чтобы компрессор и турбина не работали сообща долгое время. Первый приводился в действие электромагнитной муфтой, которая активировалась в зависимости от положения дроссельной заслонки.

По сравнению с Delta S4 “Stradale”, Nissan March Super Turbo был достаточно дешевым. К сожалению, японский автопроизводитель продал всего 10 000 дорожных машин в этой спецификации и отказался от наследника.

1,4-литровый TSI Twincharger от Volkswagen Group. После «ниссановских» экспериментов данная конфигурация двигателя долгое время была мертва. Volkswagen воскресил ее на своем 1,4-литровом моторе, который предлагался на многих автомобилях линейки бренда.

Блок назывался 1.4 TSI, однако лишь определенные его версии обладали технологией двойного наддува. У остальных же была единственная турбина, доводившая мощность до 120 л. с.

Как и Nissan, Volkswagen использовал электромагнитную муфту для компрессора Roots. В отличие от Nissan и Lancia, VW Group разработали контрольный клапан, который блокировал нагнетатель в некоторых ситуациях (например, при высоких оборотах), чтобы максимизировать эффективность двигателя.

С этим мотором Volkswagen завоевал несколько наград «Двигатель года». Он устанавливался на Polo, Audi A1, Ibiza, Golf, Jetta, Passat, Sharan, Tiguan, Eos и Touran. C этой точки зрения VW может гордиться тем, что внедрил свою систему двойного наддува на такой широкий спектр машин.

Мотор был снят с производства в 2011 году из-за его сложности и стоимости. А тем временем «турбинные» TSI и TFSI становились все лучше, постепенно устраняя турболаг.

Двигатели T6 и T8 от Volvo. В рамках повсеместного даунсайзинга Volvo перешел с 5- и 6-цилиндровых моторов на турбированные 4-цилиндровики. Индекс T6, который раньше подразумевал 6-цилиндровый силовой агрегат, теперь обозначает 4-цилиндровый мотор, но с большим бонусом – компрессором и турбиной (а вот его младший брат T5 имеет в своем арсенале лишь турбину).

С мотора объемом 2 литра выдавлены 320 л. с. и 400 Нм. Клиенты могут заказать T6 на втором поколении XC90, S90 и V90. Двигатель сопряжен с 8-ступенчатым автоматом Geartronic от японской компании Aisin. Как бы то ни было Volvo пошел еще дальше и соединил T6 с электромотором, создав в конечном итоге T8 Twin Engine.

Audi SQ7 V8 TDI. Эта модель интересна тем, что данная технология применена к дизельному двигателю. Audi создал самый мощный в мире дизельный кроссовер с помощью двух турбин и электрического нагнетателя. Для питания последнего пришлось задействовать отдельную 48-вольтовую электрическую систему.

Да, мы признаем, что электрический нагнетатель – это совсем не то же, что механический, однако не упомянуть этот мотор было бы кощунством. Мы имеем дело с 4-литровым V8 мощностью 435 л. с. и моментом 900 Нм. Даже самый ярый ненавистник дизелей будет впечатлен, поскольку максимальная мощность доступна в диапазоне от 3 750 до 5 000 об/мин, а максимальный крутящий момент – и вовсе между 1 000 и 3 250 об/мин.

Хотя материал рассчитан на 5 серийных автомобилей, есть еще одна модель, которая обязана быть в нашем списке. Это датский суперкар Zenvo ST1. К сожалению для Zenvo, производственные цифры крайне низки. За все время было продано менее 20 машин. И тем не менее с завода они шли с турбиной и компрессором.

Чем отличается турбина от компрессора

Зачастую перед автомобилистом возникает вопрос: что лучше выбрать – турбину или компрессор? Оба устройства имеют как определенные достоинства, так и недостатки, напрямую влияющие на выбор. Например, их отличия можно заметить не только во внешнем виде, но и в принципах работы, что, собственно, и является главным критерием при выборе устройства.

Определение

Турбина – ротационный двигатель, особенность которого заключается в беспрерывной работе. Ротор преобразует кинетическую энергию пара, газа или воды в механическую. Сегодня турбины активно применяются в качестве основного элемента привода самых различных транспортов (наземных, морских и воздушных). Как бы это не казалось невероятным, но попытка создать механизм, похожий на современную турбину, была предпринята еще до нашей эры. И лишь в конце 19 века с развитием термодинамики и машиностроения стали появляться паровые турбины, отличающиеся в первую очередь высокой функциональностью.

Турбина

Компрессор может быть разным и применяться в самых различных областях промышленности. Он необходим для сжатия и подачи газов (в том числе воздуха) под давлением. Это устройство были придуманы для того, чтобы заметно повысить максимальную мощность двигателя, ведь в камеру сгорания нагнетается больше воздуха. В результате в цилиндр попадает больше топлива, что в свою очередь означает то, что конечная цель достигнута.

Компрессор

Для наглядности можно привести некоторые цифры: в среднем компрессор позволяет добавить мощности примерно на 46 процентов (плюс 31 процент крутящего момента). Сейчас эти устройства активно применяются для увеличения мощности двигателя как легковых, так и грузовых автомобилей. На сегодняшний день компрессоры являются наиболее оптимальным и экономичным вариантом для тех, кто хочет увеличить мощность двигателя, прибавить ему определенное количество лошадиных сил.

к содержанию ↑

Сравнение

Когда речь заходит о выборе компрессора или турбины, человек в первую очередь смотрит на основные признаки отличия, которые имеются у данных устройств:

  • Одним из главных преимуществ компрессора является обеспечение бесперебойного сгорания примеси. Это напрямую влияет на правильную работу двигателя в целом, помогает избежать различных неприятностей, связанных с поломкой.
  • В свою очередь определенные преимущества имеет и турбина: она не влияет на потерю лошадиных сил, в то время как компрессор этим похвастать не может. Правда, стоит заметить, что речь идет общей выходной мощности двигателя (потеря при компрессии составляет до 20 процентов).
  • Установка и настройка турбины – довольно сложный процесс, требующий значительных временных и денежных затрат. Кроме того, необходимо несколько видоизменить силовой агрегат. Для сравнения, чтобы использовать компрессор, необходимо фактически только одно – правильный подбор примеси. Установка осуществляется очень легко.
  • Если говорить о турбине в автомобиле, то без помощи специалиста установить ее не получится. Для компрессора не нужно специальное оборудование и знания. Это значительно упрощает процесс.
  • Турбина в автомобиле имеет существенный недостаток — она требует частый подвод масла под давлением, что увеличивает расходы на содержание транспорта. Если не проводить данную манипуляцию с определенной регулярностью, то автомобиль быстро ломается, создавая дополнительные проблемы. Компрессор в этом не нуждается.
  • Турбина требует особого ухода. Чтобы она работала надлежащим образом, автовладельцу придется раз в месяц посещать мастерскую, если он не имеет необходимого опыта.
  • Турбине необходима полноценная привязка к двигателю автомобиля. Если транспорт выдает небольшое количество оборотов, то от турбины практически нет толка. Лишь выжимая максимальные обороты, можно добиться хорошей мощи. Безусловно, автовладелец сейчас может купить устройство, которое работает вне зависимости от скорости автомобиля, но такая турбина стоит приличную сумму.
  • Работа компрессора не зависит от оборотов машины, он выдает фиксированную мощь при любой скорости.
  • Компрессор является независимым устройством в автомобиле, за счет чего упрощается процесс обслуживания и ремонта. Даже не имея большого опыта, практически каждый автовладелец может самостоятельно почить агрегат.
  • Турбина может набирать более высокие обороты, чем компрессор. Но и нагревается она на существенно быстрее, что ставит под удар двигатель. От такой работы он быстро изнашивается.
  • Компрессор приводится в действие сразу же после запуска двигателя. Это безусловное преимущество над турбиной, которая без движения транспорта работать не будет. Но вместе с этим, компрессор приводит в действие и весь двигатель. Турбина, напротив, освобождает «сердце» автомобиля от дополнительной нагрузки.
  • Компрессоры расходуют больше топлива, чем турбина. И КПД у них намного меньше. То есть турбина в автомобиле работает на полную мощь, не растрачивая бензин.
  • Компрессор приводится в действие ремнем, так как он является механическим нагнетателем. Турбина раскручивается выхлопными газами автомобиля, которые крутят две крыльчатки, соединенные между собой валом.
  • Если решитесь на покупку компрессора для автомобиля, то знайте, что на рынке его огромный выбор. Турбина же не имеет такого достоинства.
  • Наконец, турбина стоит на значительно дороже компрессора. Этот фактор и обуславливает высокую популярность устройства на российском рынке.
к содержанию ↑

Выводы TheDifference.ru

  1. Компрессор обеспечивает правильную работу двигателя (бесперебойное сгорание примеси).
  2. Турбина не влияет на потерю лошадиных сил (общая выходная мощность силового агрегата).
  3. В степени сложности установки и настройки устройства. В этом плане преимущество у компрессора.
  4. Турбина требует подвод масла, что влияет на всю работу автомобиля.
  5. За турбиной придется постоянно ухаживать и проводить диагностику.
  6. Турбина устанавливается напрямую в двигатель, а компрессор является самостоятельным устройством.
  7. Компрессор имеет фиксированную мощность, а работа турбины зависит от оборотов автомобиля.
  8. Турбина способна разогнать автомобиль на большую скорость, чем компрессор.
  9. Компрессор расходует больше топлива с меньшим КПД, чем у турбины.
  10. Компрессор можно подобрать под любую модель автомобиля, а у турбины небольшой выбор.
  11. Стоимость самой турбины и ее установки выше цены компрессора.

Разница между компрессором и турбиной

В жизни каждого автовладельца наступает момент, когда ему не хватает мощности своего автомобиля. Классический и менее трудоемкий способ решения этой проблемы — установка нагнетателя воздуха. Но, если Вы решили увеличить мощность, перед Вами встанет выбор, а что же установить, турбину (турбокомпрессор) или компрессор? Это значит, что Вам необходимо разобраться, в чем разница между компрессором и турбиной?

В чем разница между компрессором и турбиной

И турбины и компрессоры называются системами с принудительной индукцией. Это связано с тем, что обе они предназначены для повышения производительности двигателя за счет принудительного заполнения камеры сгорания воздухом. Обе системы нагнетают воздух поступающий в двигатель обогащая топливовоздушную смесь в камере сгорания. Это в результате приводит к увеличению мощности. 

Несмотря на то, что они имеют одинаковое назначение — повышение мощности, компрессор и турбонагнетатель отличаются по конструкции и принципу работы. Так или иначе, общее правило такое:

«Турбокомпрессор начинает работать на высоких оборотах, компрессор выдает мощность сразу.»

Компрессор представляет собой механическое устройство. Оно приводится в движение самим двигателем посредством ременной передачи прикрепленный к коленчатому валу. Компрессоры, используемые для увеличения мощности двигателя бывают трех основных типов:

  • — центробежный
    — ротационный
    — винтовой

К преимуществам компрессора относят эффективный впрыск воздуха, который увеличивает мощность от 10 до 30%; очень надежную и прочную конструкцию; является полностью автономным устройством; во время его работы рабочая температура не увеличивается. Такие системы требует минимального обслуживания и могут быть установлены без привлечения специалистов.

Самым важным моментом является исключение эффекта «турбоямы». Компрессор моментально повышает мощность автомобиля, при работе ДВС на низких оборотах.

Что такое турбина машины

Работа турбокомпрессора (также «улитка» или турбонагнетатель) выполняет аналогичную функцию. Однако, разница между компрессором и турбиной в том, что она представляет собой более сложное устройство состоящее из самой турбины и компрессора. Другое существенное различие между двумя системами принудительной индукции состоит в том, что турбокомпрессор получает энергию не от ременной передачи, а от выхлопных газов мотора.
Принцип работы турбины относительно прост: при работающем двигателе он выделяет отработавшие газы которые вместо того, чтобы выходить прямо в атмосферу (через выхлопную трубу) проходят через специальный канал приводя турбину (вращающуюся крыльчатку) в движение. Она, свою очередь, нагнетает воздух и подавая его в камеру сгорания двигателя для обогащения топливно-воздушной смеси.

Из-за высоких рабочих температур она имеет короткий срок службы (в идеале при хорошем обслуживании пройдет до 200 000 км.). Поскольку турбина использует моторное масло для снижения рабочей температуры его необходимо менять на 30-40% раньше, чем в двигателе оснащенным компрессором, при чем использовать специально предназначенное для таких систем масло. Установка довольно сложна и почти невозможна без квалифицированной помощи. Итог — дорогое обслуживание.

Что такое турбояма

Помимо выше перечисленного, у турбокомпрессора есть существенный недостаток — он работает только на высоких оборотах, т.к. чтобы «раскрутить» крыльчатку на нее необходимо подать мощный поток выхлопных газов. Этот эффект носит название «турбо-яма» — задержка между нажатием на педаль газа и раскруткой турбины.

«В попытке устранить такой эффект, современные автопроизводители часто устанавливают обе системы: компрессор дает моментальную прибавку мощности на старте, благодаря чему мотор раскручивает турбину. Затем в работу вступает турбина. Вместе компрессор и турбокомпрессор дают существенную прибавку к мощности мотора.»

Что лучше компрессор или турбина на автомобиле. Что лучше турбина или компрессор

С установленными турбонаддувом или турбокомпрессором называют в просторечье «турбодвигателями «, «турбированными моторами » и подобными названиями, где, главным образом, фигурирует часть «турбо». Турбрированный двигатель производит гораздо больше мощности в общем зачёте при том же режиме работы, чем аналогичный двигатель без турбонаддува или компрессора.

Типичный дополнительный (к стандартному атмосферному давлению) импульс давления, подаваемый турбокомпрессором или нагнетателем в цилиндры, составляет примерно от 0,4 до 0,55 бар (или почти столько же атмосфер). При нормальном атмосферном давлении в 1 атмосфер Вы можете видеть, что двигатель таким образом получает дополнительно приблизительно на 50 процентов больше воздуха. Таким образом, можно было бы ожидать получить 50-процентное увеличение мощности двигателя, не правда ли? Но подаваемый под давлением воздух, к сожалению, не настолько эффективен, хотя, впрочем, получить 30-процентный прирост мощности — это нормально для современных автомобилей. Давайте теперь перейдём к главному вопросу: чем отличается турбонаддув от турбокомпрессора?

Ключевое различие между турбокомпрессором и турбонагнетателем заключается в системе питания каждого из них. Согласитесь, ведь что-то должно сжимать и затем поставлять сжатый воздух в двигатель, для чего требуется дополнительная энергия! В обоих случаях питанием служит крутящееся движение с вентилятором, который и нагнетает воздух в двигатель. В случае с турбокомпрессором кручение передаётся через ременной привод, который подключается непосредственно к двигателю. Он получает вращение также как, к примеру, генератор . Турбонаддув, с другой стороны, получает питание от потока выхлопных газов: выхлопы проходят через турбину, вращая её, оказывая давление на лопасти, а турбина, в свою очередь, вращает компрессор. Вот чем отличается турбокомпрессор от турбонагнетателя!

Слева: турбокомпрессор, справа: турбонаддув

Есть свои недостатки, преимущества и компромиссы в обеих системах. В теории турбонаддув является более эффективным, так как он приводится в движение с помощью «впустую» расходующейся энергии потока выхлопных газов в качестве своего источника питания. С другой стороны, турбонагнетатель вызывает некоторое количество обратного давления в выхлопной системе и стремится обеспечить гораздо меньший импульс, пока двигатель работает на низких оборотах. С третьей стороны, турбонагнетатели значительно проще в установке, но, как правило, автомобили с турбонагнетателями стоят дороже.

Основное различие турбины и компрессора — это принцип работы. Турбина приводится в движение отработанными выхлопными газами, в то время как компрессор раскручивается самим двигателем, от чего его также называют механическим нагнетателем. Именно с особенностями работы и связаны преимущества и недостатки двух устройств, устанавливающихся с целью увеличения производительности силового агрегата.

Более простой по своей конструкции компрессор чаще всего вращается ременным приводом от двигателя. Наиболее распространенные центробежные нагнетатели при помощи крыльчатки прогоняют воздух через свой корпус и отправляют его через впускной коллектор в цилиндры, чем и добавляют двигателю мощности. Главное достоинство такого типа нагнетателя — это постоянная работа, вне зависимости от оборотов мотора. Кроме того среди плюсов можно выделить неприхотливость работы, более низкую стоимость по сравнению с турбиной, относительную легкость монтажа и широкий ассортимент в выборе.

К минусам можно отнести ограниченную мощность и более низкий процент КПД при одновременном увеличении расхода топлива, так как мотор будет тратить дополнительную энергию на привод компрессора. rnrnБолее сложный турбонагнетатель состоит из двух крыльчаток. Первая крыльчатка крутится за счет выхлопных газов и через вал обеспечивает движение второй, которая и всасывает воздух. Основное преимущество данного устройства в том, что оно обладает большим процентом КПД и позволяет значительно увеличить мощность силового агрегата, при этом его расход топлива останется неизменным.

Самый же главный недостаток заключается в наличии так называемого турболага или турбоямы, при котором на низких оборотах работа турбины не ощущается. Связано это с тем, что низкий поток выхлопных газов не способен достаточным образом раскрутить крыльчатку, а потому воздух либо не всасывается, либо всасывается в недостаточном объеме. Дороговизну и сложность конструкции также можно отнести к недостаткам турбонагнетателей. Особенности конструкциями турбины также является необходимость использования качественного масла, постоянный контроль его уровня и своевременная замена. После работы, особенно долгой или в режиме повышенных оборотов, турбированный двигатель требует минутного отдыха на холостых оборотах.

В настоящее время автопроизводители научились совмещать компрессоры и турбины в одном двигателе, где их симбиоз позволяет избавиться от эффекта турбоямы.

Кроме того для борьбы с этим недостатком могут использоваться две или более турбины разных размеров (малые работают на низких оборотах, а большие — на высоких) и турбины с изменяемой геометрией.

Профессионалы автомобильного мира, и простые автолюбители знают о том, что двигатель с большим рабочим объёмом, выдает бо льшую мощность по сравнению с малолитражными движками. Двигатель с малой кубатурой, не может дать автомобилю большой прирост мощности в силу своей слабости:).

Над тем, что сделать, чтобы малокубатурный двигатель давал мощности больше, задумывались давно. И вот, на заре развития авто-тюнинга, изобретатели придумали установку в двигатель дополнительного агрегата – компрессора.

Появилась возможность, задувать в камеру сгорания малокубатурного двигателя больше воздуха, что в свою очередь влечёт к обогащению топливной смеси кислородом и, как следствие, к увеличению мощности двигателя. Практически одновременно с компрессором стали использовать и турбину, все с той же целью — задуть в камеру сгорания больше кислорода и обогатить топливную смесь.

То есть цель использования турбины и компрессора одна и та же.

Забегая вперед, сразу оговоримся, что и турбина, и компрессор впоследствии зарекомендовали себя очень хорошо. Наибольшее распространение получила все же турбина, поскольку имеет более высокий КПД (коэффициент полезного действия) и позволяет экономить топливо, но и компрессоры так же используются на современных автомобилях.

Особенно эффективна турбина на дизельных двигателях, поэтому почти все современные дизельные движки имеют приставку «турбо».

В чем основное отличие турбины от компрессора?

Главное отличие турбины от компрессора в том, что в этих устройствах используются разные источники привода. Компрессор работает от вала двигателя и представляет собой отдельную, самостоятельную механическую единицу, а турбина приводится в работу энергией выхлопных газов и жестко привязана к двигателю.

Турбина, весьма эффективна для обогащения топливной смеси кислородом, но в ней, есть существенные неудобство – она стационарное устройство, требующее плотной привязки к двигателю (подвода масла под давлением). Турбина — сложное и дорогое устройство.

Компрессор гораздо проще в эксплуатации, требует минимальных усилий по обслуживанию – он независимый агрегат и этим все сказано.

Турбонаддув, весьма заманчив, но не стоит забывать, что любые турбины дорогие, из-за своих технологических характеристик: устройство сделано так, что требует дополнительных механизмов, например выпускной коллектор. В настройке она под силу только специалисту высокого уровня, который в состоянии чутко настроить работу для обеспечения оптимального состава топливной смеси.

Компрессор же удобен тем, что его настройка по силам любому человеку мало-мальски разбирающемуся в карбюраторах. Он достаточно легко настраивается посредством топливных жиклеров.

Для сравнения ещё один пункт: турбина вместе с установкой в двигатель Вам обойдётся не меньше 500 условных единиц, когда как компрессор стоит всего 150 условных единиц. Прирост мощности от такого тюнинга составляет в районе 20-30 % от начальной мощности двигателя.

Есть и еще одна очень существенная разница в работе этих устройств, которая так же может оказать влияние на выбор, что установить на автомобиль, турбину или компрессор…

Эта разница в том, в каком диапазоне оборотов двигателя работает устройство. И тут очевидно, что в этом компоненте компрессор будет выигрывать у турбины, поскольку компрессор может выполнять свою функцию даже на низких оборотах двигателя.

Турбине же требуется высокое давление выхлопных газов, которые образовываются только после достижения двигателем определенных оборотов. Раньше турбины начинали свою работу только с 4000 об/мин, но современные турбины значительно эффективнее и могут работать эффективно при более низких оборотах.

Что означает эта разница в работе компрессора и турбины? Автомобиль с компрессором будет значительно эффективнее разгоняться с самого старта. Автомобиль же с турбиной начинает разгон не очень шустро (наблюдается эффект турбоямы), но при достижении определенных оборотов следует резкий подхват и ускорение.

Какие из всего этого можно сделать выводы? Если Вы большой любитель скорости – а, вероятно, таких авто владельцев большинство, – смело устанавливайте компрессор в двигатель вашего авто, если у вас бензиновый двигатель. Если же у вас дизель, то, пожалуй, лучше использовать турбину.

Перед тем, как говорить на тему – нужно больше узнать о том, как повышается мощность. Как известно, двигатель внутреннего сгорания функционирует с помощью воздушно-топливной смеси, что воспламеняется в цилиндрах и там сгорает. В состав смеси входят – воздух и бензин, которые попадают к двигателю/ коллектору таким образом:

  • Топливо. Подается с помощью специального насоса по топливопроводах;
  • Воздух же никоим образом не нагнетается, только засасывается двигателем через воздушный фильтр. Обратите внимание, если фильтр грязный – тогда мощность резко падает, а расходы растут.

Что же делают турбина и компрессор? Оба устройства начинают шибко нагнетать воздух в цилиндры, что очень хорошо влияет на мощность.

Так чем отличается компрессор от турбины ?

Что такое компрессор

Далеко не все автовладельцы знают, что такое компрессор и чем турбина отличается от компрессора . Итак, компрессор – это механический нагнетатель воздуха, который вешается возле двигателя, при этом не вмешиваясь в его строение. На сегодняшний день, есть три типа компрессора: винтовой, роторный и центробежный.

Понять, что лучше компрессор или турбина , поможет перечень всех плюсов и минусов компрессора.

Преимущества компрессора:

  • Компрессор эффективно нагнетает воздух и повышает мощность на 10%;
  • Устройство отметилось своей надежностью и прочностью конструкции;
  • Не требует особого ухода;
  • Не препятствует работе и не вмешивается в строение двигателя;
  • Отсутствует дефект «турбо-яма»;
  • Не работает при высоких температурах;
  • Компрессор можно установить собственноручно;
  • Не нуждается в масле, что используется для смазки двигателя.

Недостатки:

  • Не обладает такой производительностью, как турбина;
  • Является устаревшей моделью, поэтому на большинстве автомобилей снята с производства.

Обычно компрессор устанавливается на ременную передачу от коленвала двигателя, а это значит, что производительность зависит от оборотов: малые обороты – малая производительность, большие обороты – высокая. Следовательно, нагнетание воздуха компрессором, так же как и производительность, является ограниченным.

Турбина – что єто?

Турбина – механический нагнетатель воздуха, однако в отличие от компрессора, турбина работает при высоких температурах, преимущественно 700-800 градусов °C. Также, турбина функционирует на выхлопных газах и вмешивается в строение двигателя, смазывая агрегат маслом.

Принцип работы турбины

Принцип работы устройства заключается в следующем – на такте выпуска выходят все отработанные газы по специальному каналу к глушителю. Эти газы раскручивают горячее колесо турбины, что расположена на одном валу с холодным. В свою очередь холодное колесо начинает сильно вертеться и этим самым можно получить около 200-240 000 оборотов за минуту.

Преимущества турбины над турбокомпресором:

  • Высокий уровень производительности по сравнению с компрессором;

Недостатки:

  • Использует масло двигателя, что предназначено для смазывания и отвода излишней температуры;
  • Низкий ресурс. Часто после 300 00 км нуждается в ремонте;
  • Большие расходы масла. В нормальном состоянии турбины на бензиновых двигателях затрачивают до 1 л/10 000 км;
  • Применение турбины довольно часто является причиной вытягивания цепи;
  • Достаточно непросто и рискованно устанавливать самостоятельно, если єто не предусмотрено производителем.

Турбина или компрессор – в чем разница? Компрессор работает на ременном приводе от коленвала агрегата, турбина – от отработанных газов, врезается в глушитель и смазывается маслом.

Что лучше компрессор или турбина?

Прежде всего, следует обратить внимание на производителя. В конце концов, сегодня уже никто и не занимается изготовлением и выпуском компрессоров, только турбины. Так как, турбина есть действительно очень производительным агрегатом, который способен повысить мощность на 30-40%. Однако, не следует забывать про дорогое обслуживание и довольно частые диагностики, а также замену масла.

Если вам не нужна такая высокая производительность, и вы можете обойтись 7-10 процентами мощности, то выгоднее приобрести компрессор. К тому же, его вы сможете установить самостоятельно, этим самым сэкономив и повысив мощность на 10%.

Таким образом, сопоставив все за и против, вы сможете решить для себя – что лучше турбина или компрессор .

Новые автомобили все реже оснащаются двигателями без наддува, благо турбины позволяют развивать большую мощность при малом объеме. Российские водители, тем не менее, относятся к турбомоторам с опаской. И очень зря.

Турбированные и атмосферные двигатели — в чем разница?

Разница в том, каким образом в цилиндры двигателя поступает воздух.

    • Атмосферный мотор

Воздух идет сам туда, где ниже давление. У атмосферного мотора воздух идет в цилиндры под действием создаваемого на такте впуска разрежения — поршень опускается и втягивает за собой воздух. Проще не бывает.

    • Наддувный мотор

Чтобы нагнать в цилиндры больше воздуха, в помощь разнице давлений приходит принудительный наддув. Грубо говоря, на впуске ставят «большой вентилятор». О конструкции таких систем поговорим вкратце чуть ниже.

Зачем двигателю нужен наддув?

Чтобы повысить мощность двигателя, нужно сжечь в нем больше топлива — зависимость простая. А вот чтобы сжечь больше топлива, нужно подать в цилиндры много воздуха, почти по кубометру на каждый литр бензина. Вопрос лишь в том, как заставить его это сделать? Основных способов два:

    • Увеличить объем. Это напрашивается само собой, и долгое время конструкторы шли этим путем: увеличивали количество цилиндров, их объем и конфигурацию. Так появились авиационные W12 и V16 с рабочим объемом в сотню литров с гаком и американские семилитровые V8 для автомобилей.… Сейчас мы не будем вдаваться в подробности и лишь констатируем, что путь этот сложный. В определенный момент большой мотор становится слишком тяжелым, а дальнейшее увеличение — нецелесообразным.
    • Увеличить количество сжигаемого топлива, не наращивая объем двигателя. Действительно, почему бы с силой не загнать в цилиндры просто побольше воздуха, чтобы можно было сжечь много бензина? Тут-то на помощь приходит наддув.


Двигатель W12 разработки Volkswagen Group ставился в разные годы на Audi A8L, Volkswagen Phaeton, Volkswagen Touareg, Bentley Continental Flying Spur и другие премиум-модели. Фото: w12cars.com

Какие есть основные типы наддувов?

В основном используют два способа повысить давление на впуске выше атмосферного.

  • Механический нагнетатель. На впуске стоит воздушный насос — компрессор, который приводится в движение от коленчатого вала мотора. Просто, но двигателю приходится его крутить и тратить на это часть мощности.


  • Турбокомпрессор, который использует энергию выхлопных газов. Он представляет собой сдвоенный корпус из двух металлических «улиток», в котором на одном валу крутятся две крыльчатки. Одну из них раскручивает поток выхлопных газов, вырывающийся из выпускного коллектора. Вторая крутится, так как находится на одном валу с первой, — она «загоняет» атмосферный воздух во впускной коллектор.

Мы не будем сейчас вдаваться в достоинства и недостатки каждой из схем, а также описывать историю их создания и развития — это тема для отдельного материала. Здесь нам важно определиться, насколько наддувные моторы хороши.


Какие преимущества есть у наддувного мотора?

Высокая максимальная мощность.

Как мы уже поняли, за счет наддува можно увеличить количество сжигаемого топлива, а значит, и повысить мощность мотора при неизменном объеме. Мощность можно увеличить в разы, но обычный показатель — 20–100% для серийных двигателей.

Стабильный крутящий момент.

В обычном атмосферном моторе давление на впуске, а следовательно, и количество сжигаемого топлива меняется в зависимости от оборотов мотора. На каких-то оборотах наполнение максимально, и двигатель работает с полной отдачей. На других наполнение цилиндров хуже, и момент, развиваемый двигателем, меньше.

В современном турбомоторе наполнением цилиндра занимается турбина, а управляет турбиной электроника. Появляется возможность всегда подавать столько воздуха, сколько нужно для максимально эффективного сгорания смеси, и столько, чтобы «железо» двигателя выдержало нагрузку. Это позволяет создавать знаменитую «полку» крутящего момента. Такое название произошло от вида графика момента, который на турбомоторах действительно похож на ровную полку.

Низкий расход топлива.

Казалось бы, парадокс. Наддув позволяет впрыскивать больше топлива, но при этом обеспечивает экономичность. Каким образом? Дело в том, что рабочий объем турбомоторов меньше, и в целом они легче. С наддувом двигатель прекрасно тянет с самых низов, а на малых оборотах меньше потерь энергии на трение и выше КПД. В результате при неспешном движении турбомотор экономичнее. А при большой нагрузке расход топлива никто не считает, не зря же есть выражение «ехать на все деньги», тем более мало кто постоянно ездит в экстремальных режимах.


На графике замера мощности и крутящего момента Skoda Fabia RS TSI видно, что в диапазоне с 2 000 до 4 500 оборотов двигатель развивает 250 ньютон-метров. Это и называется «полкой крутящего момента».

Почему люди боятся наддувных моторов?

С полной определенностью можно сказать, что двигатели с наддувом стоят на более высокой ступени эволюции, чем «атмосферники». И все-таки на сегодняшний момент большинство выпускаемых и продаваемых авто оснащены именно классическими двигателями, причем не только в «отсталой» России, но и в «просвещенной» Европе, не говоря уже про США. Почему же?

Ресурс турбин невелик.

В среднем турбина на бензиновом моторе служит максимум до 120–150 тысяч километров, а ремонт обходится недешево. Механический приводной нагнетатель в теории «неубиваем», но это умирающий вид, и там, где он применяется, о ресурсе не заботятся.

Двигатель работает в более суровых условиях.

Температура и давление в цилиндрах у наддувных моторов гораздо выше, а значит, и изнашиваются они сильнее. Это компенсируется тем, что турбодвигатели изначально строят с более высоким запасом прочности всех систем.

Впрочем, вполне справедливо, что двигатель сложнее, у него больше датчиков, больше трубопроводов, больше всего греющегося и протекающего, и любая поломка в системе управления может повредить сам мотор или турбину.

Говорят, что у турбина дает нестабильную тягу.

Действительно, на старых наддувных моторах турбина «отзывалась» не сразу — нужно было время на то, чтобы выхлопные газы раскрутили крыльчатку, и получалось то, что назвали «турболагом». Теперь, с внедрением новых технологий (о них подробнее расскажем позже), эта проблема решена. «Пуристы», поборники атмосферных двигателей утверждают, что все равно нет идеальной связи между движением педали газа и тягой, но для рядовых водителей эти тонкости будут неочевидными.

Говорят, что турбированные моторы звучат менее «благородно», чем атмосферные.

Действительно, турбина делает звук выхлопа не столь ярким и «породистым». Но в полной мере это можно отнести разве что к «большим» моторам — рядным шестеркам или V8. Их звучание признается за некий идеал, и добавление к ним турбокомпрессора резко меняет звук.

По мнению аудиофилов, «от выхлопа» звук становится нечетким и размазанным. Турбина работает как глушитель, сглаживая пики давления выхлопных газов и создавая свои собственные гармоники. Если речь об обычных рядных «четверках», то нельзя сказать, что выхлоп такого мотора изначально звучит особенно хорошо, с добавлением к нему турбины он становится тише, но вряд ли теряется уникальность.

На помощь фанатам хорошего звука мотора приходят специалисты по акустике выхлопа. Выхлопные системы современных машин, что с наддувом, что без — плод серьезной работы, и особенности звука в первую очередь зависят от качества настройки системы и пожеланий покупателя.


Почему некоторые производители спорткаров до сих пор не признают наддува?

Действительно, без турбин и нагнетателей прекрасно обходятся такие «уважаемые» автомобили, как Toyota GT86, Renault Clio RS и Honda Civic Type R. Основных причин на то несколько:

  • Высокую мощность можно получить и без турбины, но при условии, что двигатель будет развивать ее только на очень высоких оборотах. Например, 201 л.с. на той же Honda Civic Type R доступны лишь при 7 800 оборотах в минуту, что очень много для негоночного мотора.
  • Система наддува сильно увеличивает вес и размер маленьких моторов — ее невозможно сделать действительно компактной. Для спорткаров это немаловажно.
  • Многим нравится «крутильный» характер атмосферных моторов, отсутствие всяких возможных задержек и влияния температуры воздуха, «чистота» реакций и звука.
  • Во многих гоночных дисциплинах запрещены моторы с турбонаддувом, зато есть традиции форсирования атмосферных моторов.
  • На «атмосферниках» — более мощное торможение двигателем под сброс газа, что заметно на малоразмерных моторах и, опять-таки, важно для спорткаров.
  • В Японии и США, где в основном еще сохраняются безнаддувные «зажигалки», нет столь строгих ограничений по расходу топлива, как в Европе. Мотор с турбиной дороже, но может выдавать высокую мощность при низком расходе и на любой высоте, хоть на вершинах Альп. Мотор без турбины проще, менее требователен к обслуживанию, особенно когда очень высокая мощность не нужна, да и высоким расходом топлива и малой тягой в «негоночном» режиме можно пренебречь. И не стоит недооценивать силу традиций национального автомобилестроения.

Впрочем, мало-помалу наддув отвоевывает место под капотом спортивных автомобилей. Сначала Формула-1 отказалась от «атмосферников», а в марте 2014 года дебютировала первая в современной истории турбированная модель Ferrari — California T, которая получила «улитку» после долгого перерыва со времен 288 и F40.

Сравнение механического компрессора и турбины

Компрессор имеет фиксированную мощность, а работа турбины зависит от оборотов автомобиля. Турбина способна разогнать автомобиль на большую скорость, чем компрессор. Компрессор расходует больше топлива с меньшим КПД, чем у турбины.

Сфера применения и особенности эксплуатации

Что лучше турбина или компрессор? Для полноценного ответа давайте разберем оба устройства по частям.

Конструктивно турбина – это двигатель, который находится постоянно в движении за счет преобразования энергии жидкости или пара в механическую. Сразу необходимо сказать, что механизмы привода у обоих совсем разные.

Компрессор питается от коленвала движка и имеет автономную единицу, а турбина газами от выхлопного коллектора и не имеет автономности.

Разница в цене ощутима: за турбину хорошего качества выложите около 550 баксов, а компрессор всего лишь 200, а мощность в процентном соотношении одинаковая, от 15 до 25% максимально. Дополнительно необходимы будут затраты на установку и налаживание агрегата в автосервисе.

Немного теории

Для начала стоит разобраться, каким именно способом увеличивается мощность силового агрегата. Сперва банальное описание, как функционирует ДВС: работает он на воздушно-топливной смеси, которая воспламеняется и сгорает в цилиндрах, обеспечивая мотор необходимой энергией для работы. Смесь состоит из двух компонентов — воздуха и топлива (дизель или бензин).

Для эффективного сгорания топливо-воздушной смеси в цилиндрах требуется определенное количество топлива и определенное количество воздуха. И если с подачей большего количества топлива особых проблем нет, то загнать в цилиндр больше воздуха уже не так просто.

Для решения этой задачи может использоваться турбина или компрессор, которые мы и рассматриваем в данной статье. И хотя оба этих устройства нагнетают воздух в двигатель, работают они по совершенно разным принципам.

Компрессор

Это устройство нагнетания воздуха механического типа, оно появилось раньше турбин, но до сих пор используется как производителями автомобилей, так и тюнинговыми автосервисами. Компрессор монтируется, можно сказать, «рядом с мотором» и напрямую не вмешивается в его конструкцию.

Существует три типа компрессоров: центробежный, роторный и винтовой. Основное отличие между ними заключается в способе сжатия воздуха и его подаче на впуск двигателя.

Принцип работы центробежного, роторного и винтового компрессора

Центробежный компрессор — это крыльчатка, которая вращается с большой скоростью и нагнетает воздух в корпус компрессора. Скорость вращения может достигать 50-60 тысяч оборотов в минуту. При этом воздух, который попадает в центральную часть крыльчатки, смещается к ее краю под действием центробежной силы. В результате воздух выходит из крыльчатки с высокой скоростью, но под низким давлением. Дальше, для повышения давления воздуха используется диффузор, который состоит из расположенных вокруг крыльчатки лопаток. Эти лопатки преобразуют быстрый поток воздуха с низким давлением в медленный поток воздуха, но большим давлением. Данный тип компрессора является самым распространенным и самым эффективным.

Роторный компрессор состоит из двух кулачковых валов, которые вращаются и нагнетают воздух во впускной коллектор. Роторные компрессоры, отличаются большими размерами и располагаются непосредственно над двигателем.

Винтовой компрессор состоит из двух роторов, похожих на набор червячных передач. В результате их движения воздух оказывается  между лопастями, таким образом он сжимается и подается на впуск двигателя. Винтовой ротор требует высокой точности при производстве, поэтому он достаточно дорогой.

Какой бы не была конструкция компрессора, он всегда навешивается на ременную передачу коленчатого вала, а значит для сжатия воздуха он использует энергию самого двигателя.

Плюсы компрессора:

  • требует минимального сервисного обслуживания;
  • долгий срок службы, чаще всего хватает на весь период пользования автомобилем;
  • нет вмешательства в строение двигателя;
  • не требует моторного масла для смазки;
  • эффективно работает на низких оборотах;

Минусы компрессора:

  • мощность заметно ниже, чем у турбины;

Читайте также: MPI двигатель — что это такое.

Преимущества компрессора

  • Эффективный впрыск воздуха, который увеличивает мощность от 10 до 30%
  • Очень надежная и прочная конструкция, которая часто превышает срок службы двигателя машины
  • Это никак не влияет на работу двигателя, так как компрессор является полностью автономным устройством, хотя и находится близко к нему.
  • Во время его работы рабочая температура резко не увеличивается
  • Не использует много масла и не требует постоянного долива
  • Требует минимального обслуживания
  • Может быть установлен дома механиком-любителем.
  • Здесь нет так называемого «лага» или «ямы». Это означает, что мощность может быть увеличена мгновенно (без каких-либо задержек), как только компрессор приводится в движение коленчатым валом двигателя.
  • Эффективно работает даже на низких скоростях

Сравнение

Когда речь заходит о выборе компрессора или турбины, человек в первую очередь смотрит на основные признаки отличия, которые имеются у данных устройств:

  • Одним из главных преимуществ компрессора является обеспечение бесперебойного сгорания примеси. Это напрямую влияет на правильную работу двигателя в целом, помогает избежать различных неприятностей, связанных с поломкой.
  • В свою очередь определенные преимущества имеет и турбина: она не влияет на потерю лошадиных сил, в то время как компрессор этим похвастать не может. Правда, стоит заметить, что речь идет общей выходной мощности двигателя (потеря при компрессии составляет до 20 процентов).
  • Установка и настройка турбины – довольно сложный процесс, требующий значительных временных и денежных затрат. Кроме того, необходимо несколько видоизменить силовой агрегат. Для сравнения, чтобы использовать компрессор, необходимо фактически только одно – правильный подбор примеси. Установка осуществляется очень легко.
  • Если говорить о турбине в автомобиле, то без помощи специалиста установить ее не получится. Для компрессора не нужно специальное оборудование и знания. Это значительно упрощает процесс.
  • Турбина в автомобиле имеет существенный недостаток — она требует частый подвод масла под давлением, что увеличивает расходы на содержание транспорта. Если не проводить данную манипуляцию с определенной регулярностью, то автомобиль быстро ломается, создавая дополнительные проблемы. Компрессор в этом не нуждается.
  • Турбина требует особого ухода. Чтобы она работала надлежащим образом, автовладельцу придется раз в месяц посещать мастерскую, если он не имеет необходимого опыта.
  • Турбине необходима полноценная привязка к двигателю автомобиля. Если транспорт выдает небольшое количество оборотов, то от турбины практически нет толка. Лишь выжимая максимальные обороты, можно добиться хорошей мощи. Безусловно, автовладелец сейчас может купить устройство, которое работает вне зависимости от скорости автомобиля, но такая турбина стоит приличную сумму.
  • Работа компрессора не зависит от оборотов машины, он выдает фиксированную мощь при любой скорости.
  • Компрессор является независимым устройством в автомобиле, за счет чего упрощается процесс обслуживания и ремонта. Даже не имея большого опыта, практически каждый автовладелец может самостоятельно почить агрегат.
  • Турбина может набирать более высокие обороты, чем компрессор. Но и нагревается она на существенно быстрее, что ставит под удар двигатель. От такой работы он быстро изнашивается.
  • Компрессор приводится в действие сразу же после запуска двигателя. Это безусловное преимущество над турбиной, которая без движения транспорта работать не будет. Но вместе с этим, компрессор приводит в действие и весь двигатель. Турбина, напротив, освобождает «сердце» автомобиля от дополнительной нагрузки.
  • Компрессоры расходуют больше топлива, чем турбина. И КПД у них намного меньше. То есть турбина в автомобиле работает на полную мощь, не растрачивая бензин.
  • Компрессор приводится в действие ремнем, так как он является механическим нагнетателем. Турбина раскручивается выхлопными газами автомобиля, которые крутят две крыльчатки, соединенные между собой валом.
  • Если решитесь на покупку компрессора для автомобиля, то знайте, что на рынке его огромный выбор. Турбина же не имеет такого достоинства.
  • Наконец, турбина стоит на значительно дороже компрессора. Этот фактор и обуславливает высокую популярность устройства на российском рынке.

к содержанию ↑

Чем отличается турбонаддув от компрессора?

Компрессор и турбонаддув отвечают за увеличение мощности двигателя автомобиля. Какие есть отличия у этих устройств, их преимущества и недостатки.

В последние годы отмечается тенденция, когда многие крупные автопроизводители отказываются от использования атмосферных двигателей с большим объемом, заменяя их компактными, мощными и экономичными агрегатами с турбонаддувом или компрессором. Многие покупатели не знают в чём разница этих двух технологий и не могут правильно подобрать автомобиль. Поговорим поподробнее о том, в чём же разница между компрессором и турбонаддувом.

Турбина

Принцип работы турбины

В отличие от компрессора, турбина «встраивается» в двигатель, использует его масло и функционирует от выхлопных газов, то есть происходит «вмешательство» в систему выпуска.

Принцип работы турбины следующий: газы поступают на выпуск двигателя, далее идут на горячее колесо турбины (раскручивая его), энергия вращения передаётся на холодное колесо, которое начинает быстро вращаться и нагнетать воздух на впуск двигателя.

Плюсы турбины:

  • более высокая эффективность работы;
  • использует энергию выхлопных газов;

Минусы турбины:

  • эффективно работает на высоких оборотах;
  • присутствует так называемый турболаг или задержка между нажатием на педаль газа и увеличением мощности двигателя;
  • использует моторное масло для смазки, а потому двигатель требует более частой его замены;
  • повышенный расход масла;
  • недолгий срок эксплуатации, в лучшем случае — до 200 тыс. километров;
  • высокая стоимость ремонта;
  • сложности в установке;

Фактически, главный и единственный плюс турбины — это внушительное увеличение мощности двигателя, дальше идут одни минусы. 

Читайте также: Что такое TSI двигатель.

Основная функция

Механические нагнетатели-компрессоры и турбины имеют одинаковую функцию — повышение мощности двигателя. Достигается это за счёт принудительного нагнетания под большим давлением воздуха в цилиндры, что обеспечивает одновременную отличную динамику автомобиля и его топливную экономичность. У оснащенных компрессорами и турбинами двигателей существенно увеличивается производительность, улучшается динамика, при этом не требуется ставить многолитровые моторы, достаточно агрегата в 2 литра, который будет выдавать под 250 лошадиных сил.

Основные отличия турбин и компрессоров состоят лишь в их принципе работы. Лопатки турбины установлены на выпуске, и, как только мотор заводится и работает на минимальных оборотах, наддув бездействует, лишь после 3000 оборотов двигателя начинает раскручиваться нагнетатель, который существенно увеличивает мощность мотора. А вот механический нагнетатель компрессор имеет цепной привод от коленвала, поэтому он работает сразу же, как только двигатель завелся, что исключает появление так называемой турбоямы.

Что такое турбояма

Помимо выше перечисленного, у турбокомпрессора есть существенный недостаток — он работает только на высоких оборотах, т.к. чтобы “раскрутить” крыльчатку на нее необходимо подать мощный поток выхлопных газов. Этот эффект носит название “турбо-яма” – задержка между нажатием на педаль газа и раскруткой турбины.

«В попытке устранить такой эффект, современные автопроизводители часто устанавливают обе системы: компрессор дает моментальную прибавку мощности на старте, благодаря чему мотор раскручивает турбину. Затем в работу вступает турбина. Вместе компрессор и турбокомпрессор дают существенную прибавку к мощности мотора.»

Плюсы турбо

  • Высокая производительность, которая может в несколько раз превышать производительность компрессора
  • Использует энергию выхлопных газов

Что лучше турбина или компрессор?

На самом деле всё зависит от того, какой именно эффект нужен автовладельцу, а это всегда строго индивидуально. Можно подвести следующие итоги.

Турбина. Даёт огромный прирост мощности двигателя, вплоть до 40%. Актуально для ралли-заездов или для поклонников стритрейсинга. Правда, придётся серьёзно потратится, как на покупку самого устройства, так и на его монтаж, настройку и техобслуживание. Плюс нужно мириться с большим расходом масла, туролагом и частыми ремонтами.

Компрессор. Подходит водителям, которым не нужна такое внушительное повышение мощности двигателя. При этом автовладелец не хочет иметь проблем с обслуживанием оборудования, поскольку компрессор используется по принципу «поставил, настроил и забыл» — его срока эксплуатации хватит на весь период пользования машиной. Да и стоимость самого устройства в разы ниже.

Что выбрать?

Какой выбор сделать это решать каждому в отдельности. Утверждать и открыто заявлять о бесспорном лидерстве одно или другого аппарата не берется никто, ибо сколько людей столько и мнений. Если есть желание взбодрить свой автомобиль недорого и без особых хлопот, безусловно выбирайте компрессор. Так поступили парни, обращавшиеся к нам за консультацией. Расточенный двигатель до фольги их больше не устраивал, компрессор стал для них бюджетным решением проблемы в динамике. Однако, обладая недюжинными волевыми качествами и тугим кошельком, выбирайте конечно турбину, способную сделать из Шкоды Йети с 1,4 литровым двигателем Вашей жены в серьезный кроссовер, с невероятной динамикой. Думайте, взвешивайте все за и против, и делайте правильный выбор для себя!
Увеличение мощности своего автомобиля сейчас стало достаточно модным увлечением, превратившись в целую индустрию, где можно встретить начинающих автомобилистов, любителей автотюнинга и настоящих профи. Но перед всеми ними стоит один и тот же вопрос: «Что лучше установить турбину или компрессор?» Для не которых ответ очевиден исходя из опыта, для других же мы постараемся дать развернутый ответ, расписав все плюсы и минусы каждого.

Как говорил классик: «Поехали!»

Оба агрегата предназначены для решения одной и той же задачи – увеличения мощности работы двигателя. Но при этом они имеют разное устройство, обусловленное принципом их привода, влияющее на то, что лучше в конкретном случае. И для того, чтобы ответить, как агрегат целесообразнее использовать для тюнинга вашего автомобиля нужно знать это самое устройство.

Преимущества компрессора

Автомобили с компрессором имеют несколько преимуществ:

  • Надежность. Механизм достаточной простой, а потому не требует к себе частого внимания и ремонта. Обслуживать компрессор тоже не нужно.
  • Отсутствие «турбоямы», характерной для турбин.
  • Нет необходимости смазывания. Компрессор не требует дополнительного охлаждения и смазывания.
  • Низкий риск перегрева.

Так кто же лучше?

С экономической точки зрения, лучше всех в этом отношении нагнетатель. Если автомобиль для обычной повседневной езды, то его хватит за глаза и внимания к нему потребуется гораздо меньше, а вот турбина здорово попьет крови автолюбителя, если за ней будет ненадлежащий уход.

Тем не менее, турбина выигрывает в своей эффективности и при отсутствии финансовых трудностей подарит своему хозяину незабываемые эмоции. Так что, если и мечтать о мощном двигателе, то только турбовом!

Фото взяты из интернета и не являются собственностью автора!

Согласование компрессора и турбины

Самые современные пассажирские и военные самолеты оснащены двигателями газотурбинные двигатели, также называемые реактивными двигатели. Первый и самый простой вид газовая турбина — турбореактивный. в турбореактивный двигатель, большое количество окружающего воздуха подводится в двигатель через впуск. Воздух давление и температура увеличиваются компрессором, который выполняет работу над потоком. В горелке воздух смешивается с небольшим количеством топлива и воспламеняется. Горячий выхлоп затем проходит через турбину.Турбина забирает немного энергии из горячего выхлопа, чтобы повернуть вал, приводящий в действие компрессор. Но есть достаточно энергии, чтобы обеспечить тягу реактивного двигателя за счет увеличение скорости через сопло.

На отдельных страницах описываются аспекты термодинамики и производительности. впуска, компрессора, горелка, турбина, и насадка. Изменение давления EPR и изменение температуры ETR через двигатель можно определить, если мы знаем компонентные характеристики.Общая мощность двигателя, тяга и расход топлива, затем можно легко определенный. Задача упрощается (немного) потому, что компрессор и турбина соединены между собой главным валом . Работа, выполняемая турбиной, должна равняться требуемой работе. компрессором. На этом слайде мы воспроизводим рабочие уравнения из компонент скользит, а затем упростите уравнение, чтобы решить для степень сжатия турбины TPR в пересчете на компрессор степень сжатия CPR , общая температура в компрессоре поверхность Tt2 или общая температура набегающего потока, а общая температура на входе в турбину Tt4 .((гамма -1) / гамма) — 1) / (nc * nt * Tt4)

Мы можем использовать это уравнение двумя способами. Мы можем указать давление увеличения компрессора, чтобы определить потерю давления через турбина. Или, если мы знаем потерю давления в турбине, мы может решить проблему повышения давления через компрессор. Первое использование уравнения используется в предварительном проектировании двигателя, в то время как второе использование используется для определения характеристик «вне конструкции».

Каждый двигатель разработан с учетом определенного набора желаемых условий.Те условия могут включать размер двигателя, тягу на взлет, или максимальная тяга на некоторой заданной высоте. На расчетного условия, мы можем выбрать значения важных термодинамических переменные: максимальная температура горелки, CPR и форсунка площадь. Все остальные условия полета, скорость и высота, а также дроссельная заслонка. установка будет «не по дизайну». Для существующего двигателя давление потери через турбину можно определить по потоку воздуха через форсунка и дроссельная заслонка Tt4 , как показано на отдельной горка.Из приведенного выше уравнения мы можем определить компрессор степень сжатия.


Действия:

Экскурсии с гидом
  • EngineSim — Симулятор двигателя:

Навигация ..


Руководство для начинающих Домашняя страница

Турбинный двигатель Компрессор Разделы: основы теории и эксплуатации

Основы теории и работы

Джо Эскобар

Турбинные двигатели приводят в действие многие современные самолеты.Мощность, вырабатываемая этими двигателями, зависит от расширяющегося газа, который является результатом сгорания в секции сгорания. Для этого требуется, чтобы воздух под высоким давлением смешался с топливом для воспламенения. Компрессорная часть двигателя выполняет важную задачу по обеспечению достаточным количеством сжатого воздуха для удовлетворения требований сгорания. Он увеличивает давление массы воздуха, которое поступает на входе, и подает его в секцию сгорания при необходимом давлении.Еще одно предназначение компрессорной секции — обеспечение стравливания воздуха для различных систем. В этой статье, основанной на AC65-12A, будет кратко рассмотрена основная конструкция и работа типовых секций компрессора газотурбинного двигателя.

Типы компрессоров
Есть два основных типа компрессоров — осевые и центробежные. Разница между ними заключается в том, как воздух проходит через компрессор.

Осевой поток
В компрессоре с осевым потоком воздух сжимается, сохраняя его первоначальный вид. направление потока.От входа до выхода воздух проходит по осевому пути и сжимается в соотношении примерно 1,25: 1.

Осевой компрессор имеет два основных элемента — ротор и статор. Ротор имеет лопасти, закрепленные на шпинделе. Эти лопасти толкают воздух назад так же, как пропеллер. По сути, это небольшие крылья. Ротор вращается с высокой скоростью и прогоняет воздух через ряд ступеней. Создается воздушный поток с высокой скоростью.

После того, как воздух продвигается лопастями ротора, он проходит через лопатки статора.Лопатки статора закреплены и действуют как диффузоры на каждой ступени. Они частично преобразуют воздух с высокой скоростью в воздух под высоким давлением. Каждая пара ротор / статор представляет собой ступень компрессора.

Каждая последующая ступень компрессора сжимает воздух еще больше. Количество ступеней определяется требуемым количеством воздуха и общим повышением давления. Чем больше количество ступеней, тем выше степень сжатия.

Центробежный поток
В двигателе с центробежным потоком компрессор выполняет свою работу, собирая поступающий воздух и ускоряя его наружу за счет центробежного действия.Он в основном состоит из рабочего колеса (ротора), диффузора (статора) и коллектора компрессора. Двумя основными элементами являются крыльчатка и диффузор.

Функция крыльчатки заключается в подборе и ускорении воздуха наружу к диффузору. Это может быть как однократная, так и двукратная запись. Оба аналогичны по конструкции крыльчатке нагнетателя поршневого двигателя. Двойное рабочее колесо аналогично двум рабочим колесам, расположенным вплотную друг к другу. Однако из-за гораздо более высоких требований к воздуху для горения в турбореактивных двигателях рабочие колеса больше, чем рабочие колеса нагнетателя.

Основными различиями между двумя типами рабочих колес являются размер и расположение каналов. Типы с двойным входом имеют меньший диаметр, но обычно работают с более высокой скоростью вращения, чтобы обеспечить достаточный воздушный поток. Рабочее колесо с одинарным входом позволяет удобно подавать воздуховоды непосредственно к проушине рабочего колеса (лопатки индуктора) в отличие от более сложных воздуховодов, необходимых для доступа к задней стороне крыльчатки с двойным входом. Хотя они немного более эффективны в приеме, крыльчатки с одним входом должны быть большого диаметра, чтобы подавать такое же количество воздуха, как и у крыльчаток с двойным входом.Конечно, это увеличивает общий диаметр двигателя.

Водоотводящая камера включена в воздуховод для двухкамерных компрессорных двигателей. Эта камера необходима, потому что воздух должен входить в двигатель почти под прямым углом к ​​оси двигателя. Следовательно, для создания положительного потока воздух должен окружать компрессор двигателя под положительным давлением перед входом в компрессор.

Некоторые секции компрессоров с центробежным потоком также включают в себя дверцы для впуска вспомогательного воздуха (заслонки для продувки) как часть водоотводящей камеры.Эти двери обеспечивают подачу воздуха в моторный отсек во время наземной эксплуатации, когда потребность двигателя в воздухе превышает поток воздуха через впускные каналы. Когда двигатель не работает, дверцы удерживаются закрытыми за счет действия пружины. Во время работы двери автоматически открываются, когда давление в моторном отсеке падает ниже атмосферного. Во время взлета и полета давление набегающего воздуха в моторном отсеке помогает пружинам удерживать двери закрытыми.

Диффузор секции центробежного компрессора представляет собой кольцевую камеру, снабженную множеством лопаток, которые образуют серию расходящихся каналов в коллектор.Лопатки диффузора направляют поток воздуха от крыльчатки к коллектору под углом, предназначенным для удержания максимального количества энергии, обеспечиваемой крыльчаткой. Они также подают воздух в коллектор со скоростью и давлением, подходящими для использования в камерах сгорания.

Коллектор компрессора направляет воздушный поток из диффузора, который является неотъемлемой частью коллектора, в камеры сгорания. Коллектор имеет по одному выпускному отверстию для каждой камеры, так что воздух распределяется равномерно.Выходное колено компрессора прикреплено болтами к каждому из выходных отверстий. Эти воздуховыпускные отверстия выполнены в виде воздуховодов и известны под разными названиями, такими как воздуховоды, выпускные колена или впускные каналы камеры сгорания. Эти воздуховоды выполняют очень важную часть процесса диффузии — они изменяют радиальное направление воздушного потока на осевое, где процесс диффузии завершается после поворота. Чтобы локти могли эффективно выполнять эту функцию, внутри колен иногда устанавливают поворотные лопатки (каскадные лопатки).Эти лопатки уменьшают потери давления воздуха за счет гладкой поворотной поверхности.

Каждому типу компрессора присущи преимущества и недостатки. Зная это, некоторые из сегодняшних производителей двигателей используют преимущества каждого типа, используя их комбинацию в своей компрессорной секции. Вот некоторые из преимуществ и недостатков каждого типа компрессора.

Преимущества / недостатки
Центробежный компрессор
Преимущества:

  • Облегченный
  • Повышение высокого давления на ступень
  • Простота изготовления, при этом низкая стоимость
  • Малый вес

Недостатки:

  • Большая передняя поверхность для заданного воздушного потока
  • Более двух ступеней нецелесообразно из-за потерь в поворотах между ступенями

Осевой компрессор
Преимущества:

  • Способность справляться с большими объемами воздушного потока и высокой степенью давления
  • Малая передняя поверхность для заданного воздушного потока
  • Прямоточный поток, обеспечивающий высокий КПД гидроцилиндра

Недостатки:

  • Повышенная чувствительность к повреждению посторонними предметами
  • Дорого в производстве
  • Очень тяжелый по сравнению с центробежным компрессором с той же степенью сжатия

Отводимый воздух
Сжатый высокотемпературный воздух, вырабатываемый компрессором. секцию можно удалить и использовать для различных функций.Отводимый воздух можно отбирать из любой из ступеней давления компрессорной секции. Расположение отверстия для отвода воздуха зависит от давления или температуры, необходимых для конкретной работы. Отверстия для стравливания воздуха представляют собой небольшие отверстия в корпусе компрессора на соответствующей ступени компрессора. Таким образом, различные степени давления или температуры достигаются путем включения соответствующей ступени. Часто воздух удаляется из последней ступени, так как именно здесь давление и температура самые высокие.

Некоторые применения для удаления воздуха включают:

  • Герметизация, обогрев и охлаждение кабины
  • Противообледенительная
  • Пневматический пуск двигателей
  • Вспомогательные приводы
  • Управляюще-усилительные следящие устройства
  • Мощность для беговых инструментов

Иногда необходимо охладить отбираемый от двигателя воздух, как в случае наддува кабины. В этих случаях для охлаждения воздуха используется какой-либо холодильный агрегат или теплообменник.

Компрессоры двигателя имеют множество применений. Они являются важной частью газотурбинного двигателя, обеспечивая подачу воздуха высокого давления и высокой температуры для сгорания, а также отбираемого воздуха для работы системы. Какой компрессор используется в вашем двигателе?

Газотурбинные двигатели — Осевые компрессоры

Осевой компрессор имеет два основных элемента: ротор и статор. Ротор имеет лопасти, закрепленные на шпинделе. Эти лопасти толкают воздух назад так же, как пропеллер, из-за их угла и формы аэродинамического профиля.Ротор, вращаясь с высокой скоростью, всасывает воздух на входе в компрессор и перемещает его через ряд ступеней. От входа к выходу воздух проходит по осевому пути и сжимается в соотношении примерно 1,25: 1 на ступень. Действие ротора увеличивает сжатие воздуха на каждой ступени и ускоряет его назад на несколько ступеней. При такой увеличенной скорости энергия передается от компрессора к воздуху в виде энергии скорости. Лопатки статора действуют как диффузоры на каждой ступени, частично преобразуя высокую скорость в давление.Каждая следующая пара лопаток ротора и статора составляет ступень давления. Количество рядов лопастей (ступеней) определяется требуемым количеством воздуха и общим повышением давления. Степень сжатия компрессора увеличивается с увеличением количества ступеней сжатия. В большинстве двигателей используется до 16 ступеней и более.

Статор имеет ряды лопаток, которые, в свою очередь, закреплены внутри кожуха. Лопатки статора, которые неподвижны, выступают радиально по направлению к оси ротора и плотно прилегают к каждой стороне каждой ступени лопастей ротора.В некоторых случаях корпус компрессора, в котором установлены лопатки статора, по горизонтали делится на половины. Верхнюю или нижнюю половину можно снять для осмотра или обслуживания лопаток ротора и статора.

Функция лопаток статора состоит в том, чтобы принимать воздух из воздухозаборника или из каждой предыдущей ступени, повышать давление воздуха и подавать его на следующую ступень с правильной скоростью и давлением. Они также контролируют направление воздуха к каждой ступени ротора, чтобы получить максимально возможную эффективность лопаток компрессора.На рис. 1-48 показаны элементы ротора и статора типичного осевого компрессора. Лопастям ротора первой ступени может предшествовать узел входной направляющей лопатки, который может быть фиксированным или регулируемым.

Рисунок 1-48. Элементы ротора и статора типичного осевого компрессора.

Направляющие лопатки направляют воздушный поток в лопасти ротора первой ступени под нужным углом и придают вихревое движение воздуху, входящему в компрессор. Этот предварительный вихрь в направлении вращения двигателя улучшает аэродинамические характеристики компрессора за счет уменьшения лобового сопротивления лопастей ротора первой ступени.Входные направляющие лопатки представляют собой изогнутые стальные лопатки, обычно приваренные к стальным внутренним и внешним кожухам.

На выпускном конце компрессора лопатки статора сконструированы так, чтобы выпрямлять воздушный поток и устранять турбулентность. Эти лопатки называются правильными лопатками или узлом выпускных лопаток. Кожухи осевых компрессоров не только поддерживают лопатки статора и обеспечивают внешнюю стенку осевого пути, по которому следует воздух, но также обеспечивают средства для отвода воздуха из компрессора для различных целей.Лопатки статора обычно изготавливаются из стали, устойчивой к коррозии и эрозии. Довольно часто их окутывают (закрывают) лентой из подходящего материала, чтобы упростить проблему крепления. Лопатки приварены к кожухам, а внешний кожух прикреплен к внутренней стенке корпуса компрессора радиальными стопорными винтами.

Рисунок 1-49. Распространенные конструкции крепления лопаток компрессора к диску ротора.

Лопасти ротора обычно изготавливаются из нержавеющей стали, а последние ступени — из титана.Конструкция крепления лопастей к ободам дисков ротора различна, но обычно они устанавливаются в диски либо луковичным, либо еловым способом. [Рис. 1-49] Затем лезвия фиксируются на месте разными способами. Толщина наконечников лопаток компрессора уменьшена за счет вырезов, называемых профилями лопаток.

Эти профили предотвращают серьезное повреждение лопасти или корпуса в случае контакта лопастей с корпусом компрессора. Это может произойти, если лопасти ротора слишком ослаблены или если опора ротора ослаблена из-за неисправного подшипника.Несмотря на то, что профили лопаток значительно сокращают такие возможности, иногда лопатка может сломаться под нагрузкой трения и вызвать значительное повреждение лопаток компрессора и узлов лопаток статора. Длина лопастей изменяется от входа к разгрузке, поскольку кольцевое рабочее пространство (от барабана до обсадной колонны) постепенно уменьшается к задней части за счет уменьшения диаметра обсадной колонны. [Рис. 1-50] Эта функция обеспечивает довольно постоянную скорость через компрессор, что помогает поддерживать постоянный поток воздуха.

Рисунок 1-50. Ротор компрессора барабанного типа.

Ротор имеет барабанную или дисковую конструкцию. Ротор барабанного типа состоит из колец, которые имеют фланцы для прилегания друг к другу, при этом весь узел может быть скреплен сквозными болтами. Этот тип конструкции подходит для тихоходных компрессоров, где центробежные нагрузки невелики. Ротор дискового типа состоит из серии дисков, изготовленных из алюминиевых поковок, усаженных на стальной вал, с лопастями, вписанными в обода дисков.Другой метод изготовления ротора заключается в обработке дисков и вала из цельной алюминиевой поковки с последующим закреплением болтами стальных коротких валов на передней и задней части узла, чтобы обеспечить опорные поверхности подшипников и шлицы для соединения вала турбины. Роторы барабанного и дискового типа показаны на рисунках 1-50 и 1-51 соответственно.

Рисунок 1-51. Ротор компрессора дискового типа.

Комбинация ступеней компрессора и ступеней турбины на общем валу представляет собой двигатель, называемый катушкой двигателя.Общий вал образуется путем соединения валов турбины и компрессора подходящим способом. Золотник двигателя поддерживается подшипниками, которые размещены в подходящих корпусах подшипников.

Как упоминалось ранее, в настоящее время используются две конфигурации осевого компрессора: с одним ротором / золотником и с двойным ротором / золотником, иногда называемым сплошным золотником и раздельным золотником (два золотника, два золотника).

В одной из версий компрессора со сплошным золотником (с одним золотником) используются регулируемые входные направляющие лопатки.Кроме того, переменными являются несколько первых рядов лопаток статора. Основное различие между регулируемой входной направляющей лопаткой (VIGV) и регулируемой лопаткой статора (VSV) заключается в их положении относительно лопастей ротора. VIGV находятся перед лопастями ротора, а VSV — за лопастями ротора. Углы входных направляющих лопаток и первых нескольких ступеней лопаток статора могут изменяться. Во время работы воздух поступает в переднюю часть двигателя и направляется в компрессор под правильным углом с помощью регулируемой впускной направляющей и направляется VSV.Воздух сжимается и нагнетается в камеру сгорания. Топливное сопло, которое входит в каждую гильзу сгорания, распыляет топливо для сгорания. Эти переменные контролируются в прямой зависимости от количества мощности, которое двигатель требуется для выработки положения рычага мощности.

Большинство турбовентиляторных двигателей относятся к компрессорному типу с раздельным золотником. В большинстве крупных турбовентиляторных двигателей используется большой вентилятор с несколькими ступенями сжатия, называемый золотником низкого давления. Эти турбовентиляторные двигатели включают в себя два компрессора с соответствующими турбинами и соединительными валами, которые образуют две физически независимые роторные системы.Многие системы с двумя роторами имеют роторы, вращающиеся в противоположных направлениях и не имеющие механического соединения друг с другом. Второй золотник, называемый золотником высокого давления, представляет собой компрессор для газогенератора и сердечника двигателя, подает воздух в секцию сгорания двигателя.

Преимущества и недостатки обоих типов компрессоров включены в следующий список. Несмотря на то, что у каждого типа есть преимущества и недостатки, каждый имеет свое применение в зависимости от типа и размера двигателя.

Преимущества центробежного компрессора:

  • Высокий рост давления на ступень,
  • Эффективность в широком диапазоне частот вращения,
  • Простота изготовления и низкая стоимость,
  • Малый вес и
  • Низкие требования к пусковой мощности.

К недостаткам центробежного компрессора относятся:

  • Его большая фронтальная площадь для заданного воздушного потока и
  • Потери при поворотах между ступенями.

Преимущества осевого компрессора:

  • Высокий пиковый КПД;
  • Небольшая передняя поверхность для заданного воздушного потока;
  • Прямоточный поток, обеспечивающий высокую эффективность гидроцилиндра; и
  • Повышенное давление за счет увеличения числа ступеней с незначительными потерями.

Недостатки осевого компрессора:

  • Хороший КПД только в узком диапазоне частот вращения,
  • Сложность изготовления и высокая стоимость,
  • Относительно большой вес и
  • Высокие требования к пусковой мощности компрессоры).

Летный механик рекомендует

Лопатка компрессора — обзор

5.10 Ступени компрессора с высоким числом Маха

Как уже говорилось в главе 3, характеристики лопаток компрессора ухудшаются, когда относительное число Маха на входе превышает примерно 0.7, поскольку относительные числа Маха в каналах лопастей превышают единицу, а дополнительные потери возникают из-за ударных волн и более толстых пограничных слоев. Кроме того, высокие числа Маха сокращают рабочий диапазон компрессора, поскольку поток становится более чувствительным к изменениям угла входа.

Однако есть два ключевых преимущества ступеней компрессора с большим числом Маха. Во-первых, высокие относительные числа Маха в компрессоре подразумевают высокий массовый расход на единицу площади, что приводит к более компактной (меньшего диаметра) машине для данного массового расхода.Во-вторых, высокие числа Маха вызваны высокими скоростями лопастей, которые обеспечивают больший вклад работы в поток и, следовательно, более высокие отношения давлений. Используя определения нагрузки ступени и политропного КПД, степень сжатия ступени для компрессора может быть записана как

(5,27) p03p01 = [ψU2CpT01 + 1] γηp / (γ − 1)

Это показывает, что высокие отношения давлений ступени могут достигается за счет высоких скоростей вращения лопастей в сочетании с высокой загрузкой ступени и эффективностью. В современных трансзвуковых компрессорах относительное число Маха на входе ротора до 1.7 теперь используются, и возможны одноступенчатые отношения давления более 2.

Калверт и Гиндер (1999) подробно описывают конструкцию ступеней трансзвукового компрессора. Они также описывают эволюцию современных трансзвуковых компрессоров и основные достижения. Ступени трансзвукового компрессора в настоящее время используются в одноступенчатых вентиляторах реактивных двигателей с высокой степенью двухконтурности, в многоступенчатых вентиляторах двигателей с низкой степенью двухконтурности и в передних ступенях многоступенчатых компрессоров. Вентилятор гражданского реактивного двигателя является особенно важным компонентом, поскольку он производит более 80% тяги двигателя современного гражданского самолета.Для минимизации размера двигателя необходим высокий массовый расход на единицу площади, а относительные числа Маха на впуске составляют около 1,4 на конце. Типичный политропный КПД превышает 90%, а текущие расчетные отношения давления составляют от 1,6 до 1,8.

Чтобы уменьшить влияние высоких относительных чисел Маха в околозвуковых компрессорах, используются очень тонкие лопасти, чтобы уменьшить их засорение, и обычно отношение толщины лопаток к хорде составляет всего несколько процентов. Кроме того, чтобы уменьшить пиковое число Маха на поверхности лопасти, лопасти имеют очень низкий изгиб с поворотом всего на несколько градусов.В результате секции лопастей по направлению к кончику высокоскоростного компрессора напоминают острые, тонкие и почти плоские пластины.

На рис. 5.11 показана структура потока в лопатке ротора высокоскоростного компрессора со сверхзвуковым входным относительным числом Маха. При изменении рабочей точки компрессора положение скачка уплотнения меняется. Когда поток полностью перекрывается, амортизатор движется назад, так что он полностью поглощается каналом для лезвия. При более низких массовых расходах, когда компрессор приближается к остановке, амортизатор выталкивается из передней части лопаточного канала.Рабочая точка, соответствующая пиковому КПД, обычно возникает, когда ударная волна приближается к передней кромке лопасти.

Рисунок 5.11. Обтекание ротора сверхзвукового компрессора.

Интересно понять, как рисунок удара на рис. 5.11 приводит к очень большому количеству работы в потоке, проходящем через компрессор. Рассмотрим треугольники скорости на входе и выходе из ротора компрессора. Поперек проходящей ударной волны, как показано на рисунке 5.11, поток не сильно поворачивается, но плотность резко возрастает.Следовательно, относительная скорость за скачком будет намного меньше, чем перед скачком. Предполагая, что скорость лопасти и относительные углы потока одинаковы на входе и выходе ротора, треугольники скорости показывают, что поворот потока в абсолютной системе отсчета является исключительно результатом замедления потока в относительной системе отсчета. В отличие от этого, низкоскоростной ротор компрессора обеспечивает входную работу для потока, поворачивая поток как в относительной, так и в абсолютной системе отсчета.

Нормальная ударная волна в роторе сверхзвукового компрессора приводит к увеличению энтропии в потоке, как определяется уравнением.(4.21), который может быть выражен как коэффициент потерь с помощью уравнения. (5.8) как

(5.28a) Yp, shock = 1 − exp (−Δsshock / R) (1 − p1 / p01, отн.) ≅ΔsshockR (1 − p1 / p01, отн.)

, который может быть выражен как функция относительного числа Маха на входе, M 1, отн и γ . Эта функция показана на рисунке 5.12 для воздуха, а также соответствующее изменение степени статического давления при ударе, заданное формулой

, рисунок 5.12. Изменение степени статического давления и потерь для нормального скачка уплотнения.

(5.28b) p2p1 = 1 + 2γγ + 1 (M1, rel2−1)

Это показывает, что рост давления, создаваемый нормальной ударной волной, велик, в то время как сами ударные потери удивительно низки вплоть до относительного числа Маха на входе. числа 1,5. Однако следует отметить, что ударная волна также создает потери косвенно за счет взаимодействия с пограничными слоями лопасти, которые утолщаются из-за повышения статического давления в скачке уплотнения, и в некоторых случаях поток может отделяться. Если избежать этого риска разделения, ударная волна является высокоэффективным способом сжатия потока, что подтверждается высокой эффективностью современных околозвуковых компрессоров.

Основы турбокомпрессора

Основы турбокомпрессора

Ханну Яэскеляйнен, Магди К. Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Турбокомпрессоры — это центробежные компрессоры, приводимые в действие турбиной выхлопного газа и используемые в двигателях для повышения давления наддувочного воздуха. Производительность турбокомпрессора влияет на все важные параметры двигателя, такие как экономия топлива, мощность и выбросы.Прежде чем перейти к более подробному обсуждению специфики турбокомпрессора, важно понять ряд фундаментальных концепций.

Конструкция турбокомпрессора

Турбокомпрессор состоит из колеса компрессора и колеса турбины выхлопного газа, соединенных сплошным валом и используемого для повышения давления всасываемого воздуха двигателя внутреннего сгорания. Турбина выхлопного газа извлекает энергию из выхлопного газа и использует ее для привода компрессора и преодоления трения.В большинстве автомобильных применений и компрессор, и турбинное колесо являются радиально-проточными. В некоторых приложениях, таких как средне- и низкооборотные дизельные двигатели, можно использовать колесо турбины с осевым потоком вместо турбины с радиальным потоком. Поток газов через типичный турбокомпрессор с радиальным компрессором и турбинными колесами показан на Рисунке 1 [482] .

Рисунок 1 . Конструкция турбокомпрессора и расход газов

(Источник: Schwitzer)

Центр-Жилье. Общий вал турбина-компрессор поддерживается системой подшипников в центральном корпусе (корпусе подшипника), расположенном между компрессором и турбиной (Рисунок 2). Узел колеса вала (SWA) относится к валу с прикрепленными колесами компрессора и турбины, то есть к вращающемуся узлу. Узел вращения центрального корпуса (CHRA) относится к SWA, установленному в центральном корпусе, но без корпусов компрессора и турбины. Центральный корпус обычно отлит из серого чугуна, но в некоторых случаях может использоваться и алюминий.Уплотнения предотвращают попадание масла в компрессор и турбину. Турбокомпрессоры для систем с высокой температурой выхлопных газов, таких как двигатели с искровым зажиганием, также могут иметь охлаждающие каналы в центральном корпусе.

Рисунок 2 . Турбонагнетатель в разрезе

Турбонагнетатель отработавших газов бензинового двигателя в разрезе, показывающий рабочее колесо компрессора (слева) и колесо турбины (справа). Подшипниковая система состоит из упорного подшипника и двух полностью плавающих опорных подшипников.Обратите внимание на охлаждающие каналы.

(Источник: BorgWarner)

Подшипники турбокомпрессора

Подшипники. Система подшипников турбокомпрессора проста по конструкции, но играет ключевую роль в ряде важных функций. К наиболее важным из них относятся: контроль радиального и осевого движения вала и колес и минимизация потерь на трение в подшипниковой системе. Подшипниковым системам уделяется значительное внимание из-за их влияния на трение турбокомпрессора и его влияние на топливную экономичность двигателя.

За исключением некоторых крупных турбокомпрессоров для тихоходных двигателей, подшипники, поддерживающие вал, обычно расположены между колесами в выступе. Эта гибкая конструкция ротора гарантирует, что турбокомпрессор будет работать выше своей первой и, возможно, второй критических скоростей, и, следовательно, может подвергаться динамическим условиям ротора, таким как завихрение и синхронная вибрация.

Уплотнения. Уплотнения расположены на обоих концах корпуса подшипника. Эти уплотнения представляют собой сложную конструктивную проблему из-за необходимости поддерживать низкие потери на трение, относительно больших перемещений вала из-за зазора в подшипниках и неблагоприятных градиентов давления в некоторых условиях.

Эти уплотнения в первую очередь служат для предотвращения попадания всасываемого воздуха и выхлопных газов в центральный корпус. Давление во впускной и выпускной системах обычно выше, чем в центральном корпусе турбонагнетателя, который обычно находится на уровне давления в картере двигателя. По существу, они в первую очередь предназначены для уплотнения центрального корпуса, когда давление в центральном корпусе ниже, чем во впускной и выпускной системах. Эти уплотнения не предназначены для использования в качестве основного средства предотвращения утечки масла из центрального корпуса в выхлопную и воздушную системы.Попадание масла в контакт с этими уплотнениями обычно предотвращается другими средствами, такими как масляные дефлекторы и вращающиеся пальцы.

Уплотнения турбокомпрессора отличаются от уплотнений с мягкой кромкой, которые обычно используются во вращающемся оборудовании, работающем при гораздо более низких скоростях и температурах. Уплотнение с поршневым кольцом — это один из наиболее часто используемых типов уплотнений. Он состоит из металлического кольца, внешне похожего на поршневое кольцо. Уплотнение остается неподвижным при вращении вала. Иногда используются уплотнения лабиринтного типа.Обычно уплотнения вала турбокомпрессора не предотвращают утечку масла, если перепад давления меняется на противоположный, так что давление в центральном корпусе выше, чем во впускной или выпускной системах.

###

Когда центробежный и поршневой компрессоры работают вместе

Хотя эксплуатация и техническое обслуживание центробежных компрессоров последовательно, параллельно или в сочетании широко изучаются, центробежные и поршневые компрессоры теперь работают вместе в смешанной конфигурации.Центробежный компрессор обычно представляет собой большой компрессор с приводом от газовой турбины, обеспечивающий сжатие при основной нагрузке, в то время как меньшие компрессоры обеспечивают циклическую или пиковую нагрузку. В таких случаях центробежный компрессор может испытывать некоторые пульсации поршневого компрессора как на общем всасывающем, так и на выпускном коллекторах.

Хорошая конструкция баллона и коллектора поршневого компрессора может минимизировать влияние на стабильность работы центробежного компрессора. Но в некоторых конструкциях поршневые компрессоры устанавливаются последовательно с центробежными компрессорами либо для приложений с высоким соотношением давлений, либо для использования эксплуатационной гибкости центробежного компрессора (т.(например, предлагаются устройства с поршневым компрессором до и после центробежного компрессора).

Например, центробежный компрессор может быть размещен перед поршневым компрессором в системах обратной закачки газа для обработки больших объемов потока при низком давлении, в то время как поршневые компрессоры лучше оборудованы для высоких давлений и отношений давлений. Центробежные компрессоры часто устанавливаются после одного или нескольких поршневых компрессоров в системах сбора газа, где несколько потоков очень низкого давления из поршневого компрессора (ов) объединяются в один поток среднего давления большего объема, который сжимается до давления в трубопроводе с помощью центробежного компрессора. .По словам экспертов по турбомашиностроению Райнера Курца и Клауса Бруна, такая компоновка установки может привести к значительно более высоким относительным пульсациям на центробежном компрессоре, чем при параллельной работе, и это может повлиять на стабильность работы компрессора.

В докладе «Влияние пульсаций на предел помпажа центробежных компрессоров на станциях с поршневыми и центробежными компрессорами», представленном на симпозиуме 2009 года по турбомашинному оборудованию в Хьюстоне, штат Техас, они проанализировали различные аспекты этих операций.

В их статье отмечается, что обычно центробежный компрессор, работающий с давлением всасывания 40 бар (600 фунтов на кв. Дюйм) и давлением нагнетания 70 бар (1000 фунтов на квадратный дюйм), может испытывать пульсации на входе поршневого компрессора, пиковые значения которых превышают 10 бар (150 фунтов на квадратный дюйм). до пика, если не используются устройства для подавления пульсаций (бутылки, дроссельные трубки или диафрагмы) или существует резонанс акустической трубы. Эти колебания давления всасывания до 25 процентов, несомненно, представляют проблему для аэродинамической устойчивости любого центробежного компрессора, особенно если компрессор работает рядом с линией помпажа.Таким образом, расположение трубопроводов между поршневым и центробежным компрессорами должно быть должным образом проанализировано, чтобы избежать условий акустического резонанса и / или ослабить пульсации давления от поршневого компрессора.

В документе показано, что за счет правильного анализа и проектирования соединительных трубопроводов между компрессорами, использования устройств подавления пульсаций и согласования массовых расходов компрессора, удовлетворительная функциональная конструкция системы сжатия может быть достигнута даже для наихудших случаев смешанного центробежного и поршневой компрессор.В документе предупреждается, что даже небольшие ошибки анализа, конструктивные отклонения или несовпадения машин могут привести к серьезным ограничениям (или даже неработоспособности) системы сжатия. Кроме того, конструкции с ослаблением пульсаций часто приводят к значительным потерям давления в трубопроводе.

Mitsubishi Power | M501J Series

Газовые турбины серии J представляют собой сочетание проверенной серии G и элементарных технологий для повышения температуры в результате национального проекта Японии по разработке газовых турбин класса 1700 ° C.Они работают при температуре на входе в турбину 1600 ° C. В газовых турбинах серии M501JAC используется воздушное охлаждение камер сгорания вместо охлаждения паром. Обладая характеристиками, эквивалентными газовым турбинам серии M501J, они обеспечивают высокий уровень работоспособности, включая более короткое время запуска.

Общий дизайн

Газотурбинный агрегат основан на базовой конструкции, принятой в начале 1970-х годов, за плечами которой не менее 40 лет. Его основные характеристики следующие:

  • Концевой привод вала компрессора снижает влияние теплового расширения на центровку
  • Ротор с простой одновальной двухопорной опорой
  • Конструкция ротора имеет соединенные болтами диски с моментными штифтами в компрессорной секции и муфты CURVIC в турбинной секции для обеспечения стабильной передачи крутящего момента.
  • Конструкция выхлопа с осевым потоком, выгодная при компоновке электростанций с комбинированным циклом
  • Горизонтально разъемные кожухи, облегчающие снятие лопастей в полевых условиях с установленным ротором

Компрессор

Передовые методы трехмерного проектирования используются для повышения производительности при одновременном снижении потерь от ударной волны на начальных этапах и потерь на трение на промежуточных и конечных этапах.Входные направляющие лопатки и регулируемые неподвижные лопатки на первых трех ступенях управляются для обеспечения стабильной работы при запуске и улучшенных характеристик при частичной нагрузке в режиме комбинированного цикла.

Камера сгорания

Камера сгорания серии J основана на системе парового охлаждения, испытанной с серией G. Улучшенная топливная форсунка используется для создания более однородной смеси топлива и воздуха. Несмотря на повышение температуры на входе в турбину, в камере сгорания достигается концентрация выбросов NOx, эквивалентная концентрации G Series.

Включая камеры сгорания с воздушным охлаждением, серия JAC добавляет эксплуатационную гибкость, устраняя необходимость в паровом охлаждении из нижнего цикла.

Турбина

Температура на входе в турбину на 100 ° C выше, чем у серии G. Однако применение высокоэффективных технологий охлаждения, разработанных в рамках национального проекта Японии по разработке газовых турбин класса 1700 ° C, и усовершенствованного термобарьерного покрытия (TBC) помогает поддерживать температуру металла лопаток турбины на уровне обычных газовых турбин. .

Конфигурация

M501J M501JAC
Компрессор Количество ступеней 15 15
Камера сгорания Количество банок 16 16
Метод охлаждения с паровым охлаждением с воздушным охлаждением
Турбина Количество ступеней 4 4
Ротор Количество роторов 1 1
Выходной вал Холодный конец Холодный конец
Номинальная скорость 3600 об / мин 3600 об / мин
Газовая турбина Прибл.Д × Ш × В 14,4 × 5,4 × 5,7 м 15,0 × 5,6 × 5,6 м
Прибл. Вес 320 тонн 347 тонн

Производительность простого цикла

M501J M501JAC
Частота 60 Гц 60 Гц
Базовый рейтинг ISO 330 МВт 435 МВт
КПД 42.1% LHV 44,0% LHV
LHV Тепловая мощность 8,552 кДж / кВт · ч 8182 кДж / кВт · ч
8,105 БТЕ / кВтч 7,755 БТЕ / кВтч
Выхлоп 620 кг / с 764 кг / с
1367 фунтов / с 1685 фунтов / с
Температура выхлопных газов 635 ° С 645 ° С
1,176 ° F 1,193 ° F
Выхлопные газы NOx 25 [адрес электронной почты защищен]% O 2 25 [адрес электронной почты защищен]% O 2
CO 9 [адрес электронной почты защищен]% O 2 9 [адрес электронной почты защищен]% O 2
Регулируемая нагрузка 50% 50%
Скорость разгона 40 МВт / мин 42 МВт / мин
Время начала 30 минут 30 минут

Производительность в смешанном цикле

M501J M501JAC
1 по 1 Объем производства 484 МВт 630 МВт
Эффективность установки 62.0% LHV > 64,0% НТС
2 по 1 Объем производства 971 МВт 1263 МВт
Эффективность установки 62,2% LHV > 64,2% ЛХВ

Кривые коррекции производительности

  • Влияние температуры на входе компрессора на производительность газовой турбины (типичное значение)
  • Влияние атмосферного давления на характеристики газовой турбины (типовое значение)

Типовая компоновка установки — конфигурация 1 на 1, одновальный

  • Газовые турбины
  • Паровые турбины
  • Генераторы
  • Впускной воздушный фильтр
  • Парогенератор-утилизатор (HRSG)
  • Комплект электрооборудования / управления
  • Главный трансформатор
  • Конденсатор

Типовая компоновка завода — конфигурация 2 на 1

  • Газовые турбины
  • GT Генератор
  • Паровые турбины
  • Генератор ST
  • Впускной воздушный фильтр
  • Парогенератор-утилизатор (HRSG)
  • Комплект электрооборудования / управления
  • Главный трансформатор GT
  • Главный трансформатор ST
  • Конденсатор

Основные отчеты о доставке

Himeji No.2 Электростанция, The Kansai Electric Power Co., Inc. (Япония) (Фото любезно предоставлено The Kansai Electric Power Co, Inc.)
2919 МВт, 6 x M501J

ПТК-2, Korea Western Power Co., Ltd. (Корея)
950 МВт, 2 x M501J

Электростанция Ульсан, Korea East-West Power Co., Ltd. (Корея)
950 МВт, 2 x M501J

Электростанция Юлчон, MPC Yulchon Generation Co., Ltd. (Корея)
950 МВт, 2 x M501J

Последние заказы
Количество агрегатов x Серия Год ввода в эксплуатацию Технические характеристики завода
Электростанция округа Гринсвилл, Вирджиния Электроэнергетическая компания (VEPCO) (США) 3 × M501J 2018 Комбинированный цикл
Noreste Power Plant, Comisión Federal de Electricidad (CFE) / Iberdrola (Мексика) 2 × M501J 2018 Комбинированный цикл
Shin Pyeongtaek Power Co.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Разное