Система зажигания электронная бесконтактная: Схема бесконтактного зажигания ЗИЛ 130 opex.ru

Содержание

Схема бесконтактного зажигания ЗИЛ 130 opex.ru

Array
(
    [DATE_ACTIVE_FROM] => 13.08.2020 10:29:00
    [~DATE_ACTIVE_FROM] => 13.08.2020 10:29:00
    [ID] => 509221205
    [~ID] => 509221205
    [NAME] => Схема бесконтактного зажигания ЗИЛ 130
    [~NAME] => Схема бесконтактного зажигания ЗИЛ 130
    [IBLOCK_ID] => 33
    [~IBLOCK_ID] => 33
    [IBLOCK_SECTION_ID] => 
    [~IBLOCK_SECTION_ID] => 
    [DETAIL_TEXT] => 

ДВС – это комплектующее «сердце» в автомобиле любой марки и модели. Однако эффективность и надлежащее качество функционирования определяется тем, насколько правильно выполняет работу зажигание на ЗИЛ. Чтобы в будущем справиться с любой неисправностью или диагностировать ее без обращения в специализированный сервис, поможет схема зажигания для зил 130. Конструкция включает ряд комплектующих. Каждый элемент имеет свои отличительные особенности.

Принцип функционирования

У любого автомобиля с бензиновым двигателем основной функцией зажигания является воспламенение горючей смеси в специальном цилиндре с подачей искры.

Дальнейшая передача осуществляется на контакт в цилиндре ДВС. Схема бесконтактного зажигания у ЗИЛ 130 работает в поочередном порядке для воспламенения топливо воздушной консистенции в определенный промежуток времени. Важно отметить, что СЗ не только способствует воспламенению, а также подает искру.

Согласно схеме подключения бесконтактного зажигания у ЗИЛ 130, первоначально батарея аккумулятора способна вырабатывать ток в определенном эквиваленте, но силы оказывается недостаточно, чтобы воспламенить смесь. Чтобы справиться с поставленной задачей, была разработана и изготовлена СЗ, увеличивающая мощность АКБ. В результате аккумулятор способен передавать напряжение на свечу для поджигания горючей смеси. Контактная схема зажигания зил 130 предполагает выполнение определенного порядка действий, чтобы создать нормальную работу двигателя.

Важно принять во внимание, что контактная или бесконтактная система зажигания у ЗИЛ 130 в обязательном порядке должны функционировать в соответствии с набором строгих требований:

  1. Подача искры на систему зажигания должна осуществляться во временной промежуток, который используется согласно настройкам и установлен заранее.
    Они устанавливают и фиксируют порядок работы цилиндров. Если настройки будут сделаны неправильно, это может привести к проблеме функционирования всего ДВС.
  2. Транзисторная система должна работать с максимальной точностью. Например, если будет обнаружена минимальная задержка (хотя бы на миллисекунды), то запустить двигатель невозможно.
  3. Параметры в настройках СЗ должны совпадать для подачи воспламенения топливовоздушной смеси с установленной плотностью.
  4. Надежная работа вне зависимости от вида автомобиля.

Только при соблюдении выше установленных правил можно говорить о правильной и эффективной работе СЗ. Схема у транзисторной системы зажигания ЗИЛ описывает комплексное устройство и включение определенных элементов, с которыми важно ознакомиться перед установкой или заменой комплектующих.

Как устроена система

ЗИЛ 130 обладает контактно-транзисторной системой с замком. Чтобы разобраться в схеме работы, целесообразно рассмотреть отличительные особенности комплектующих.

Также может быть полезным ознакомиться с системой зажигания для бесконтактной схемы ЗИЛ 130.

Ниже представлена схема для замка зажигания ЗИЛ 130:

Катушка №Б114-Б

Располагается конструкция в передней части щитка на кабине. Снабжена 2 выводами на обмотку первой цепочки. В процессе установки важно контролировать правильность подключения проводов.

Вывод, обозначенный «К», подсоединяют к одноименному проводу на вывод коммутатора. Вывод без названия к коммутационному проводу. Важно обратить внимание, что катушку используют только для работы с коммутатором транзистора. Использование других видов категорически запрещается.

Обмотку катушек №Б114-Б проверяют на специальном стенде. Если возникает неустойчивая искра или не появляется вовсе, это свидетельствует о некачественной или неисправной обмотке. Чтобы выяснить, в каком состоянии находится конструкция, первоначально измеряют сопротивление.

Положительным результатом является соответствие техническим характеристикам.

Если электронное зажигание ЗИЛ имеет неисправности, зачастую проявляется чрезмерный нагрев. Тогда первичная цепочка не разомкнута, а зажигание выключено. В такой ситуации температура элемента может увеличиваться до 120 градусов. Если элемент перестает работать, то выполняется замена конструкции.

Рядом располагается дополнительный резистор (включающий подключенные 2 резистора в определенной последовательности). Когда осуществляется запуск двигателя при помощи стартера, происходит короткое замыкание одного из последовательно подключенных конструктивных элементов, что приводит к увеличению напряжения.

Важно обращать внимание на соблюдение правил при подключении проводов к дополнительному резистору. К ВК подключают стартерный провод, а ВК-Б от выключателя зажигания, к выводу К – транзисторный коммутатор. Когда ставят новые спирали, то дополнительный транзистор демонтируют с транспортного средства.

Бесконтактная система зажигания у ЗИЛ имеет несколько иной порядок, поэтому предварительно рекомендуется изучить техническую документацию.

Распределитель выглядит следующим образом:


Транзисторный коммутатор

Конструкция позволяет коммутировать электрической ток в первой обмотке (первичная цепочка катушки разрывается в определенный момент посредством задействования большого сопротивления выходного транзистора). Схема подключения бесконтактной системы зажигания марки ЗИЛ 130 вырабатывает более высокую мощность за счет увеличения тока на второй обмотке. Элемент располагается на левой стороне кабины. Важно обратить внимание, что коммутатор способен функционировать только при условии температурного режима до + 70 и -60 градусов.

Если устройство в эксплуатационных условиях перестает работать, то придется покупать новую запчасть, поскольку ремонт сделать невозможно. Чтобы проверить правильность работы конструкции, необходимо разомкнуть распределительные контакты и обратиться к схеме подключения.

Когда электропровода находятся в функционирующем состоянии, на дополнительном резисторе, двух катушках зажигания и клеммах P возникают определенные показатели.

Если элементы конструкции и провода находятся в исправном состоянии, а на клемме P не будет возникать напряжения. Это будет свидетельствовать о том, что коммутатор вышел из строя, и потребуется сделать полную замену.

Когда нет запасного элемента, то реально перевести СЗ с транзисторной на альтернативный вариант. Для этого осуществляется установка конденсатора и катушки, чтобы получить дополнительное сопротивление. Электросхема зажигания ЗИЛ 130 при правильной сборке поможет справиться с поставленной задачей.

Распределитель зажигания

Элемент соответствует показателю в 8 искр. Работает совместно с катушкой зажигания №Б114-Б, предназначенной для прерывания тока с низким напряжением в первичной обмотке катушки зажигания и распределения по свечам тока с высоким напряжением.

Контактно- транзисторная система отличается тем, что в ней отсутствует шунтирующий конденсатор.


Как разобрать распределитель

Схема зажигания содержит инструкцию по разборке распределителя. Чтобы осуществить процедуру правильно, потребуется следующее:

  • Удалить загрязнения, пятна от масла.
  • Открутить 24-ый болт с октановых пластин корректора, затем освободить корпус от 22-ой и 23-ей пластины вместе с регулирующими болтами, прокладкой, располагающейся между двумя конструкциями в виде пластин. Снимается крышка, отстегивают защелки, снимают ротор и приступают к последующему разбору.
  • Чтобы демонтировать вакуумный регулятор, потребуется открутить в нижней части пару винтов, прикрученных к корпусу конструкции. Далее потребуется вывернуть винт в подвижном диске. В этот момент отсоединить перемычки.
  • Чтобы избавиться от рычажка, потребуется ослабить винты креплений клеммы проводов первой цепи, удалить с конструкции кольцо, провода и рычажки в сборе вместе с пружиной.
  • Чтобы демонтировать клемму первичной цепи, нужно демонтировать крепления, которые удерживают провод, затем отключить его и избавиться от внутреннего изолятора, а затем выкрутить из корпуса клемму вместе со всеми элементами.
  • Пластина оснащена неподвижным контактом прерывателя. Чтобы от нее избавиться, нужно открутить один винт крепежа пластины к диску, снять пластину, используя отвертку.
  • Снятие подвижных и неподвижных дисков осуществляется после откручивания винтов крепления к корпусу. Нужно отсоединить провод массы, а затем избавиться от двух дисковых держателей. Теперь можно вынуть из корпуса распределители вместе с подшипником.

Внимание: подшипник опрессовывают, когда требуется новая деталь, поскольку конструкция завальцована внизу дисковой части. В разжимном кронштейне присутствует фильц из фетра. Если потребуется, конструкцию демонтируют, промывают и возвращают в исходное положение.

Фильц вытягивают, чтобы разобрать центробежный регулятор. Из полости оси кулачка вынимают замочное кольцо (7) при помощи металлического острого стержня и плоскогубцев. Снимается упорная шайба с валика и кулачок 2В в сборке вместе с пластиной.

Чтобы демонтировать пластины центробежного регулятора, потребуется открепить плоские опорные шайбы с использованием подходящего инструмента: снять ограничительные пальцы, избавить от штифтов (6) ограничительные пружины и снизу пластины регулировочные грузики.

Для снятия валика выпрессовки из распределительного элемента, потребуется избавиться от масленки, затем на верстак устанавливается корпус с предварительной подложкой муфты, далее выбивают штифт, чтобы закрепить конструкцию.

Как сделать проверку деталей

Для начала потребуется сделать проверку имеющихся деталей, контактов на рычажках и закрепленных стойках прерывания зажигания. Если элементы подвержены чрезмерной эксплуатации, либо подгорают, то потребуется сделать чистку согласно схеме зажигания для ЗИЛ 130.

Когда срабатывает контактно-транзисторная система, то прохождение тока осуществляется исключительно посредством электронной системы. В результате возможно избежать возникновения коррозии или возгорания контактов без дополнительной защиты.

Контактная и бесконтактная система требует контроля состояния контактов. Особенно чистоту первого варианта системы, поскольку сила проходящего тока мала. Если появляется пленка из окиси или масла, то могут возникнуть нарушения в проведении тока. Для устранения возникшей проблемы рекомендуется сделать промывку бензином. Когда транспортное средство не эксплуатируется продолжительное время и появилась окись, требуется сделать зачистку контактов. В решении поставленной задачи поможет мелкая шлифовальная шкурка или абразивная пластина. При этом металл не снимается. В противном случае уменьшается эксплуатационный срок элементов.


Как сделать сборку

Система зажигания может потребовать для ЗИЛ 130 внедрения распределительного валика, тогда понадобится сделать запрессовку втулок в корпусной части конструкции. Для этого необходимо установить натяжение в диапазоне 0,05-0,2мм, а затем сделать подгон с учетом размеров валика, используя соответствующие инструменты. Элементы закрепляются при помощи штифта расклепыванием концов. Важно обратить внимание, что потребуется наличие свободного вращения валика.

Снизу подвижного элемента пластины монтируют регулятор с центробежной силой на осях и соединяются при помощи пружин, задающих ограничение. На валик надевают одну шайбу, а на ограничительные пальцы подвижные пластины (5 шт) и плоские шайбы (2 шт). Кулачок вместе с втулкой устанавливается наверх распределительной части пластины. Пальцы направляются в прорези пяти пластин регулятора с центробежной силой. На конец валика устанавливается упорная шайба и идет закрепление кулачка. Далее пропитывается маслом фильц из фетра и вставляется в кулачковую полость.

Установить и закрепить прерыватель можно до того, как будут закреплены диски в корпусной части и после окончательного монтажа. Второй вариант встречается реже. Подвижные и неподвижные диски устанавливаются в корпусной части, включая подшипники, закрепляя винтами (2 шт) и специальными шайбами.

Сделать установку клеммы первой цепи вместе с изоляторами. Остается прикрепить конец провода и зафиксировать гайкой. Прикрепить пластину с неподвижным концом на оси рычажка. Чтобы регулировать зазоры, предварительно пластина фиксируется специальным винтом.

Тяп вакуумного регулятора фиксируется на оси подвижного диска. Корпус закрепляется посредством двух винтов. Предварительно в конструкцию вставляется специальная пружина, шайбы для регулировки закрепляются гайками с шайбами в виде уплотнителей. Установка осуществляется таким образом, чтобы тяга смогла повернуть подвижный диск в крайнее положение в соответствии с поздним зажиганием.

Регулировка положения осуществляется посредством передвижения вакуумного регулятора в соответствии с распределительным корпусом. Его поворот осуществляется вокруг посредством овальных отверстий в корпусе. Если этого будет недостаточно, осуществляется дополнительная регулировка шайбами, установленными между штуцерами и торцами пружины.


На корпус распределителя устанавливаются октановые пластины и закрепляются. В процессе сборки рекомендуется в качестве смазочного материала использовать масло без примесей: для осей двигателя рычажка и кулачка. Также нужно использовать масленку со специальной смазкой и нанести на втулку валика, закрученную в корпус распределителя.

Расстояние от одного контакта до другого регулируется на распределителе. Предварительно его можно снять или оставить в установленном состоянии на двигателе. Чтобы отрегулировать зазор на контактах прерывателя, потребуется установка кулачка. При этом контакты должны быть раздвинуты на максимальном расстоянии, чтобы замерить выступы кулачка.

Для регулировки зазора ослабляют винт, крепежи пластины с неподвижным контактом. Берется отвертка, посредством которой происходит вращение регулировочного эксцентрика. Конструкция устанавливается по щупу до 0,35 мм толщины. Затягивается винт и повторно контролируется величина зазора и щупа. Следует заранее смочить тряпку и протереть поверхности. Зазор между контактами должен составлять в диапазоне 0,3-0,4 мм.

После того, как мероприятие будет завершено, потребуется сделать проверку упругости пружинки, рычажков, прерывателя. Если элемент будет недостаточно упругим, могут возникнуть технические неисправности в работе двигателя и электросхемы. Негативным образом может сказаться слишком большой показатель упругости, что ускоряет потерю первоначальных характеристик. Чтобы осуществлять контроль данного показателя, используется динамометр. Конец крепится за рычажок, а затем инструмент растягивают до того момента, пока не появится разрыв в контактах. Оптимальный показатель усилия варьируется до 650 гс.

Центробежные и вакуумные регулировщики должны проверяться исключительно на приборах с искровым зарядником. Октановая шкала корректировки фиксируется на основании количества октанового числа бензина, на котором функционирует ЗИЛ-130. Насколько точно выполнена установка, определяется по октановой шкале.

Заключение

Чтобы выполнить ремонтные работы или замену элементов, входящих в систему зажигания, понадобится схема подключения бесконтактного варианта для ЗИЛ 130. Если самостоятельных познаний в данной сфере не существует, настоятельно рекомендуется осуществлять все мероприятия по замене или подключению элементов под присмотром профессионалов.

В большинство случаев требуется полная замена комплектующих на новые элементы в электронном зажигании, что позволит сохранить технические характеристики автомобиля и организовать его дальнейшую полноценную эксплуатацию. Если осуществляется комплексная установка, то, как правило, прослеживается небольшая детонация, которая исчезает уже на скорости до 45 км/ч. Если планируется использование бесконтактного зажигания перед тем, как начать работы, рекомендуется ознакомиться с эксплуатационными особенностями и нормами, чтобы избежать серьезных поломок электронного оборудования.

[~DETAIL_TEXT] =>

ДВС – это комплектующее «сердце» в автомобиле любой марки и модели. Однако эффективность и надлежащее качество функционирования определяется тем, насколько правильно выполняет работу зажигание на ЗИЛ. Чтобы в будущем справиться с любой неисправностью или диагностировать ее без обращения в специализированный сервис, поможет схема зажигания для зил 130. Конструкция включает ряд комплектующих. Каждый элемент имеет свои отличительные особенности.

Принцип функционирования

У любого автомобиля с бензиновым двигателем основной функцией зажигания является воспламенение горючей смеси в специальном цилиндре с подачей искры. Дальнейшая передача осуществляется на контакт в цилиндре ДВС. Схема бесконтактного зажигания у ЗИЛ 130 работает в поочередном порядке для воспламенения топливо воздушной консистенции в определенный промежуток времени. Важно отметить, что СЗ не только способствует воспламенению, а также подает искру.

Согласно схеме подключения бесконтактного зажигания у ЗИЛ 130, первоначально батарея аккумулятора способна вырабатывать ток в определенном эквиваленте, но силы оказывается недостаточно, чтобы воспламенить смесь. Чтобы справиться с поставленной задачей, была разработана и изготовлена СЗ, увеличивающая мощность АКБ. В результате аккумулятор способен передавать напряжение на свечу для поджигания горючей смеси. Контактная схема зажигания зил 130 предполагает выполнение определенного порядка действий, чтобы создать нормальную работу двигателя.

Важно принять во внимание, что контактная или бесконтактная система зажигания у ЗИЛ 130 в обязательном порядке должны функционировать в соответствии с набором строгих требований:

  1. Подача искры на систему зажигания должна осуществляться во временной промежуток, который используется согласно настройкам и установлен заранее. Они устанавливают и фиксируют порядок работы цилиндров. Если настройки будут сделаны неправильно, это может привести к проблеме функционирования всего ДВС.
  2. Транзисторная система должна работать с максимальной точностью. Например, если будет обнаружена минимальная задержка (хотя бы на миллисекунды), то запустить двигатель невозможно.
  3. Параметры в настройках СЗ должны совпадать для подачи воспламенения топливовоздушной смеси с установленной плотностью.
  4. Надежная работа вне зависимости от вида автомобиля.

Только при соблюдении выше установленных правил можно говорить о правильной и эффективной работе СЗ. Схема у транзисторной системы зажигания ЗИЛ описывает комплексное устройство и включение определенных элементов, с которыми важно ознакомиться перед установкой или заменой комплектующих.

Как устроена система

ЗИЛ 130 обладает контактно-транзисторной системой с замком. Чтобы разобраться в схеме работы, целесообразно рассмотреть отличительные особенности комплектующих. Также может быть полезным ознакомиться с системой зажигания для бесконтактной схемы ЗИЛ 130.

Ниже представлена схема для замка зажигания ЗИЛ 130:

Катушка №Б114-Б

Располагается конструкция в передней части щитка на кабине. Снабжена 2 выводами на обмотку первой цепочки. В процессе установки важно контролировать правильность подключения проводов.

Вывод, обозначенный «К», подсоединяют к одноименному проводу на вывод коммутатора. Вывод без названия к коммутационному проводу. Важно обратить внимание, что катушку используют только для работы с коммутатором транзистора. Использование других видов категорически запрещается.

Обмотку катушек №Б114-Б проверяют на специальном стенде. Если возникает неустойчивая искра или не появляется вовсе, это свидетельствует о некачественной или неисправной обмотке. Чтобы выяснить, в каком состоянии находится конструкция, первоначально измеряют сопротивление. Положительным результатом является соответствие техническим характеристикам.

Если электронное зажигание ЗИЛ имеет неисправности, зачастую проявляется чрезмерный нагрев. Тогда первичная цепочка не разомкнута, а зажигание выключено. В такой ситуации температура элемента может увеличиваться до 120 градусов. Если элемент перестает работать, то выполняется замена конструкции.

Рядом располагается дополнительный резистор (включающий подключенные 2 резистора в определенной последовательности). Когда осуществляется запуск двигателя при помощи стартера, происходит короткое замыкание одного из последовательно подключенных конструктивных элементов, что приводит к увеличению напряжения.

Важно обращать внимание на соблюдение правил при подключении проводов к дополнительному резистору. К ВК подключают стартерный провод, а ВК-Б от выключателя зажигания, к выводу К – транзисторный коммутатор. Когда ставят новые спирали, то дополнительный транзистор демонтируют с транспортного средства. Бесконтактная система зажигания у ЗИЛ имеет несколько иной порядок, поэтому предварительно рекомендуется изучить техническую документацию.

Распределитель выглядит следующим образом:


Транзисторный коммутатор

Конструкция позволяет коммутировать электрической ток в первой обмотке (первичная цепочка катушки разрывается в определенный момент посредством задействования большого сопротивления выходного транзистора). Схема подключения бесконтактной системы зажигания марки ЗИЛ 130 вырабатывает более высокую мощность за счет увеличения тока на второй обмотке. Элемент располагается на левой стороне кабины. Важно обратить внимание, что коммутатор способен функционировать только при условии температурного режима до + 70 и -60 градусов.

Если устройство в эксплуатационных условиях перестает работать, то придется покупать новую запчасть, поскольку ремонт сделать невозможно. Чтобы проверить правильность работы конструкции, необходимо разомкнуть распределительные контакты и обратиться к схеме подключения. Когда электропровода находятся в функционирующем состоянии, на дополнительном резисторе, двух катушках зажигания и клеммах P возникают определенные показатели.

Если элементы конструкции и провода находятся в исправном состоянии, а на клемме P не будет возникать напряжения. Это будет свидетельствовать о том, что коммутатор вышел из строя, и потребуется сделать полную замену.

Когда нет запасного элемента, то реально перевести СЗ с транзисторной на альтернативный вариант. Для этого осуществляется установка конденсатора и катушки, чтобы получить дополнительное сопротивление. Электросхема зажигания ЗИЛ 130 при правильной сборке поможет справиться с поставленной задачей.

Распределитель зажигания

Элемент соответствует показателю в 8 искр. Работает совместно с катушкой зажигания №Б114-Б, предназначенной для прерывания тока с низким напряжением в первичной обмотке катушки зажигания и распределения по свечам тока с высоким напряжением. Контактно- транзисторная система отличается тем, что в ней отсутствует шунтирующий конденсатор.


Как разобрать распределитель

Схема зажигания содержит инструкцию по разборке распределителя. Чтобы осуществить процедуру правильно, потребуется следующее:

  • Удалить загрязнения, пятна от масла.
  • Открутить 24-ый болт с октановых пластин корректора, затем освободить корпус от 22-ой и 23-ей пластины вместе с регулирующими болтами, прокладкой, располагающейся между двумя конструкциями в виде пластин. Снимается крышка, отстегивают защелки, снимают ротор и приступают к последующему разбору.
  • Чтобы демонтировать вакуумный регулятор, потребуется открутить в нижней части пару винтов, прикрученных к корпусу конструкции. Далее потребуется вывернуть винт в подвижном диске. В этот момент отсоединить перемычки.
  • Чтобы избавиться от рычажка, потребуется ослабить винты креплений клеммы проводов первой цепи, удалить с конструкции кольцо, провода и рычажки в сборе вместе с пружиной.
  • Чтобы демонтировать клемму первичной цепи, нужно демонтировать крепления, которые удерживают провод, затем отключить его и избавиться от внутреннего изолятора, а затем выкрутить из корпуса клемму вместе со всеми элементами.
  • Пластина оснащена неподвижным контактом прерывателя. Чтобы от нее избавиться, нужно открутить один винт крепежа пластины к диску, снять пластину, используя отвертку.
  • Снятие подвижных и неподвижных дисков осуществляется после откручивания винтов крепления к корпусу. Нужно отсоединить провод массы, а затем избавиться от двух дисковых держателей. Теперь можно вынуть из корпуса распределители вместе с подшипником.

Внимание: подшипник опрессовывают, когда требуется новая деталь, поскольку конструкция завальцована внизу дисковой части. В разжимном кронштейне присутствует фильц из фетра. Если потребуется, конструкцию демонтируют, промывают и возвращают в исходное положение.

Фильц вытягивают, чтобы разобрать центробежный регулятор. Из полости оси кулачка вынимают замочное кольцо (7) при помощи металлического острого стержня и плоскогубцев. Снимается упорная шайба с валика и кулачок 2В в сборке вместе с пластиной.

Чтобы демонтировать пластины центробежного регулятора, потребуется открепить плоские опорные шайбы с использованием подходящего инструмента: снять ограничительные пальцы, избавить от штифтов (6) ограничительные пружины и снизу пластины регулировочные грузики.

Для снятия валика выпрессовки из распределительного элемента, потребуется избавиться от масленки, затем на верстак устанавливается корпус с предварительной подложкой муфты, далее выбивают штифт, чтобы закрепить конструкцию.

Как сделать проверку деталей

Для начала потребуется сделать проверку имеющихся деталей, контактов на рычажках и закрепленных стойках прерывания зажигания. Если элементы подвержены чрезмерной эксплуатации, либо подгорают, то потребуется сделать чистку согласно схеме зажигания для ЗИЛ 130.

Когда срабатывает контактно-транзисторная система, то прохождение тока осуществляется исключительно посредством электронной системы. В результате возможно избежать возникновения коррозии или возгорания контактов без дополнительной защиты.

Контактная и бесконтактная система требует контроля состояния контактов. Особенно чистоту первого варианта системы, поскольку сила проходящего тока мала. Если появляется пленка из окиси или масла, то могут возникнуть нарушения в проведении тока. Для устранения возникшей проблемы рекомендуется сделать промывку бензином. Когда транспортное средство не эксплуатируется продолжительное время и появилась окись, требуется сделать зачистку контактов. В решении поставленной задачи поможет мелкая шлифовальная шкурка или абразивная пластина. При этом металл не снимается. В противном случае уменьшается эксплуатационный срок элементов.


Как сделать сборку

Система зажигания может потребовать для ЗИЛ 130 внедрения распределительного валика, тогда понадобится сделать запрессовку втулок в корпусной части конструкции. Для этого необходимо установить натяжение в диапазоне 0,05-0,2мм, а затем сделать подгон с учетом размеров валика, используя соответствующие инструменты. Элементы закрепляются при помощи штифта расклепыванием концов. Важно обратить внимание, что потребуется наличие свободного вращения валика.

Снизу подвижного элемента пластины монтируют регулятор с центробежной силой на осях и соединяются при помощи пружин, задающих ограничение. На валик надевают одну шайбу, а на ограничительные пальцы подвижные пластины (5 шт) и плоские шайбы (2 шт). Кулачок вместе с втулкой устанавливается наверх распределительной части пластины. Пальцы направляются в прорези пяти пластин регулятора с центробежной силой. На конец валика устанавливается упорная шайба и идет закрепление кулачка. Далее пропитывается маслом фильц из фетра и вставляется в кулачковую полость.

Установить и закрепить прерыватель можно до того, как будут закреплены диски в корпусной части и после окончательного монтажа. Второй вариант встречается реже. Подвижные и неподвижные диски устанавливаются в корпусной части, включая подшипники, закрепляя винтами (2 шт) и специальными шайбами.

Сделать установку клеммы первой цепи вместе с изоляторами. Остается прикрепить конец провода и зафиксировать гайкой. Прикрепить пластину с неподвижным концом на оси рычажка. Чтобы регулировать зазоры, предварительно пластина фиксируется специальным винтом.

Тяп вакуумного регулятора фиксируется на оси подвижного диска. Корпус закрепляется посредством двух винтов. Предварительно в конструкцию вставляется специальная пружина, шайбы для регулировки закрепляются гайками с шайбами в виде уплотнителей. Установка осуществляется таким образом, чтобы тяга смогла повернуть подвижный диск в крайнее положение в соответствии с поздним зажиганием.

Регулировка положения осуществляется посредством передвижения вакуумного регулятора в соответствии с распределительным корпусом. Его поворот осуществляется вокруг посредством овальных отверстий в корпусе. Если этого будет недостаточно, осуществляется дополнительная регулировка шайбами, установленными между штуцерами и торцами пружины.


На корпус распределителя устанавливаются октановые пластины и закрепляются. В процессе сборки рекомендуется в качестве смазочного материала использовать масло без примесей: для осей двигателя рычажка и кулачка. Также нужно использовать масленку со специальной смазкой и нанести на втулку валика, закрученную в корпус распределителя.

Расстояние от одного контакта до другого регулируется на распределителе. Предварительно его можно снять или оставить в установленном состоянии на двигателе. Чтобы отрегулировать зазор на контактах прерывателя, потребуется установка кулачка. При этом контакты должны быть раздвинуты на максимальном расстоянии, чтобы замерить выступы кулачка.

Для регулировки зазора ослабляют винт, крепежи пластины с неподвижным контактом. Берется отвертка, посредством которой происходит вращение регулировочного эксцентрика. Конструкция устанавливается по щупу до 0,35 мм толщины. Затягивается винт и повторно контролируется величина зазора и щупа. Следует заранее смочить тряпку и протереть поверхности. Зазор между контактами должен составлять в диапазоне 0,3-0,4 мм.

После того, как мероприятие будет завершено, потребуется сделать проверку упругости пружинки, рычажков, прерывателя. Если элемент будет недостаточно упругим, могут возникнуть технические неисправности в работе двигателя и электросхемы. Негативным образом может сказаться слишком большой показатель упругости, что ускоряет потерю первоначальных характеристик. Чтобы осуществлять контроль данного показателя, используется динамометр. Конец крепится за рычажок, а затем инструмент растягивают до того момента, пока не появится разрыв в контактах. Оптимальный показатель усилия варьируется до 650 гс.

Центробежные и вакуумные регулировщики должны проверяться исключительно на приборах с искровым зарядником. Октановая шкала корректировки фиксируется на основании количества октанового числа бензина, на котором функционирует ЗИЛ-130. Насколько точно выполнена установка, определяется по октановой шкале.

Заключение

Чтобы выполнить ремонтные работы или замену элементов, входящих в систему зажигания, понадобится схема подключения бесконтактного варианта для ЗИЛ 130. Если самостоятельных познаний в данной сфере не существует, настоятельно рекомендуется осуществлять все мероприятия по замене или подключению элементов под присмотром профессионалов.

В большинство случаев требуется полная замена комплектующих на новые элементы в электронном зажигании, что позволит сохранить технические характеристики автомобиля и организовать его дальнейшую полноценную эксплуатацию. Если осуществляется комплексная установка, то, как правило, прослеживается небольшая детонация, которая исчезает уже на скорости до 45 км/ч. Если планируется использование бесконтактного зажигания перед тем, как начать работы, рекомендуется ознакомиться с эксплуатационными особенностями и нормами, чтобы избежать серьезных поломок электронного оборудования.

[DETAIL_TEXT_TYPE] => html [~DETAIL_TEXT_TYPE] => html [PREVIEW_TEXT] =>

ДВС – это комплектующее «сердце» в автомобиле любой марки и модели. Однако эффективность и надлежащее качество функционирования определяется тем, насколько правильно выполняет работу зажигание на ЗИЛ. Чтобы в будущем справиться с любой неисправностью или диагностировать ее без обращения в специализированный сервис, поможет схема зажигания для зил 130. Конструкция включает ряд комплектующих. Каждый элемент имеет свои отличительные особенности.

[~PREVIEW_TEXT] =>

ДВС – это комплектующее «сердце» в автомобиле любой марки и модели. Однако эффективность и надлежащее качество функционирования определяется тем, насколько правильно выполняет работу зажигание на ЗИЛ. Чтобы в будущем справиться с любой неисправностью или диагностировать ее без обращения в специализированный сервис, поможет схема зажигания для зил 130. Конструкция включает ряд комплектующих. Каждый элемент имеет свои отличительные особенности.

[PREVIEW_TEXT_TYPE] => html [~PREVIEW_TEXT_TYPE] => html [DETAIL_PICTURE] => [~DETAIL_PICTURE] => [TIMESTAMP_X] => 21.08.2020 13:21:02 [~TIMESTAMP_X] => 21.08.2020 13:21:02 [ACTIVE_FROM] => 13.08.2020 10:29:00 [~ACTIVE_FROM] => 13.08.2020 10:29:00 [LIST_PAGE_URL] => /press/articles/ [~LIST_PAGE_URL] => /press/articles/ [DETAIL_PAGE_URL] => /press/articles/skhema-beskontaktnogo-zazhiganiya-zil-130/ [~DETAIL_PAGE_URL] => /press/articles/skhema-beskontaktnogo-zazhiganiya-zil-130/ [LANG_DIR] => / [~LANG_DIR] => / [CODE] => skhema-beskontaktnogo-zazhiganiya-zil-130 [~CODE] => skhema-beskontaktnogo-zazhiganiya-zil-130 [EXTERNAL_ID] => 509221205 [~EXTERNAL_ID] => 509221205 [IBLOCK_TYPE_ID] => content [~IBLOCK_TYPE_ID] => content [IBLOCK_CODE] => articles [~IBLOCK_CODE] => articles [IBLOCK_EXTERNAL_ID] => [~IBLOCK_EXTERNAL_ID] => [LID] => s1 [~LID] => s1 [NAV_RESULT] => [DISPLAY_ACTIVE_FROM] => 13. 08.2020 [IPROPERTY_VALUES] => Array ( [SECTION_META_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_META_KEYWORDS] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_META_DESCRIPTION] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_PAGE_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_META_KEYWORDS] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_PAGE_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_PICTURE_FILE_ALT] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_PICTURE_FILE_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_DETAIL_PICTURE_FILE_ALT] => Схема бесконтактного зажигания ЗИЛ 130 [SECTION_DETAIL_PICTURE_FILE_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_PREVIEW_PICTURE_FILE_ALT] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_PREVIEW_PICTURE_FILE_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_DETAIL_PICTURE_FILE_ALT] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_DETAIL_PICTURE_FILE_TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_META_TITLE] => Схема зажигания ЗИЛ 130 | транзисторная система зажигания ЗИЛ схема | Opex. ru [ELEMENT_META_DESCRIPTION] => Схема подключения бесконтактного зажигания ЗИЛ 130, электронное зажигание на ЗИЛ - консультации специалистов по ремонту и выбору запчастей. Широкий ассортимент запчастей для грузовых автомобилей любых марок, тракторной и спецтехники. Осуществляем доставку по Москве, области и в регионы. ) [FIELDS] => Array ( [DATE_ACTIVE_FROM] => 13.08.2020 10:29:00 ) [DISPLAY_PROPERTIES] => Array ( ) [IBLOCK] => Array ( [ID] => 33 [~ID] => 33 [TIMESTAMP_X] => 29.04.2021 14:36:58 [~TIMESTAMP_X] => 29.04.2021 14:36:58 [IBLOCK_TYPE_ID] => content [~IBLOCK_TYPE_ID] => content [LID] => s1 [~LID] => s1 [CODE] => articles [~CODE] => articles [API_CODE] => [~API_CODE] => [NAME] => Статьи [~NAME] => Статьи [ACTIVE] => Y [~ACTIVE] => Y [SORT] => 500 [~SORT] => 500 [LIST_PAGE_URL] => /press/articles/ [~LIST_PAGE_URL] => /press/articles/ [DETAIL_PAGE_URL] => #SITE_DIR#press/articles/#ELEMENT_CODE#/ [~DETAIL_PAGE_URL] => #SITE_DIR#press/articles/#ELEMENT_CODE#/ [SECTION_PAGE_URL] => [~SECTION_PAGE_URL] => [CANONICAL_PAGE_URL] => [~CANONICAL_PAGE_URL] => [PICTURE] => [~PICTURE] => [DESCRIPTION] => [~DESCRIPTION] => [DESCRIPTION_TYPE] => text [~DESCRIPTION_TYPE] => text [RSS_TTL] => 24 [~RSS_TTL] => 24 [RSS_ACTIVE] => N [~RSS_ACTIVE] => N [RSS_FILE_ACTIVE] => N [~RSS_FILE_ACTIVE] => N [RSS_FILE_LIMIT] => 10 [~RSS_FILE_LIMIT] => 10 [RSS_FILE_DAYS] => 7 [~RSS_FILE_DAYS] => 7 [RSS_YANDEX_ACTIVE] => N [~RSS_YANDEX_ACTIVE] => N [XML_ID] => [~XML_ID] => [TMP_ID] => bb54a993677d00c7337704f59ed12453 [~TMP_ID] => bb54a993677d00c7337704f59ed12453 [INDEX_ELEMENT] => Y [~INDEX_ELEMENT] => Y [INDEX_SECTION] => Y [~INDEX_SECTION] => Y [WORKFLOW] => N [~WORKFLOW] => N [BIZPROC] => N [~BIZPROC] => N [SECTION_CHOOSER] => L [~SECTION_CHOOSER] => L [LIST_MODE] => [~LIST_MODE] => [RIGHTS_MODE] => S [~RIGHTS_MODE] => S [SECTION_PROPERTY] => N [~SECTION_PROPERTY] => N [PROPERTY_INDEX] => N [~PROPERTY_INDEX] => N [VERSION] => 2 [~VERSION] => 2 [LAST_CONV_ELEMENT] => 0 [~LAST_CONV_ELEMENT] => 0 [SOCNET_GROUP_ID] => [~SOCNET_GROUP_ID] => [EDIT_FILE_BEFORE] => [~EDIT_FILE_BEFORE] => [EDIT_FILE_AFTER] => [~EDIT_FILE_AFTER] => [SECTIONS_NAME] => Разделы [~SECTIONS_NAME] => Разделы [SECTION_NAME] => Раздел [~SECTION_NAME] => Раздел [ELEMENTS_NAME] => Элементы [~ELEMENTS_NAME] => Элементы [ELEMENT_NAME] => Элемент [~ELEMENT_NAME] => Элемент [REST_ON] => N [~REST_ON] => N [EXTERNAL_ID] => [~EXTERNAL_ID] => [LANG_DIR] => / [~LANG_DIR] => / [SERVER_NAME] => www. opex.ru [~SERVER_NAME] => www.opex.ru ) [SECTION] => Array ( [PATH] => Array ( ) ) [SECTION_URL] => [META_TAGS] => Array ( [TITLE] => Схема бесконтактного зажигания ЗИЛ 130 [ELEMENT_CHAIN] => Схема бесконтактного зажигания ЗИЛ 130 [BROWSER_TITLE] => Схема зажигания ЗИЛ 130 | транзисторная система зажигания ЗИЛ схема | Opex.ru [KEYWORDS] => Схема бесконтактного зажигания ЗИЛ 130 [DESCRIPTION] => Схема подключения бесконтактного зажигания ЗИЛ 130, электронное зажигание на ЗИЛ - консультации специалистов по ремонту и выбору запчастей. Широкий ассортимент запчастей для грузовых автомобилей любых марок, тракторной и спецтехники. Осуществляем доставку по Москве, области и в регионы. ) [IMAGES] => Array ( ) [FILES] => Array ( ) [VIDEO] => Array ( ) [LINKS] => Array ( ) [BUTTON] => Array ( [SHOW_BUTTON] => [BUTTON_ACTION] => [BUTTON_LINK] => [BUTTON_TARGET] => [BUTTON_JS_CLASS] => [BUTTON_TITLE] => ) )

ДВС – это комплектующее «сердце» в автомобиле любой марки и модели. Однако эффективность и надлежащее качество функционирования определяется тем, насколько правильно выполняет работу зажигание на ЗИЛ. Чтобы в будущем справиться с любой неисправностью или диагностировать ее без обращения в специализированный сервис, поможет схема зажигания для зил 130. Конструкция включает ряд комплектующих. Каждый элемент имеет свои отличительные особенности.

У любого автомобиля с бензиновым двигателем основной функцией зажигания является воспламенение горючей смеси в специальном цилиндре с подачей искры. Дальнейшая передача осуществляется на контакт в цилиндре ДВС. Схема бесконтактного зажигания у ЗИЛ 130 работает в поочередном порядке для воспламенения топливо воздушной консистенции в определенный промежуток времени. Важно отметить, что СЗ не только способствует воспламенению, а также подает искру.

Согласно схеме подключения бесконтактного зажигания у ЗИЛ 130, первоначально батарея аккумулятора способна вырабатывать ток в определенном эквиваленте, но силы оказывается недостаточно, чтобы воспламенить смесь. Чтобы справиться с поставленной задачей, была разработана и изготовлена СЗ, увеличивающая мощность АКБ. В результате аккумулятор способен передавать напряжение на свечу для поджигания горючей смеси. Контактная схема зажигания зил 130 предполагает выполнение определенного порядка действий, чтобы создать нормальную работу двигателя.

Важно принять во внимание, что контактная или бесконтактная система зажигания у ЗИЛ 130 в обязательном порядке должны функционировать в соответствии с набором строгих требований:

Только при соблюдении выше установленных правил можно говорить о правильной и эффективной работе СЗ. Схема у транзисторной системы зажигания ЗИЛ описывает комплексное устройство и включение определенных элементов, с которыми важно ознакомиться перед установкой или заменой комплектующих.

ЗИЛ 130 обладает контактно-транзисторной системой с замком. Чтобы разобраться в схеме работы, целесообразно рассмотреть отличительные особенности комплектующих. Также может быть полезным ознакомиться с системой зажигания для бесконтактной схемы ЗИЛ 130.

Ниже представлена схема для замка зажигания ЗИЛ 130:

Располагается конструкция в передней части щитка на кабине. Снабжена 2 выводами на обмотку первой цепочки. В процессе установки важно контролировать правильность подключения проводов.

Вывод, обозначенный «К», подсоединяют к одноименному проводу на вывод коммутатора. Вывод без названия к коммутационному проводу. Важно обратить внимание, что катушку используют только для работы с коммутатором транзистора. Использование других видов категорически запрещается.

Обмотку катушек №Б114-Б проверяют на специальном стенде. Если возникает неустойчивая искра или не появляется вовсе, это свидетельствует о некачественной или неисправной обмотке. Чтобы выяснить, в каком состоянии находится конструкция, первоначально измеряют сопротивление. Положительным результатом является соответствие техническим характеристикам.

Если электронное зажигание ЗИЛ имеет неисправности, зачастую проявляется чрезмерный нагрев. Тогда первичная цепочка не разомкнута, а зажигание выключено. В такой ситуации температура элемента может увеличиваться до 120 градусов. Если элемент перестает работать, то выполняется замена конструкции.

Рядом располагается дополнительный резистор (включающий подключенные 2 резистора в определенной последовательности). Когда осуществляется запуск двигателя при помощи стартера, происходит короткое замыкание одного из последовательно подключенных конструктивных элементов, что приводит к увеличению напряжения.

Важно обращать внимание на соблюдение правил при подключении проводов к дополнительному резистору. К ВК подключают стартерный провод, а ВК-Б от выключателя зажигания, к выводу К – транзисторный коммутатор. Когда ставят новые спирали, то дополнительный транзистор демонтируют с транспортного средства. Бесконтактная система зажигания у ЗИЛ имеет несколько иной порядок, поэтому предварительно рекомендуется изучить техническую документацию.

Конструкция позволяет коммутировать электрической ток в первой обмотке (первичная цепочка катушки разрывается в определенный момент посредством задействования большого сопротивления выходного транзистора). Схема подключения бесконтактной системы зажигания марки ЗИЛ 130 вырабатывает более высокую мощность за счет увеличения тока на второй обмотке. Элемент располагается на левой стороне кабины. Важно обратить внимание, что коммутатор способен функционировать только при условии температурного режима до + 70 и -60 градусов.

Если устройство в эксплуатационных условиях перестает работать, то придется покупать новую запчасть, поскольку ремонт сделать невозможно. Чтобы проверить правильность работы конструкции, необходимо разомкнуть распределительные контакты и обратиться к схеме подключения. Когда электропровода находятся в функционирующем состоянии, на дополнительном резисторе, двух катушках зажигания и клеммах P возникают определенные показатели.

Если элементы конструкции и провода находятся в исправном состоянии, а на клемме P не будет возникать напряжения. Это будет свидетельствовать о том, что коммутатор вышел из строя, и потребуется сделать полную замену.

Когда нет запасного элемента, то реально перевести СЗ с транзисторной на альтернативный вариант. Для этого осуществляется установка конденсатора и катушки, чтобы получить дополнительное сопротивление. Электросхема зажигания ЗИЛ 130 при правильной сборке поможет справиться с поставленной задачей.

Элемент соответствует показателю в 8 искр. Работает совместно с катушкой зажигания №Б114-Б, предназначенной для прерывания тока с низким напряжением в первичной обмотке катушки зажигания и распределения по свечам тока с высоким напряжением. Контактно- транзисторная система отличается тем, что в ней отсутствует шунтирующий конденсатор.

Схема зажигания содержит инструкцию по разборке распределителя. Чтобы осуществить процедуру правильно, потребуется следующее:

Внимание: подшипник опрессовывают, когда требуется новая деталь, поскольку конструкция завальцована внизу дисковой части. В разжимном кронштейне присутствует фильц из фетра. Если потребуется, конструкцию демонтируют, промывают и возвращают в исходное положение.

Фильц вытягивают, чтобы разобрать центробежный регулятор. Из полости оси кулачка вынимают замочное кольцо (7) при помощи металлического острого стержня и плоскогубцев. Снимается упорная шайба с валика и кулачок 2В в сборке вместе с пластиной.

Чтобы демонтировать пластины центробежного регулятора, потребуется открепить плоские опорные шайбы с использованием подходящего инструмента: снять ограничительные пальцы, избавить от штифтов (6) ограничительные пружины и снизу пластины регулировочные грузики.

Для снятия валика выпрессовки из распределительного элемента, потребуется избавиться от масленки, затем на верстак устанавливается корпус с предварительной подложкой муфты, далее выбивают штифт, чтобы закрепить конструкцию.

Для начала потребуется сделать проверку имеющихся деталей, контактов на рычажках и закрепленных стойках прерывания зажигания. Если элементы подвержены чрезмерной эксплуатации, либо подгорают, то потребуется сделать чистку согласно схеме зажигания для ЗИЛ 130.

Когда срабатывает контактно-транзисторная система, то прохождение тока осуществляется исключительно посредством электронной системы. В результате возможно избежать возникновения коррозии или возгорания контактов без дополнительной защиты.

Контактная и бесконтактная система требует контроля состояния контактов. Особенно чистоту первого варианта системы, поскольку сила проходящего тока мала. Если появляется пленка из окиси или масла, то могут возникнуть нарушения в проведении тока. Для устранения возникшей проблемы рекомендуется сделать промывку бензином. Когда транспортное средство не эксплуатируется продолжительное время и появилась окись, требуется сделать зачистку контактов. В решении поставленной задачи поможет мелкая шлифовальная шкурка или абразивная пластина. При этом металл не снимается. В противном случае уменьшается эксплуатационный срок элементов.

Система зажигания может потребовать для ЗИЛ 130 внедрения распределительного валика, тогда понадобится сделать запрессовку втулок в корпусной части конструкции. Для этого необходимо установить натяжение в диапазоне 0,05-0,2мм, а затем сделать подгон с учетом размеров валика, используя соответствующие инструменты. Элементы закрепляются при помощи штифта расклепыванием концов. Важно обратить внимание, что потребуется наличие свободного вращения валика.

Снизу подвижного элемента пластины монтируют регулятор с центробежной силой на осях и соединяются при помощи пружин, задающих ограничение. На валик надевают одну шайбу, а на ограничительные пальцы подвижные пластины (5 шт) и плоские шайбы (2 шт). Кулачок вместе с втулкой устанавливается наверх распределительной части пластины. Пальцы направляются в прорези пяти пластин регулятора с центробежной силой. На конец валика устанавливается упорная шайба и идет закрепление кулачка. Далее пропитывается маслом фильц из фетра и вставляется в кулачковую полость.

Установить и закрепить прерыватель можно до того, как будут закреплены диски в корпусной части и после окончательного монтажа. Второй вариант встречается реже. Подвижные и неподвижные диски устанавливаются в корпусной части, включая подшипники, закрепляя винтами (2 шт) и специальными шайбами.

Сделать установку клеммы первой цепи вместе с изоляторами. Остается прикрепить конец провода и зафиксировать гайкой. Прикрепить пластину с неподвижным концом на оси рычажка. Чтобы регулировать зазоры, предварительно пластина фиксируется специальным винтом.

Тяп вакуумного регулятора фиксируется на оси подвижного диска. Корпус закрепляется посредством двух винтов. Предварительно в конструкцию вставляется специальная пружина, шайбы для регулировки закрепляются гайками с шайбами в виде уплотнителей. Установка осуществляется таким образом, чтобы тяга смогла повернуть подвижный диск в крайнее положение в соответствии с поздним зажиганием.

Регулировка положения осуществляется посредством передвижения вакуумного регулятора в соответствии с распределительным корпусом. Его поворот осуществляется вокруг посредством овальных отверстий в корпусе. Если этого будет недостаточно, осуществляется дополнительная регулировка шайбами, установленными между штуцерами и торцами пружины.

На корпус распределителя устанавливаются октановые пластины и закрепляются. В процессе сборки рекомендуется в качестве смазочного материала использовать масло без примесей: для осей двигателя рычажка и кулачка. Также нужно использовать масленку со специальной смазкой и нанести на втулку валика, закрученную в корпус распределителя.

Расстояние от одного контакта до другого регулируется на распределителе. Предварительно его можно снять или оставить в установленном состоянии на двигателе. Чтобы отрегулировать зазор на контактах прерывателя, потребуется установка кулачка. При этом контакты должны быть раздвинуты на максимальном расстоянии, чтобы замерить выступы кулачка.

Для регулировки зазора ослабляют винт, крепежи пластины с неподвижным контактом. Берется отвертка, посредством которой происходит вращение регулировочного эксцентрика. Конструкция устанавливается по щупу до 0,35 мм толщины. Затягивается винт и повторно контролируется величина зазора и щупа. Следует заранее смочить тряпку и протереть поверхности. Зазор между контактами должен составлять в диапазоне 0,3-0,4 мм.

После того, как мероприятие будет завершено, потребуется сделать проверку упругости пружинки, рычажков, прерывателя. Если элемент будет недостаточно упругим, могут возникнуть технические неисправности в работе двигателя и электросхемы. Негативным образом может сказаться слишком большой показатель упругости, что ускоряет потерю первоначальных характеристик. Чтобы осуществлять контроль данного показателя, используется динамометр. Конец крепится за рычажок, а затем инструмент растягивают до того момента, пока не появится разрыв в контактах. Оптимальный показатель усилия варьируется до 650 гс.

Центробежные и вакуумные регулировщики должны проверяться исключительно на приборах с искровым зарядником. Октановая шкала корректировки фиксируется на основании количества октанового числа бензина, на котором функционирует ЗИЛ-130. Насколько точно выполнена установка, определяется по октановой шкале.

Чтобы выполнить ремонтные работы или замену элементов, входящих в систему зажигания, понадобится схема подключения бесконтактного варианта для ЗИЛ 130. Если самостоятельных познаний в данной сфере не существует, настоятельно рекомендуется осуществлять все мероприятия по замене или подключению элементов под присмотром профессионалов.

В большинство случаев требуется полная замена комплектующих на новые элементы в электронном зажигании, что позволит сохранить технические характеристики автомобиля и организовать его дальнейшую полноценную эксплуатацию. Если осуществляется комплексная установка, то, как правило, прослеживается небольшая детонация, которая исчезает уже на скорости до 45 км/ч. Если планируется использование бесконтактного зажигания перед тем, как начать работы, рекомендуется ознакомиться с эксплуатационными особенностями и нормами, чтобы избежать серьезных поломок электронного оборудования.

Системы зажигания: от простой к лучшей!

Системы зажигания: от простой к лучшей!

Система зажигания является неотъемлемым атрибутом любого бензинового или газового двигателя. При всем многообразии технических нюансов в данном вопросе, все системы зажигания с динамическим распределением подаваемого напряжения можно разделить на контактные и бесконтактные. Нижеследующая статья посвящена их основным особенностям, а также причинам возникновения систем со статическим распределением напряжения (электронное зажигание).

Работа современных ДВС основана на сгорании топлива. В дизельных двигателях оно воспламеняется за счет сжатия, в бензиновых и газовых силовых агрегатах, а именно о них пойдет речь в последующем — посредством подведения к топливно-воздушной смеси искры высокого напряжения через свечи зажигания.

Топливо может загореться только при прохождении в зазоре свечи достаточно большого напряжения (от 2 до 30 кВ). Для обеспечения тока с таким высоким напряжением используется катушка зажигания, представляющие собой, по сути, повышающий трансформатор.

Основными элементами катушки зажигания являются сердечник и две обмотки — первичная и вторичная. Первичная обмотка запитывается от бортовой сети 12 В и предназначается для создания магнитного поля. В момент, когда на первичную обмотку перестает поступать ток, магнитное поле исчезает, причем происходит это настолько быстро, что при пересечении данным магнитным полем витков вторичной обмотки в ней индуцируется ток с очень высоким напряжением.

После того, как необходимое для воспламенения топлива напряжение было создано, его необходимо подать в цилиндры. Причем для обеспечения высокой эффективности и экономичности топливо должно загораться в определенный момент времени, а значит, искра должна подаваться одновременно не во все цилиндры. Именно в обеспечении данного базового принципа и проявляются различия между контактной и бесконтактной системами зажигания.


Контактная система зажигания

Контактная система зажигания включает следующие компоненты:

- Свечи зажигания;
- Источник электроэнергии: при включении автомобиля — аккумулятор, в нормальном режиме работы — генератор;
- Катушка зажигания;
- Высоковольтные и низковольтные провода;
- Прерыватель;
- Распределитель зажигания.

Прерыватель и распределитель зажигания объединяются в корпусе единого устройства, которое в народе получило название «трамблер».

Ключевой особенностью контактной системы является распределитель зажигания. Это механическое устройство определяет, на какую из свеч в данный момент времени будет подано напряжение.

Подобная организация распределения напряжения максимально проста, а значит, достаточно надежна, но в то же время обладает рядом существенных недостатков. Механическое распределение напряжения накладывает довольно существенные ограничения на мощность искры, т. к. с увеличением данного параметра стремительно ускоряется тепловой износ контактов. Кроме того, при работе двигателя на высоких оборотах контактная группа начинает «дребезжать», что на порядок снижает эффективность коммутации.


Бесконтактная система зажигания

Бесконтактные системы зажигания стали логическим продолжением классических систем искрораспределения. Их ключевой особенностью стала замена механического распределителя на электронный коммутатор. Первоначально такие блоки обладали крайне низкой надежностью (порой даже менее 10 тыс. км.) однако в процессе конструкторских доработок данный параметр был выведен на более-менее приемлемый уровень.

Бесконтактные системы зажигания позволили снизить расход топлива, упростить запуск автомобиля в холодное время года, повысить крутящий момент двигателя на малых оборотах и его мощность на высоких, а также несколько уменьшить вредность выхлопных газов благодаря увеличению мощности искры и более полному сгоранию топливно-воздушной смеси. Тем не менее, управление углом опережения зажигания осуществлялось с помощью физических датчиков, входящих в состав трамблера.

Прерыватель-распределитель («трамблер»)

Прерыватель-распределитель зажигания, также известный у автомобилистов под названием «трамблер», является неотъемлемой частью как контактной, так и бесконтактной систем зажигания, пусть во втором случае его конструкция и несколько отличается. Крайне важными компонентами прерывателя-распределителя являются вакуумный и центробежный регуляторы угла опережения зажигания — именно они определяют момент воспламенения топлива (а загораться оно должно раньше достижения поршнем ВМТ), а значит, данные устройства оказывают самое непосредственное влияние на работу двигателя. Рассмотрим их работу на примере контактной системы зажигания.

Центробежный регулятор опережения зажигания

Данное устройство отвечает за корреляцию момента возникновения искры со скоростью вращения коленвала. Центробежный регулятор состоит из двух плоских металлических грузиков, закрепленных на валике прерывателя-распределителя, который в свою очередь непосредственно контактирует с коленчатым валом двигателя. По мере увеличения числа оборотов коленвала ускоряется вращение валика трамблера, вследствие чего грузики под действием центробежной силы расходятся и набегающий кулачок смещается по ходу вращения навстречу молоточку контактов. Вследствие этого контакты размыкаются раньше и угол опережения зажигания увеличивается. При уменьшении величины центробежной силы грузики возвращаются назад под действием пружин — угол опережения зажигания уменьшается.

Вакуумный октан-корректор

Вакуумный октан-корректор изменяет угол опережения зажигания в зависимости от текущей нагрузки на ДВС. Прибор крепится к корпусу трамблера и представляет собой две взаимосвязанные полости, разделенные чувствительной мембраной. Одна из них непосредственно контактирует с окружающей атмосферой, другая — с полостью под дроссельной заслонкой. При увеличении нагрузки на двигатель разряжение под дроссельной заслонкой уменьшается. Вследствие этого пара «диафрагма-тяга» несколько сдвигает пластину с контактами от набегающего на нее кулачка контактов — угол опережения зажигания уменьшается. И, наоборот, при уменьшении подачи газа разряжение под дроссельной заслонкой увеличивается, после чего диафрагма сдвигает пластину с контактами в другую сторону.

Оба устройства работают схожим образом и в бесконтактной системе зажигания, однако вместо кулачка поворачивается экран бесконтактного датчика момента искрообразования.

Общие недостатки контактной и бесконтактной систем зажигания

Даже после устранения комплекса проблем, связанных с механическими контактами распределителя контактной системы зажигания, остался нерешенным процесс точной установки угла опережения зажигания. В обеих системах для этих целей использовались механические устройства, не обеспечивающие должную точность. Как результат — уменьшение мощности двигателя, его довольно ощутимый перегрев при работе. Именно для решения данной проблемы в дальнейшем и были использованы микроконтроллеры, ознаменовавшие появление электронной системы зажигания.

Другие статьи

#Бачок ГЦС

Бачок ГЦС: надежная работа гидропривода сцепления

14. 10.2020 | Статьи о запасных частях

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

схема и установка, отличия от контактной

Система зажигания (СЗ) фактически является одним из основных узлов в любом автомобиле, поскольку именно благодаря ей осуществляется запуск двигателя и его оптимальная работа в дальнейшем. На сегодняшний день существует несколько видов СЗ. О том, что представляет собой бесконтактная система зажигания и какие недостатки для нее характерны, вы сможете узнать из этого материала.

Содержание

[ Раскрыть]

[ Скрыть]

Конструкция и принцип действия БСЗ

Так какое зажигание лучше? Перед тем, как мы расскажем об установке и регулировке электронного зажигания своими руками, давайте рассмотрим принцип работы БСЗ и ее конструкцию. Итак, бесконтактная система зажигания представляет собой достаточно сложное по конструкции устройство, которое состоит из множества деталей.

Среди основных компонентов следует выделить:

  • катушка;
  • вакуумный и центробежный регуляторы напряжения;
  • коммутаторное устройство;
  • контроллер сигналов;
  • высоковольтные провода;
  • свечи;
  • аккумуляторная батарея.

Это основные элементы, который включает в себя комплект бесконтактного зажигания. Что касается принципа функционирования, то он довольно простой. Когда водитель поворачивает ключ в замке, на монтажный блок начинает поступать напряжение и здесь же оно распределяется между стартером, катушкой и прочими потребителями тока авто. Коленчатый вал вступает в движение, в результате чего контроллер сигналов начинает передавать импульсы на коммутаторный узел. Предназначение последнего заключается в остановке подачи напряжения на обмотки катушки, благодаря чему ан вторичных витках образуется ток более высокого напряжения.

Схема БСЗ с обозначением элементов

Этот ток позволяет генерировать сильную искру на свечи, которая впоследствии используется для воспламенения горючей смеси. Ток поступает на свечи в определенном порядке, в соответствии с положением коленчатого вала. Данный процесс осуществляется под контролем регуляторов, которые могут определять не только частоту, с которой движется вал, но и степень нагрузки на силовой агрегат. Если бесконтактная система зажигания будет отрегулирована должным образом, на свечах будет образовываться свеча высокой мощности, что обеспечит нормальной возгорание и сгорание горючей смеси.

Плюсы и минусы бесконтактного зажигания

В настоящее время схема бесконтактной системы зажигания реализуется на многих современных бензиновых автомобилях. Основной причиной тому является более высокая надежность системы по сравнению с контактной СЗ, а также более мощная искра.

Если сравнивать с контактной, то электронная система зажигания имеет такие достоинства:

  1. В конструкции СЗ отсутствуют контакты, поверхности которых могут подгорать в результате большого напряжения. Соответственно, проблема падения мощности искрообразования для БСЗ не характерна.
  2. Электронная система зажигания не включает в свою конструкции детали, характеризующиеся быстрым износом, соответственно, необходимость ремонта в таких СЗ возникает значительно реже.
  3. По сравнению с контактными, напряжение в БСЗ, которое подается на электроды свечей, составляет 24 Кв вместо 18 Кв. Это положительно в целом влияет на возгорание горючей смеси и ее сжигание в камерах.
  4. Еще одно неоспоримое преимущество — высокий ресурс эксплуатации и надежность (автор видео — канал Теория ДВС).

Что касается недостатков, то он в данном случае один — датчик Холла, который выходит из строя чаще всего, является неремонтопригодным. Если контактны всегда можно подчистить, то этот контроллер в случае поломки только меняется. Но на практике данный компонент считается одним из наиболее надежных — обычно его ресурс эксплуатации составляет около 50 тысяч км пробега.

Инструкция по установке самодельного БСЗ

Если вы определились, какое зажигание лучше, то перейдем к вопросу установки более хорошего варианта на свой автомобиль. Установка бесконтактного зажигания начинается с монтажа блока, оборудованного стальной пластиной с посадочными отверстиями, которая необходима для охлаждения. Процедуру рассмотрим на примере классического автомобиля ВАЗ 2107. На левом лонжероне должны быть отверстия, к которым прикручивается коммутатор при помощи двух саморезов. Если отверстия нет, то найдите место рядом с катушкой, и просверлите отверстия там (автор видео — канал Sdelaj Sam! Pljus interesnoe!).

Устанавливая самодельное электронное зажигание, коммутатор нельзя монтировать рядом с бачком омывателя. Ведь если он даст течь, то вся электроника «накроется». Перед демонтажем высоковольтных проводов запомните их расположение.

Установка БСЗ осуществляется в таком порядке:

  1. Сначала с нового распределителя нужно снять крышку и установить прокладку. Трамблер монтируется на блоке так, чтобы его подвижный контакт располагался напротив метки на клапанной крышке силового агрегата. Так называемую юбку трамблера следует немного прижать при помощи крепежной гайки, это позволит предотвратить возможное проворачивание распределителя.
  2. Далее, необходимо произвести монтаж катушки на место установки. После этого следует подключить к ее выводам провода от реле замка, коммутатора, а также тахометра. Провод, который идет от контакта 1 на блоке, необходимо соединить с клеммой К непосредственно на катушке. Что касается провода от контакта под номером 4, то он соединяется с клеммой Б.
  3. После выполнения этих действия нужно установить зазор на электродах свечей около 0.8-0.9 мм, а затем сами свечи можно закрутить в посадочные места. Установите крышку на распределительный узел и подключите все необходимые провода в соответствующем порядке. Затем вам остается только подключить вакуумную магистраль. Сделав это, можно приступать к регулировке узла.

Советы по настройке зажигания

Процедура регулировки СЗ осуществляется на прогретом двигателе, она может быть произведена двумя способами:

  • при помощи стробоскопа;
  • на слух.

Стробоскоп представляет собой специальное устройство с лампой, которая моргает в случае подачи сигнала от датчика Холла. Если вы поднесет работающий прибор к маховику коленвала при включенном двигателе, то сможете увидеть положение насечки. Именно это позволяет произвести наиболее точную настройку.

Чтобы произвести регулировку, нужно подключить питание прибора к АКБ, а второй провод — к высоковольтному кабелю на первой свечи. Затем отпустите гайку, фиксирующую распределитель, а моргающую лампочку поднесите к шкиву. Корпус трамблера нужно осторожно поворачивать, не спеша, до того момента, пока метка на шкиве не будет установлена напротив короткой метки. Сделав это, гайку можно затянуть.

Что касается метода на слух, то настройка в данном случае производится в несколько этапов:

  1. В первую очередь, нужно завести мотор, после чего немного отпустить гайку, фиксирующую трамблер.
  2. Медленно проверните распределитель в пределах пятнадцати градусов. Вам необходимо найти положение, при котором силовой агрегат будет работать наиболее оптимально и стабильно.
  3. Когда этот момент будет найдет, гайку распределителя можно закрутить.

Видео «Ремонт БСЗ в домашних условиях»

Подробная и наглядная инструкция касательно ремонта БСЗ в домашних условиях приведена на видео ниже (автор — Владимир Воронов).

 Загрузка ...

Принцип действия бесконтактной системы зажигания двигателя

Рассмотрим принцип действия бесконтактной системы зажигания на примере системы зажигания автомобилей ВАЗ 2108, 2109, 21099. Определим, откуда берется искра для поджига топливной смеси в камере сгорания и почему она проскакивает своевременно для каждого цилиндра.



Бесконтактная система зажигания автомобилей ВАЗ 2108, 2109, 21099 включает в себя катушку зажигания, свечи зажигания, высоковольтные провода (бронепровода), трамблер с распределителем зажигания, датчиками-регуляторами опережения зажигания (центробежным и вакуумным) и датчиком Холла, также коммутатор и провода низкого напряжения.

Схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099

Схема бесконтактной системы зажигания автомобилей ВАЗ 2108, 2109, 21099
Откуда поступает ток в систему зажигания?

Электрический ток в систему зажигания поступает с вывода «30» генератора, через монтажный блок предохранителей и реле, замок зажигания, реле зажигания и далее на вывод «Б» катушки зажигания. Система запитывается после поворота ключа в замке зажигания.

Принцип действия бесконтактной системы зажигания

— При работе двигателя вращается вал распределителя зажигания (трамблера). В работу вступает датчик Холла. Стальной круглый экран с четырьмя прорезями на валу трамблера, вращаясь, проходит через зазор этого датчика. Когда проходит прорезь экрана, напряжение отдаваемое датчиком ниже бортового на 3 В или равно ему, когда зубец экрана, напряжение падает практически до нуля. Прохождение каждого из четырех зубцов соответствует такту сжатия и моменту зажигания в одном из цилиндров двигателя.

Датчик Холла и экран трамблера

— Далее в работу вступает коммутатор. Свои прерывистые импульсы датчик Холла подает на вывод «6» коммутатора, а тот в свою очередь подает импульс на первичную обмотку катушки зажигания (вывод «К»).

— Теперь работает катушка зажигания. В момент прерывания электрического тока (зубец экрана проходит через зазор датчика Холла) магнитное поле в катушке зажигания резко сжимается и, пересекая витки обмотки, производит ЭДС порядка 22-25 кВ (ток высокого напряжения).

— Работа распределителя зажигания. Ток высокого напряжения по центральному бронепроводу поступает на центральный вывод крышки трамблера и далее на «бегунок»-распределитель зажигания, который вращаясь, раздает ток высокого напряжения по четырем клеммам крышки.

— Работа свечей зажигания. По высоковольтным проводам ток высокого напряжения поступает к свечам зажигания. Между их электродами проскакивает искра, воспламеняющая топливную смесь в цилиндрах двигателя.

Чтобы добиться от двигателя максимальной мощности необходимо воспламенять смесь искрой несколько раньше прихода поршня в верхнюю мертвую точку (ВМТ). Для этого регулируют угол опережения зажигания вращением трамблера в ту или иную сторону. При холостых оборотах двигателя 750-800 об/мин угол опережения зажигания, например для двигателя 21083 работающего на 92-м бензине должен составлять 4±1º (подробнее см. «Установка угла опережения зажигания на ВАЗ 2108, 2109, 21099»).

Примечания и дополнения

— При работе двигателя на высоких оборотах необходим еще более ранний угол опережения зажигания. Здесь помогает центробежный регулятор опережения зажигания, который за счет расхождения своих грузиков от центробежной силы при повышении оборотов вращения оси трамблера смещает пластину с экраном. Она раньше проходит через зазор в датчике Холла, импульс поступает на коммутатор с некоторым опережением и соответственно зажигание становится раньше (подробнее см. «Центробежный регулятор опережения зажигания»).

Работа центробежного регулятора опережения зажигания автомобилей ВАЗ 2108, 2109, 21099

— При движении с нагрузкой (например, в гору) помогает вакуумный регулятор опережения зажигания. Он работает по такому же принципу, как и центробежный регулятор. Смещает пластину с экраном для опережения угла, но за счет разрежения возникающего за дроссельной заслонкой после нажатия на педаль «газа» (подробнее см. «Вакуумный регулятор опережения зажигания»).

Вакуумный регулятор опережения зажигания автомобилей ВАЗ 2108, 2109, 21099
Еще статьи по системе зажигания

— Пропала искра на свечах зажигания, причины

— Потеря мощности и приемистости карбюраторного двигателя (причины связанные с системой зажигания)

— Карбюраторный двигатель не запускается (причины связанные с системой зажигания)

— Схема бесконтактной системы зажигания автомобилей ВАЗ 2104, 2105, 2107

— Проверка датчика Холла

— Не работает катушка зажигания, признаки неисправности

Бесконтактная система зажигания: 3 преимущества системы

Содержание статьи

Владельцы машин всегда стремятся усовершенствовать и улучшить работу своего автомобиля. Устанавливая различное оборудование, они делают передвижение на авто более удобным, надёжным, безопасным. Бесконтактная система зажигания позволит сделать работу двигателя более эффективной и экономной. Даже если авто было оснащено на заводе контактной системой, то его легко переоборудовать и установить БСЗ.

Несмотря на то что стоимость нового бесконтактного комплекта достаточно высока, целесообразность такого переоборудования отмечают как водители, так и автомастера.

Преимущества и недостатки БСЗ

Бесконтактное зажигание ставится на большинство новых машин и некоторые иномарки старше 15 лет. Даже если на авто не стоит электронная система зажигания, то монтаж и её настройка не вызывают сложностей даже у начинающих мастеров.

В обычном варианте зажигания достаточно часто выходит из строя контактная пара, что доставляет владельцу транспортного средства массу неудобств. В электронных системах такой недостаток исключён, благодаря чему устройство более надёжно и стабильно в работе.

Бесконтактное зажигание хорошо справляется со своей задачей даже при влажной и холодной погоде, что является несомненным плюсом по сравнению с контактным.

Более современная конструкция совместима со всеми марками и моделями авто, поэтому переоборудование может выполняться на всех машинах.

Среди преимуществ электронной системы специалисты отмечают три основных параметра.

  1. Возможность более эффективного использования свечей. Так как электричество подаётся на первичную обмотку через коммутатор, то на вторичной обмотке катушки можно получить значительно большее напряжение. Мощная искра обеспечивает стабильный поджиг смеси даже в движках с высокой компрессией. Так как контакты отсутствуют, то они не пригорают, благодаря чему в процессе эксплуатации БСЗ не происходит снижение мощности искры.
  2. Экономность. Благодаря электромагнитному импульсному создателю, пришедшему на замену контактной группы, импульсы имеют более стабильные и лучшие характеристики. Двигатель, оборудованный электронной системой зажигания, имеет более высокие показатели мощности при том, что расход топлива может снижаться в среднем на 1 литр на 100 км. Также импульсный создатель гарантирует стабильность работы при различных оборотах мотора.
  3. Более редкое обслуживание. В отличие от КСЗ, которую рекомендуется обслуживать каждые 5 — 7 тысяч км, электронное оборудование менее подвержено поломкам и не нуждается в частой регулировке. Бесконтактную систему в среднем нужно обслуживать каждые 10 — 12 тысяч км. Чаще всего регламентные работы предполагают смазывание трамблера. Иногда может потребоваться замена отдельных деталей, но их неисправности встречаются достаточно редко.

Также автолюбители отмечают и другие плюсы, которые, по их мнению, играют важную роль при выборе системы зажигания. Бесконтактное электронное зажигание потребляет минимальное количество электричества в заведённом состоянии, что существенно экономит заряд аккумулятора. Для работы системы требуется гораздо меньшее количество тока, благодаря чему авто заведётся даже при полностью разряженном аккумуляторе «с толкача».

Среди недостатков зажигания можно отметить некачественные коммутаторы. Очень часто встречаются случаи, когда коммутатор отечественного производства выходил из строя всего через несколько тысяч километров после установки, поэтому не стоит экономить на всех деталях системы.

Качественные комплектующие — залог надёжной и долговечной работы БСЗ.

Ещё одной деталью, которая чаще всего выходит из строя, является реле холостого хода. Запчасть не подлежит ремонту, поэтому её приходится менять при поломке. Так как в установленных на заводе бесконтактных системах чаще всего используются не совсем качественные детали, то многие автомастера рекомендуют сразу заменить некоторые части зажигания:

В некоторых случаях целесообразно установить блоки зажигания для электронных систем.

Из чего состоит БСЗ?

Бесконтактное зажигание включает в себя небольшое количество деталей, благодаря чему снижается вероятность выхода из строя каждой из них. Система состоит из:

  1. Источника питания. Во всех автомобилях им является аккумуляторная батарея.
  2. Выключатель зажигания и стартера. Деталь необходима для правильного распределения времени работы устройства.
  3. Катушка зажигания. Преобразовывает низковольтный ток от аккумулятора в высоковольтный, благодаря чему обеспечивается стабильная работа авто.
  4. Транзисторный коммутатор. Отвечает за прерывание поступления электрического тока на катушку.
  5. Датчик зажигания. Фиксирует перемены в магнитном поле.
  6. Распределительный датчик. Датчик объединён с импульсным, который бывает нескольких видов. Импульсный датчик чаще всего представлен датчиком Холла, но также существуют ещё две разновидности — индуктивный и оптический.
  7. Свечи.

Что понадобится для монтажа бесконтактной системы?

Установка зажигания требует минимальной подготовки, благодаря чему монтаж может произвести каждый желающий. Для проведения монтажных работ понадобятся:

  • ключи под номерами 8, 10 и 13;
  • крестовидная отвёртка;
  • дрель с комплектом насадок;
  • саморезы различной длины.

Эти инструменты понадобятся в процессе монтажа, но под рукой также стоит иметь и другие гаечные ключи, а также плоскогубцы, отвёртку с набором бит.

Процесс установки БСЗ

В первую очередь необходимо снять клемму с аккумулятора для предотвращения замыкания системы. Бесконтактное зажигание на ВАЗ-2106 предполагает монтаж в несколько этапов. Нет разницы, с какой части системы начинать замену. Можно начать с переустановки с переустановки трамблера:

  1. В первую очередь необходимо демонтировать высоковольтные провода.
  2. Вращая коленчатый вал, нужно поставить бегунок в перпендикулярное положение по отношению к оси мотора. Мастера рекомендуют поставить отметку расположения трамблера (средней метки). Данная процедура облегчит последующую установку и корректировку работы БСЗ.
  3. Демонтировать крепеж трамблера и снять деталь.
  4. Установить новую запчасть, а бегунок поставить в положение в соответствие с ранее проставленными метками.
  5. Далее надевается крышка трамблера и устанавливаются провода.

Далее можно приступить к замене катушки. Манипуляция достаточно простая, но необходимо придерживаться правильного расположения контактов. При расположении контактов с другой стороны необходимо перевернуть деталь. В последнюю очередь лучше переустановить коммутатор. Деталь монтируется при помощи саморезов. Обязательным условием выступает прислонение радиатора к кузову автомобиля. После того, как вся система собрана, необходимо тщательно проверить все электрические соединения и соответствие расположения деталей согласно схеме.

Регулировка бесконтактной системы зажигания

Корректировку работы лучше осуществлять при помощи специального оборудования — стробоскопа. В случае отсутствия спецоборудования можно выполнять регулировку по звуку. Так как на слух определяется работа не только зажигания, то необходимо, чтобы все системы работали слаженно и исправно. Настройка происходит следующим образом:

  1. Прогрев мотора.
  2. Открутка гайки, которая отвечает за фиксацию трамблера.
  3. При работающем движке необходимо аккуратно проворачивать трамблер до того момента, пока обороты ДВС станут наиболее максимальными и ровными.
  4. Затяжка крепежа.
  5. На третьей скорости машину необходимо ускорить до 50 км/час. При переключении на четвёртую скорость потребуется резко нажать на педаль газа. В норме возникает звук, схожий с детонацией. Звук должен сохраняться в течение некоторого времени, пока авто не ускориться ещё на 3 — 5 км. В случае, когда звук не прекращается, необходимо провести повторную настройку и во время неё провернуть деталь на один градус по часовой стрелке. Если звук не появился, а при нажатии педали происходит провал оборотов, то во время корректировки запчасть проворачивается против часовой стрелки.

Так как настройка БСЗ – достаточно сложное занятие, требующее специальных навыков и умений, то целесообразней обратиться в автоцентр. Мастера СТО выполнят регулировку при помощи профессионального оборудования, благодаря чему настройка будет точной и продлит срок эксплуатации системы. Если нет уверенности в своих сил в процессе установки бесконтактной системы, то также лучше обратиться в сертифицированный центр.

Чаще всего на проведение комплексных работ предоставляется скидка. Если установка электронного зажигания на ВАЗ-2106 выполнялась на СТО, то лучше попросить гарантию на проведённые работы.

При отказе в выдаче гарантийных обязательств лучше обратиться в другой автосервис.

Неисправности БСЗ

Как и у контактной системы зажигания у бесконтактной существует характерные неисправности. Самая типичная из них — выход из строя датчика Холла. Примечательной особенностью является то, что без него система зажигания работать не может. Если датчик вышел из строя, то его необходимо заменить в кратчайшие сроки для восстановления работоспособности автомобиля. Также распространёнными неисправностями являются:

  1. Выход из строя свечей, поломка катушки.
  2. Нарушение в электрической цепи. Причины могут быть самые разные (обрывы, окисление либо неплотное прилегание контактов).

Если в систему был установлен электронный блок управления, например, «Октан» либо «Пульсар», то к распространённым поломкам также можно отнести его неисправность и выход из строя входных датчиков. Экономить на БУ не стоит, так как некачественные детали могут стать причиной преждевременной поломки всей системы. Чаще всего неисправности возникают по причине несвоевременного обслуживания БСЗ. Регулятор холостого хода может также выходить из строя по причине неправильной работы других систем автомобиля.

Среди причин, которые способствуют появлению неисправностей, отмечают:

  1. Несвоевременный техосмотр всех систем авто. Неправильная работа двигателя и свечей может привести к тому, что система зажигания преждевременно выйдет из строя. В случае с БСЗ стоимость ремонта будет достаточно высокой.
  2. Использование некачественного топлива. Бензин либо газ с посторонними примесями приводит к тому, что зажигание не происходит либо получается с задержкой. Невнимательное отношение к качеству топлива станет причиной выхода из строя всех запчастей, которые контактируют с ним и воздушно-топливной смесью.
  3. Использование в системе деталей, не прошедших сертификацию либо отличающихся низким качеством. Помимо того, что такие детали очень быстро выходят из строя, они могут стать причиной серьёзных поломок всей БСЗ и контактирующих с ней устройств.
  4. Механические повреждения. Если на систему зажигания оказывается механическое воздействие в виде ударов, сильной вибрации, то она значительно быстрей изнашивается и может понадобиться полная замена.
  5. Особенности погоды. Устройства при работе в экстремальных условиях имеют более низкий ресурс работы. Повышенная влажность приведёт к более быстрому окислению контактов, поэтому плановое обслуживание понадобится проводить чаще.

Ремонт электронных систем зажигания

Любая неисправность сильно будет влиять на работоспособность машины, поэтому её необходимо устранить в кратчайшие сроки. Для этого можно воспользоваться услугами профессионалов либо попытаться выполнить его самостоятельно. В первую очередь необходимо проверить состояние свечей. В среднем свечи заменяются в БСЗ каждые 18 — 20 тысяч километров пробега независимо от их состояния. Если замена выпадает на зимний период, а свечи визуально в рабочем состоянии, то их можно отложить и использовать в весенне-осенний период.

Изношенные свечи, которые имеют изолятор светлого серо-коричневого оттенка свидетельствуют о том, что детали совместимы с данным типом двигателя, а мотор работает исправно и стабильно. Нагар чёрного цвета свидетельствует о том, что свечи не подходят для данного движка либо топливная смесь переобогащена горючим. Выгорание электродов указывает на проблему в работе ДВС.

Неправильная работа может быть вызвана некачественным топливом, неверными пропорциями рабочей смеси, некорректной установкой системы зажигания.

Если не запускается движок, то возможны следующие причины поломки:

  1. Электрический ток не поступает на контакты прерывания из-за того, что они загрязнились, окислились либо пригорели.
  2. На контактах появились деформации.
  3. Обрыв проводов либо их замыкание на массу.
  4. Поломка выключателя зажигания из-за чего не происходит замыкание контактов цепи.
  5. Выход из строя конденсатора вследствие замыкания.
  6. Обрыв в катушке зажигания. Дефект проявляется преимущественно в нарушении целостности первичной обмотки. В некоторых случаях причиной может стать повреждение вторичной обмотки.
  7. Утечка электрического тока в роторе распределителя. Данный процесс возможен при попадании во внутрь влаги либо образовании нагара на внутренней стороне крышки.
  8. Не поступает питание на свечи. Помимо повреждения целостности проводов причиной такой неисправности может стать неправильная посадка свечей в гнёздах, их замасление либо окислении наконечников.

Все эти причины решаются переборкой системы зажигания и переустановкой некоторых деталей. Иногда может потребоваться регулировка работы движка, которую лучше произвести в специализированном автосервисе.

Другим признаком неисправности может стать неустойчивая работа движка либо остановка его работы на холостом ходе. Причиной такой неисправности чаще всего становится:

  • преждевременное зажигание в цилиндрах, что не позволяет полноценно работать мотору;
  • увеличенное расстояние между электродами свечей;
  • послабление пружины грузиков в регуляторе, который отвечает за контроль за опережением зажигания.

В основном причины данных поломок кроются в неправильной регулировке. Повторная настройка или корректировка положения позволит за короткий срок забыть о проблеме. Все манипуляции удобно проводить самостоятельно, но необходимо заранее подготовить ветошь, так как чаще всего в процессе работы сильно пачкаются руки.

Если в работе двигателя наблюдаются сбои при различной частоте вращения, то причинами такой неисправности со стороны бесконтактной системы зажигания могут стать:

  • повреждения проводов, послабление их креплений, окислительные процессы на наконечниках;
  • повреждение контактов прерывателя: сгорание, окисление, загрязнение, сдвиги;
  • нарушение работоспособности конденсатора;
  • ослабление пружинки уголька, её надлом либо износ;
  • подгорание контактов в роторе;
  • проблемы со свечами.

Если вариант со свечами исключён, то лучше обратиться в автоцентр для проведения комплексной диагностики всего авто и выявления причин нестабильной работы ДВС.

Ещё одной характерной неисправностью, которая появляется из-за неправильной работы зажигания, выступает невозможность развить полную скорость. В таком случае причинами могут выступать:

  • неправильный монтаж момента зажигания;
  • чрезмерный износ втулки в прерывателе;
  • заедание грузиков либо послабление их пружин в регуляторе опережения зажигания.

Если нет уверенности, что ремонт будет проведён качественно, то стоит обратиться в центры, которые специализируются на данных устройствах. Опытные мастера не только восстановят работоспособность авто, но и могут дать несколько советов, которые существенно улучшат качество поездок, а также продлят срок службы деталей.

Полезные советы

  1. Так как чаще всего причина неисправностей кроется в состоянии проводов, то не стоит экономить на них. Качественные провода, которые имеют силиконовую изоляцию, отличаются долговечностью и надёжностью работы.
  2. Неправильный крепёж проводной колодки нередко выступает причиной, по которой ломается коммутатор. После монтажа детали необходимо обязательно проконтролировать состояние посадки разъёма.
  3. Если после установки бесконтактной системы зажигания тахометр перестал выполнять свои функции, то необходимо дополнительно вмонтировать в цепь между ним и катушкой конденсатор.

Пожалуйста, оцените этот материал!

Загрузка...

Если Вам понравилась статья, поделитесь ею с друзьями!

Бесконтактная система зажигания | whatisvehicle

Принцип действия бесконтактной системы зажигания заключается в следующем: При включенном зажигании и вращающемся коленвале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора, и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.

Наибольшее распространение получили магнитоэлектрические датчики — индукционные(системы с ними маркируются TSZi) и датчики Холла(системы с ними маркируются TSZh).

Система небезопасна и требует осторожности. Если, например, отсоединить провод от свечи — может «сгореть» коммутатор или распределитель.

Прежде, давайте разберём эти два датчика, что же они представляют из себя?

Работа индуктивного датчика положения основана на изменении индукции чувствительного элемента при изменении зазора между ним и ферромагнитным движущимся объектом.

Ферромагнитный объект — объект, обладающий ферромагнитными свойствами(т.е.  оно активно притягивает к себе магнит и активно притягивается магнитом).

В индуктивном датчике имеются катушка из обмотки провода и магнит. В качестве сопряженной детали используется ротор, состоящий из пластин определенного размера.

1 – индуктивный датчик; 2 – пластины ротора

Каждый раз, когда пластина ротора проходит около датчика импульсов, изменяется магнитное поле, в результате чего в обмотке катушки индуцируется импульсное напряжение.

Индуктивный датчик вырабатывает сигнал, близкий к синусоидальному, поэтому его приходится преобразовывать в форму, более удобную для управления током в первичной обмотке (то есть сигнал датчика искусственно преобразуется в форму, близкую к прямоугольной, увеличивается крутизна фронта и спада, обрезается верхушка импульса и т.п.).

Магнитоэлектрический датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

Датчик состоит из постоянного магнита(2), пластины полупроводника(3) и микросхемы. Между пластинкой(3) и магнитом(2) имеется зазор(4). В зазоре датчика находится стальной экран(1) с прорезями. Когда через зазор проходит прорезь экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов. Если же в зазоре находится тело экрана, то магнитные силовые линии замыкаются через экран и на пластинку не действуют. В этом случае разность потенциалов на пластинке не возникает.

1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания

Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:

Принцип работы: Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора \/Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.

Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.

Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.

1 — свечи зажигания; 2 — датчик-распредепитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — репе зажигания; 8 — катушка зажигания; 9 — датчик Холла

Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:

  1. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
  2. Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.

На рисунке представлена электрическая схема системы зажигания с датчиком Холла:

Стабилизация величины вторичного напряжения достигается в схеме двумя путями — во-первых, регулированием времени нахождения транзистора VT1 в открытом состоянии, т.е. времени включения первичной цепи обмотки зажигания в сеть, во-вторых, ограничением величины тока в первичной цепи величиной около 8 А. Последнее, кроме того, предотвращает перегрев катушки.

Принцип работы: С датчика Холла на вход коммутатора приходит сигнал прямоугольной формы, величина которого приблизительно на 3 В меньше напряжения питания, а длительность, соответствует прохождению выступов экрана мимо чувствительного элемента датчика. Нижний уровень сигнала 0,4 В соответствует прохождению прорези. В момент перехода от высокого уровня к низкому происходит искрообразование.

В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная .цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.

Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.

Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.

Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.

Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:

Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.

Можно сказать, что питаниец цепи происходит по схеме Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутит маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.

1 —  свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Электрический ток поступает на первичную обмотку катушки зажигания(6). Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке вознекате ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель. Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.

Понравилось это:

Нравится Загрузка...

Чем бесконтактное зажигание лучше контактного?

В состав автомобиля входит система зажигания. Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах двигателя в соответствии с порядком их работы.

Схема системы зажигания:

Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в трамблере (датчике-распределителе). В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения, который подается посредством высоковольтных проводов на свечи.

Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо – плюсы во всех сферах эксплуатации.

Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов и необходимости систематической их регулировки и зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации и биения ротора-распределителя на равномерность момента искрообразования.

 

 

Бесконтактный электрический воспламенитель для транспортных средств для снижения выбросов выхлопных газов и расхода топлива

Представлен электрический воспламенитель для двигателей / гибридных транспортных средств. Воспламенитель состоит из обратного преобразователя, накопительного конденсатора по напряжению, контроллера на основе PIC, детектора дифференциального напряжения и катушки зажигания, структура которых является бесконтактной. Поскольку электрический воспламенитель использует конденсатор для накопления энергии для зажигания двигателя вместо традиционного подхода контактного типа, он эффективно улучшает характеристики зажигания свечи зажигания.В результате повышается эффективность сгорания, снижается расход топлива и снижается выброс выхлопных газов. Воспламенитель не только хорош с точки зрения топливной экономичности, но также может значительно снизить выбросы углеводородов и CO, что, следовательно, является экологически чистым продуктом. Ядро управления воспламенителя выполнено на единой микросхеме, что снижает количество дискретных компонентов, уменьшает объем системы и повышает надежность. Кроме того, время зажигания может быть запрограммировано так, что регулятор времени может быть удален из предлагаемой системы, что упрощает ее конструкцию.Чтобы проверить осуществимость и функциональность воспламенителя, измеряются ключевые формы сигналов, а также проводятся эксперименты на реальных автомобилях.

1. Введение

Систему зажигания автомобиля можно кратко классифицировать как систему зажигания с прерывателем, транзисторную систему зажигания и систему зажигания от конденсаторного разряда, конструкции и механизмы зажигания которых отличаются друг от друга [1–5]. Однако обычно момент зажигания определяется генератором сигналов скорости для всех систем зажигания.Генератор сигнала скорости в основном состоит из постоянного магнита, индукционной катушки и ротора, чтобы определять скорость автомобиля и генерировать сигнал зажигания. Тем не менее, генератор сигнала скорости не может точно сформировать оптимальный синхронизирующий сигнал, и его выходное напряжение может быть различным. Более высокое выходное напряжение возникает в период низкой скорости и более низкое выходное напряжение в период высокой скорости. Это приводит к перерасходу энергии на свече зажигания на низкой скорости, что приводит к потерям энергии, а также к недостаточной подаче энергии на высокой скорости, что приводит к детонации.

В этой статье предлагается воспламенитель двигателя, созданный на основе преобразователя обратного типа, для улучшения характеристик традиционного воспламенителя конденсаторного разряда. Предлагаемый воспламенитель является бесконтактным и питается от аккумулятора. Обладая преимуществами микропроцессорных контроллеров [6–16], управляющее ядро ​​предлагаемого запальника спроектировано и реализовано на единой микросхеме PIC18F4520. Следовательно, момент зажигания программируется, чтобы приспособиться к разным скоростям транспортного средства для достижения оптимального зажигания.Таким образом, двигатель может генерировать наиболее эффективную выходную мощность и значительно экономить топливо. В воспламенитель встроен высокочастотный обратный преобразователь [17–22], который повышает напряжение батареи, а затем накапливает энергию на конденсаторе. После срабатывания триггера энергия, накопленная в конденсаторе, будет выпущена через трансформатор с высоким коэффициентом передачи, чтобы зажечь свечу зажигания. С упомянутым механизмом зажигания предлагаемый электрический воспламенитель имеет следующие преимущества: замедление старения свечи, более высокая стабильность работы двигателя, простая конструкция, экономичный продукт, повышение эффективности сгорания, снижение выбросов выхлопных газов и экономия топлива.

2. Архитектура системы

Блок-схема предлагаемой системы зажигания от конденсаторного разряда для двигателей / гибридных транспортных средств показана на рисунке 1, который в основном включает обратный преобразователь, конденсатор с накоплением напряжения, микропроцессорный контроллер, дифференциал. цепь определения напряжения, катушка зажигания и свеча зажигания. Основная схема показана на рисунке 2. Обратный преобразователь отвечает за повышение напряжения батареи посредством высокочастотного переключения и управления ШИМ, а затем непрерывно накапливает напряжение на конденсаторе до тех пор, пока не будет достигнут уровень напряжения для зажигания.Напряжение на конденсаторе с суммированным напряжением обнаруживается детектором дифференциального напряжения. После получения сигнала скорости контроллер генерирует соответствующий пусковой сигнал для включения кремниевого выпрямителя (SCR), так что энергия, накопленная в конденсаторе, разряжается в свечу зажигания через катушку зажигания. Катушка зажигания представляет собой импульсный трансформатор с большим числом витков, повышающий напряжение на конденсаторе примерно до 15 кВ для зажигания свечи зажигания.



Для достижения максимальной мощности в лошадиных силах и во избежание детонации необходимо точно контролировать момент зажигания.На Рисунке 3 представлена ​​иллюстрация, на которой показана взаимосвязь между давлением в цилиндре и положением коленчатого вала при различных условиях зажигания. Рисунок 3 показывает, что оптимальное зажигание происходит при зажигании двигателя в момент, когда угол поворота коленчатого вала составляет 10 градусов после верхней мертвой точки. Позднее зажигание или отсутствие зажигания приводит к снижению давления в цилиндре, то есть к большему расходу топлива и выбросу отработанных газов. На рис. 3, даже несмотря на то, что преждевременное зажигание приводит к увеличению давления в цилиндре, появляется детонация.Этот стук опасен при вождении автомобиля. Следовательно, чтобы позволить камере сгорания двигателя достичь максимальной эффективности, ей необходимо запустить свечу для двигателя после верхней мертвой точки под углом 10 градусов. Для оптимального 10-градусного зажигания соответствующая последовательность зажигания должна определяться мгновенно при различных оборотах двигателя. В этой статье, с помощью программирования на микропроцессорном контроллере и определения частоты вращения двигателя, это может быть легко достигнуто.Блок-схема программного обеспечения показана на рисунке 4.



3. Принцип работы

Конструкция предлагаемого воспламенителя двигателя заимствована из обратного преобразователя. Посредством ШИМ-управления и высокочастотного переключения обратный ход в воспламенителе передает энергию батареи в суммированный по напряжению конденсатор для накопления энергии и напряжения в конденсаторе. Таким образом, основная схема, показанная на рисунке 2, может быть упрощена, как на рисунке 5, что полезно для реализации работы воспламенителя.Упрощенная схема может работать либо в CCM (режим непрерывной проводимости), либо в DCM (режим прерывистой проводимости). В данной статье рассматривается работа DCM.


В соответствии с управлением активным переключателем SW и SCR, принцип работы воспламенителя можно разделить на семь режимов во время каждого цикла зажигания, который описывается режим за режимом ниже.

Режим 1 . Как показано на Рисунке 6 (а), активный переключатель включается, и батарея питает индуктор намагничивания.Ток катушки индуктивности увеличивается линейно. Тем временем конденсатор в демпфере разряжается на резистор.

Режим 2 . Конденсатор полностью разряжает энергию, но переключатель SW все еще остается включенным. Батарея непрерывно накапливает энергию в индукторе. Эквивалент показан на рисунке 6 (b).

Режим 3 . Когда SW выключается, запускается этот режим, как показано на Рисунке 6 (c). Напряжение на индуктивности меняется на противоположное. Диоды и включаются, и тот начинает накапливать энергию.Энергия индуктивности рассеяния высокочастотного трансформатора передается в путь. Когда ток, протекающий через индуктивность рассеяния, падает до нуля, этот режим заканчивается.

Режим 4 . Хотя энергия индуктивности рассеяния полностью высвобождается, индуктивность намагничивания продолжает заряжать конденсатор. Этот режим показан на Рисунке 6 (d). Энергия, запасенная в конденсаторе, последовательно накапливается последовательностью сигналов ШИМ для управления активным переключателем SW.То есть режимы с 1 по 4 будут повторяться до тех пор, пока напряжение на нем не приблизится к 200 В, достаточному для воспламенения. По достижении 200 В воспламенитель переходит в следующий режим.

Режим 5 . Как показано на Рисунке 6 (e), конденсатор готов к зажиганию. Этот режим заканчивается при срабатывании SCR.

Режим 6 . После того, как микропроцессорный контроллер получает сигнал скорости, контроллер определяет оптимальную синхронизацию срабатывания SCR. Затем SCR замыкается, и напряжение на конденсаторе повышается катушкой зажигания до гораздо более высокого напряжения.В это время свеча зажигания воспламеняется до перекрытия. Эквивалентная схема представлена ​​на рисунке 6 (f).

Режим 7 . Энергия, запасенная в индуктивности рассеяния и намагничивающей индуктивности запального трансформатора, продолжает высвобождаться, как показано на Рисунке 6 (g). Когда SW снова начинает проводить в конце режима 7, работа воспламенителя в течение цикла зажигания завершается.

При проектировании предположим, что коэффициент трансформации трансформатора в обратном преобразователе равен, период переключения SW равен, а скважность ШИМ равна.Индуктивность для граничной проводимости может быть определена по формуле где - выходное напряжение и представляет собой средний выходной ток.

Если обратный преобразователь работает в режиме постоянного тока, значение индуктивности намагничивания должно быть меньше чем. Таким образом, средний входной ток рассчитывается как где обозначает входное постоянное напряжение. Среднюю входную мощность можно найти по формуле Это, где выражает эффективность обратного хода и обозначает его выходную мощность.

4. Результаты моделирования и экспериментов

Для проверки осуществимости и функциональности предложенной электронной системы зажигания создается прототип, а затем проводятся моделирование и практические измерения.

В прототипе напряжение аккумуляторной батареи составляет 48 В для гибридных электромобилей, а суммированное напряжение для зажигания рассчитано как 200 В. На рисунке 7 показана измеренная форма волны напряжения суммированного конденсатора, из которого можно определить, что перед зажиганием на обратном ходу может быть достигнуто 200 В.Кроме того, время нарастания напряжения составляет всего 5 мс. На рисунке 8 показано практическое измерение напряжения, подаваемого на свечу зажигания, из которого видно, что частота зажигания стабильна при фиксированной скорости. На рис. 9 (а) показаны формы сигналов напряжения, измеренные от генератора сигналов скорости и первичной обмотки катушки зажигания традиционного воспламенителя при 1600 об / мин, а на рис. 9 (b) измерены от предлагаемого воспламенителя. Рисунок 9 показывает, что при 1600 об / мин, даже если традиционный воспламенитель соответствует моменту зажигания, следующие колебания ухудшают эффективность сгорания.При 2200 об / мин соответствующие измерения показаны на рисунке 10. Можно видеть, что на рисунке 10 (а) более быстрое зажигание не может быть достигнуто с помощью традиционного метода, и следующие колебания все еще возникают. Напротив, на рисунке 10 (b) предлагаемый электрический воспламенитель не только обеспечивает более быстрое время для завершения оптимального зажигания, но также не имеет колебаний. Чтобы продемонстрировать, что предлагаемый воспламенитель может привести к снижению выбросов выхлопных газов и значительной экономии топлива, было проведено испытание на реальных автомобилях.Таблица 1 представляет собой сравнение выбросов выхлопных газов при использовании традиционного воспламенителя и предлагаемого воспламенителя при 1500 об / мин, которые измеряются электрическим газоанализатором. Между тем, сравнение физического расхода топлива показано в Таблице 2. Из Таблицы 1 можно найти, что с использованием предложенного воспламенителя выбросы углеводородов и СО в выхлопных газах могут быть значительно уменьшены. Таблица 2 показывает, что средний расход топлива экономится на 9,252%.


Сравнение выхлопных газов HC и CO для двигателя 125 CC при 1500 об / мин
Использование традиционного воспламенителя Использование предложенного воспламенителя Результаты сравнения

1-е измерение выхлопных газов 1-е измерение выхлопных газов HC: пониженный
CO: пониженный
HC (ppm) 181 HC (ppm) 151
CO (%) 1.69 CO (%) 1,52

2-е измерение выхлопных газов 2-е измерение выхлопных газов HC: пониженный

CO: пониженный
HC (ppm) 181 HC (ppm) 151
CO (%) 1,69 CO (%) 1,52

3-е измерение выхлопных газов 3-е измерение выхлопных газов HC: пониженный

CO: пониженный
HC (ppm) 196 HC (ppm) 148
CO (%) 1.83 CO (%) 1,55


Физические измерения расхода топлива от двигателя 125 куб. См.
Пробег (км) Расход топлива (литры) Расчет

С традиционным запальником
1 1708–1820 4.43 Общий пробег: 386 км
Расход топлива: 14,88 литра
Средний: 25,94 км / литр
2 1820–1923 3,53
3 1923–2001 3,53
4 2001–2094 3,39

С предлагаемым воспламенителем
1 2670–2736 3,27 Всего в пути: 280 км
Расход топлива: 9.88 литров
Среднее значение: 28,34 км / литр
2 2736–2861 3,27
3 2861–2882 1,67
4 2882–2950 1,67

Процент экономии топлива 9,252%. уменьшенный



5. Выводы

В этой статье предлагается электрический воспламенитель на основе обратноходового преобразователя, время зажигания которого программируется микропроцессорным контроллером.В зависимости от скорости транспортного средства контроллер может определять оптимальное время зажигания, чтобы повысить эффективность сгорания, снизить расход топлива и снизить загрязнение выхлопными газами. Конструкция электровоспламенителя проста и может питаться напрямую от аккумулятора автомобиля. Таким образом, он экономичен и прост в установке. Кроме того, в отличие от традиционного воспламенителя, предлагаемый воспламенитель не имеет электрического контакта, поэтому он может преодолеть такие недостатки, как износ электродов, старение свечи и неправильное время зажигания.В этой статье практические измерения и испытания на реальных автомобилях подтвердили, что предлагаемый воспламенитель обеспечивает более высокую стабильность при движении двигателя, снижает расход топлива и эффективно снижает выбросы выхлопных газов. То есть это экологически чистый продукт.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов в отношении публикации данной статьи.

Бесконтактная система зажигания двигателя внутреннего сгорания

1.Область техники

Настоящее изобретение относится к бесконтактной (бесконтактной) системе зажигания для двигателя внутреннего сгорания для автоматического подчинения момента зажигания управлению опережением искры и управлению запаздыванием искры от диапазона низких частот вращения до диапазона высоких скоростей вращения.

2. Уровень техники

В качестве бесконтактной системы зажигания для двигателя внутреннего сгорания известного уровня техники, например, во время вращения ротора, имеющего магнитные полюса, генерирующая катушка заряжает индуцированное напряжение в зажигательный заряд и конденсатор разряда, и электрический заряд, заряженный в конденсаторе заряда и разряда зажигания, подается на катушку зажигания через переключающие элементы, которые переключаются напряжением, индуцированным катушкой запуска.

В этом типе бесконтактной системы зажигания, если скорость вращения двигателя внутреннего сгорания, а именно скорость вращения ротора, увеличивается, то вместе с этим увеличением скорости увеличивается момент заряда-разряда конденсатора заряда-разряда зажигания. и, наконец, частота вращения двигателя внутреннего сгорания увеличивается сверх установленной частоты вращения, что иногда приводит к повреждению двигателя.

Устройства, использующие механизм регулятора, и устройства, использующие электронное управление, поэтому были предложены в качестве устройств для предотвращения превышения скорости двигателя внутреннего сгорания.

Однако для механизма регулятора требуется большое рабочее пространство из-за эффектов расширения и сжатия при вращении как единое целое с коленчатым валом, а недостатком является сокращение срока службы из-за механической работы.

Кроме того, с устройством предотвращения превышения скорости двигателя, которое использует электронное управление, существует проблема, заключающаяся в том, что из-за использования сложной электронной схемы невозможно реализовать снижение затрат.

Настоящее изобретение было задумано с учетом вышеописанной ситуации, и целью изобретения является создание компактной и недорогой бесконтактной системы зажигания для двигателя внутреннего сгорания, которая может улучшить пусковые характеристики и мощность в лошадиных силах, одновременно вызывая увеличение угла опережения зажигания. от низких оборотов двигателя до нормальных, и это может предотвратить превышение скорости двигателя, вызывая замедление момента зажигания при частоте вращения выше нормальной.

Для достижения этой цели система бесконтактного зажигания для двигателя внутреннего сгорания согласно настоящему изобретению содержит ротор, имеющий магнитные полюса, расположенные по обе стороны от магнита, сердечник, расположенный напротив ротора, намотанный генерирующей катушкой, и триггерная катушка, конденсатор разряда зажигающего заряда для зарядки индуцированного напряжения генерирующей катушки, первый переключающий элемент, срабатывающий, чтобы быть проводящим, когда индуцированное напряжение триггерной катушки достигло начального уровня триггера, для подачи напряжения, заряженного при зажигании конденсатор заряда-разряда к катушке зажигания, конденсатор управления триггером для зарядки индуцированных напряжений генерирующей катушки и триггерной катушки и второй переключающий элемент для запрета триггера первого переключающего элемента, вызванного наведенным напряжением триггерной катушки в течение определенного время после зарядки конденсатора триггерного управления.

В настоящем изобретении во время запуска, поскольку момент зажигания двигателя внутреннего сгорания опережает, происходит отдача (явление, когда поршень отталкивается назад сразу после зажигания, а коленчатый вал вращается назад из-за низкой скорости поршня, когда запуск) не происходит, и можно ожидать стабильного запуска и увеличения скорости. Кроме того, в нормальном диапазоне оборотов двигателя можно в достаточной степени поддерживать мощность двигателя, значительно увеличивая угол опережения зажигания.С другой стороны, в области высоких оборотов двигателя, превышающих нормальные обороты двигателя, поскольку момент зажигания может быть замедлен, существует преимущество, заключающееся в том, что можно предотвратить превышение скорости двигателя.

В качестве предпочтительного варианта осуществления второй переключающий элемент может быть транзистором, который замыкает накоротко два конца триггерной катушки в течение заданного времени разряда конденсатора управления триггером, чтобы запретить срабатывание первого переключающего элемента. . Таким образом, запуск первого переключающего элемента может быть реализован с использованием недорогой схемной структуры.

В качестве другого предпочтительного варианта осуществления конденсатор управления триггером может содержать схему постоянной времени для определения постоянной времени разряда конденсатора управления триггером, чтобы обеспечить управление опережением момента зажигания и управление замедлением момента зажигания. Таким образом, имеется преимущество, заключающееся в том, что можно выбрать скорость вращения двигателя, которая обеспечивает легкий и с высокой точностью запуск задержки момента зажигания, путем установки постоянной времени разряда цепи постоянной времени.

РИС. 1 представляет собой принципиальную схему, показывающую систему бесконтактного зажигания для системы внутреннего сгорания согласно варианту осуществления настоящего изобретения.

РИС. 2 - вид спереди, показывающий частичное поперечное сечение основной конструкции системы бесконтактного зажигания, показанной на фиг. 1 .

РИС. 3 - временная диаграмма, показывающая формы сигналов напряжения для каждой секции схемы, показанной на фиг. 1 .

РИС. 4 - диаграмма характеристик, показывающая взаимосвязь между скоростью вращения двигателя внутреннего сгорания и моментом зажигания для настоящего изобретения.

РИС. 5 - пояснительный чертеж, показывающий изменения формы сигнала запуска, вызванные изменениями скорости двигателя для настоящего изобретения.

На ФИГ. 2, ротор 3 , составляющий бесконтактную (бесконтактную) систему зажигания для двигателя внутреннего сгорания этого варианта осуществления, имеет пару магнитных полюсов 6 и 7 по обе стороны от магнита 5 , встроенного в неконтактный -магнитный корпус 4 , например, корпус из алюминия. Части каждого из магнитных полюсов 6 и 7 выступают на внешней поверхности ротора 3 и могут быть выполнены напротив торцевых поверхностей ножек 8 a , 8 b сердечника 8 при вращении ротора 3 .

Сердечник 8 представляет собой угловой U-образный элемент, обращенный к ротору 3 , а генерирующая катушка 1 и триггерная катушка 2 соответственно намотаны вокруг ножек 8 a и 8 б . Поверхности ножек 8 a и 8 b напротив ротора 3 имеют дугообразную форму, чтобы поддерживать постоянное расстояние от ротора 3 .

На ФИГ. 1 диод 9 , конденсатор заряда-разряда зажигания 10 и первичная катушка 11 a катушки зажигания 11 соединены последовательно с генерирующей катушкой 1 , образуя цепь заряда. для зарядки положительного напряжения, индуцированного генерирующей катушкой 1 .

Конденсатор разряда заряда зажигания 10 соединен последовательно с анодом и катодом тиристора 12 в качестве первого переключающего элемента и первичной катушкой 11 a катушки зажигания 11 , и это последовательное соединение составляет схему разряда для разряда заряженного конденсатора разряда зажигающего заряда 10 .Эта схема разряда функционирует для разряда заряда, заряженного в конденсаторе разряда заряда зажигания 10 , в катушку зажигания 11 , когда тиристор 12 приводится в действие и становится проводящим.

Свеча зажигания 13 подключена к вторичной катушке 11 b катушки зажигания 11 , а колебательный LC-диод 14 для первичной стороны катушки зажигания 11 подключен между анод и катод тиристора 12 .

С другой стороны, диод 15 , резистор 16 , конденсатор управления триггером 17 и диод предотвращения обратного тока 18 подключены последовательно к двум концам катушки триггера 2 . Кроме того, диод 19 и резистор 20 подключены последовательно между цепью, связывающей генерирующую катушку 1 с диодом 9 , и цепью, связывающей резистор 16 с конденсатором управления триггером 17 .

Резисторы 21 и 22 , составляющие цепь постоянной времени вместе с конденсатором управления триггером 17 , подключены последовательно к двум концам конденсатора управления триггером 17 и базе транзистора 23 , как второй переключающий элемент, подключен к точке соединения между этими двумя резисторами 21 и 22 . Коллектор транзистора 23, подключен к цепи, связывающей катушку запуска 2 и диод 18 .Кроме того, эмиттер транзистора 23 подключен к цепи, соединяющей катушку запуска 2 и диод 15 через диод 24 . Коллектор также подключен к затвору тиристора 12 через резистор 25 . Резистор 26 для установки напряжения затвора подключен между затвором и катодом тиристора 12 .

Далее будет описана работа системы бесконтактного зажигания для двигателя внутреннего сгорания, имеющего описанную выше структуру.Прежде всего, если двигатель активирован и ротор 3 вращается в направлении стрелки A на фиг. 2, напряжения, имеющие формы волны, показанные на фиг. 3 ( a ) и РИС. 3 ( b ) соответственно индуцируются в генерирующей катушке 1 и триггерной катушке 2 на сердечнике 8 напротив ротора 3 . Из наведенного напряжения в генерирующей катушке 1 положительное напряжение прикладывается к первичной катушке 11 a катушки зажигания 11 через диод 9 и конденсатор разряда заряда зажигания 10 и электрический Заряд заряжается в конденсатор разряда зажигания 10 .

С другой стороны, из-за напряжения, индуцированного в триггерной катушке 2 , положительное напряжение возрастает раньше, чем положительное индуцированное напряжение генерирующей катушки 1 , на заданный период, и это напряжение заряжает конденсатор управления триггером 17 через диод 15 и резистор 16 . Конденсатор управления триггером 17, также заряжается положительным индуцированным напряжением от генерирующей катушки 1 , чтобы получить форму волны напряжения заряда, как показано на фиг. 3 ( c ). После зарядки конденсатора разряда зажигательного заряда 10 , если напряжение затвора тиристора 12 достигает заданного уровня, а именно, если индуцированное напряжение триггерных катушек 2 достигает начального уровня триггера TL, показанного на фиг. 3 ( b ) включается тиристор 12 и через тиристор 12 на катушку зажигания 11 подается электрический заряд конденсатора заряда зажигания 10 через тиристор 12 .В результате напряжение зажигания подается от катушки зажигания , 11, , к свече зажигания , 13, , и топливно-воздушная смесь внутри топливной камеры двигателя внутреннего сгорания воспламеняется. При повторении этой операции двигатель запускается, а затем увеличивается скорость, а мощность в лошадиных силах, являющаяся выходной мощностью двигателя, увеличивается за счет опережения момента зажигания.

Затем, в процессе изменения индуцированного напряжения триггерной катушки 2 с положительного на отрицательное, заряд, имеющий форму волны напряжения заряда, показанную на фиг. 3 ( c ), который был заряжен в конденсатор управления триггером 17 , разряжается через резисторы 21 и 22 , и транзистор 23 включается. В результате ток запуска, который до сих пор проходил через катушку запуска 2 , резистор 25 затвор катод тиристора 12 и диод 24 , шунтируется через транзистор включения 23 в течение заданного времени разряда конденсатора управления триггером 17 , и в это время срабатывание тиристора 12 запрещается, поэтому тиристор 12 выключен.

Соответственно, шунтирование тока триггера путем включения транзистора 23 продолжается до момента времени, когда индуцированное напряжение триггерной катушки 2 достигает следующего уровня триггера TL, если двигатель внутреннего сгорания вращается с высокой скоростью в превышение установленной заранее нормальной скорости, таким образом предотвращается последующее срабатывание тиристора 12 и начинается замедление времени зажигания. В частности, если частота вращения двигателя превышает нормальную частоту вращения двигателя, управляемую установленной постоянной времени цепи постоянной времени, момент зажигания постепенно замедляется, и в результате можно предотвратить превышение частоты вращения двигателя.

После запуска двигателя из диапазона низких скоростей в заданный диапазон нормальных скоростей, достижения нормальной скорости NR, установка угла опережения зажигания не зависит от постоянной времени и быстро увеличивается вместе с увеличением частоты вращения двигателя. Соответственно, наряду с выполнением стабильного запуска двигателя, можно предотвратить возникновение отдачи (явления, когда поршень отталкивается назад сразу после зажигания, а коленчатый вал вращается в обратном направлении из-за низкой скорости поршня во время запуска. ), вызванного задержкой при запуске двигателя, и поскольку угол опережения зажигания максимально увеличен в нормальном диапазоне оборотов двигателя, можно поддерживать достаточную мощность двигателя в лошадиных силах.Кроме того, используя катушку запуска 2 , можно упростить структуру схемы для управления синхронизацией зажигания.

Внешний вид изменений формы сигнала триггера, вызванный изменениями скорости двигателя, показан на фиг. 5, например.

Как работает электронная система зажигания?

Введение

«От маленькой искры может вспыхнуть пламя» Данте Алигьери. Правильно сказал, что искра необходима для зажигания пламени и в автомобиле, поскольку происходит преобразование химической энергии (т.е.е. топливовоздушной смеси) в механическую энергию, то есть (вращение коленчатого вала) необходима искра, которая отвечает за сгорание, но откуда эта искра исходит? Как регулируется синхронизация зажигания и приготовленной топливовоздушной смеси? Давай просто выкопаем.

В двигателе внутреннего сгорания сгорание является непрерывным циклом и происходит тысячи раз в минуту, поэтому требуется эффективный и точный источник воспламенения. Идея искрового зажигания возникла в игрушечном электрическом пистолете, в котором использовалась электрическая искра для воспламенения смеси водорода и воздуха и пробки.

Электронная система зажигания - это тип системы зажигания, в которой используются электронные схемы, обычно с помощью транзисторов, управляемых датчиками, для генерации электрических импульсов, которые, в свою очередь, генерируют лучшую искру, которая может даже сжечь бедную смесь и обеспечить лучшую экономию и меньшие выбросы.

Почему электронная система зажигания?

В последнее время использовались различные типы систем зажигания:

1. Система зажигания свечей накаливания,
2. Система зажигания магнето
3.Электрическая катушка или аккумуляторная система зажигания,

Но все эти системы имеют свои собственные ограничения, а именно:

Система зажигания свечей накаливания является самой старой из всех и устарела из-за множества ограничений -
Система зажигания свечей накаливания имеет проблему возникновения неконтролируемого возгорания из-за использования электрода в качестве источника воспламенения, что решается позже после внедрения системы зажигания Magneto, в которой электроды заменяются свечой зажигания. В отличие от зажигания от магнето, свеча накаливания производит высокие выбросы выхлопных газов из-за неполного сгорания.

Магнитная система зажигания:

Это система, вводимая для преодоления ограничений старых систем зажигания, но у нее есть свои ограничения-

  • Это зависит от частоты вращения двигателя, поэтому показаны проблемы с запуском из-за низкой скорости на запуск двигателя, который позже решен с введением системы зажигания катушки батареи, в которой батарея становится источником энергии для системы.
  • Дороже, чем электрическая катушечная система зажигания.
  • Износ больше, чем зажигание катушки батареи, из-за большего количества механических движущихся частей, чем система катушки батареи.
  • Может вызвать пропуски зажигания из-за утечки.

Также читайте:

Электрическая катушка зажигания или система зажигания от батареи

- Система является последней из всех вышеперечисленных и используется долгое время из-за ее лучшей эффективности и точности, но также имеет некоторые ограничения-

  • Менее эффективен с высокоскоростными двигателями
  • Требуется высокое техническое обслуживание из-за механического и электрического износа точек размыкателя контактов

Итак, поскольку в современных автомобилях внедряются новые технологии и обнаруживается, что использование датчиков и электроники компонент дает более эффективные и точные выходные данные, чем механические компоненты, поэтому использование датчиков с электронным управлением становится важным для удовлетворения потребностей современных высокомощных и высокоскоростных автомобилей или гиперсерий автомобилей, чтобы удовлетворить потребность в высокой производительности, Большой пробег и большая надежность привели к разработке электронной системы зажигания.

Основные компоненты

1. Батарея

Это силовая установка системы зажигания, поскольку она поставляет необходимую энергию в систему зажигания. Так же, как система зажигания катушки батареи.

2. Выключатель зажигания

это выключатель, используемый в системе зажигания, который управляет включением и выключением системы, так же как и система зажигания катушки аккумулятора.

3. Модуль управления зажиганием или блок управления системой зажигания

Это мозг или запрограммированная инструкция, передаваемая системе зажигания, которая автоматически контролирует и регулирует время и интенсивность искры.Это устройство, которое принимает сигналы напряжения от якоря и устанавливает первичную катушку в положение ВКЛ и ВЫКЛ, оно может быть размещено отдельно вне распределителя или может быть размещено в коробке электронного блока управления транспортного средства.

Читайте также:

4. Якорь

Контактный выключатель системы зажигания батареи заменен якорем, который состоит из реактора с зубьями (вращающаяся часть), опережения вакуума и приемной катушки (для захвата). Сигналы напряжения). Электронный модуль получает сигналы напряжения от якоря для замыкания и размыкания цепи, которая, в свою очередь, устанавливает синхронизацию распределителя для точного распределения тока по свечам зажигания.

5. Катушка зажигания

Катушка зажигания, аналогичная катушке зажигания аккумуляторной батареи, используется в электронной системе зажигания для подачи высокого напряжения на свечу зажигания.

6. Распределитель зажигания

Как видно из названия, это устройство используется для распределения тока на свечи зажигания многоцилиндрового двигателя.

7. Свеча зажигания

Свеча зажигания используется для образования искры внутри цилиндра.

Работа электронной системы зажигания

  • Чтобы понять работу электронной системы зажигания, давайте рассмотрим приведенный выше рисунок, на котором все упомянутые выше компоненты подключены в их рабочем состоянии.
  • Когда водитель включает зажигание, чтобы завести автомобиль, ток начинает течь от аккумулятора через ключ зажигания к первичной обмотке катушки, которая, в свою очередь, запускает катушку датчика якоря для приема и отправки сигналов напряжения от якорь к модулю зажигания.
  • Когда зуб вращающегося реактора оказывается перед съемной катушкой, как показано на фиг., Сигнал напряжения от измерительной катушки отправляется на электронный модуль, который, в свою очередь, воспринимает сигнал и останавливает ток, протекающий от первичной катушки.
  • Когда зубец вращающегося реактора отходит от съемной катушки, считывающая катушка передает сигнал об изменении напряжения в модуль зажигания, и схема синхронизации внутри модуля зажигания включает ток.
  • Магнитное поле создается в катушке зажигания из-за этого непрерывного замыкания и размыкания цепи, которая индуцирует ЭДС во вторичной обмотке, которая увеличивает напряжение до 50000 вольт.
  • Это высокое напряжение затем отправляется на распределитель, который имеет вращающийся ротор и точки распределителя, которые устанавливаются в соответствии с моментом зажигания.
  • Когда ротор оказывается перед любой из этих точек распределителя, происходит скачок напряжения через воздушный зазор от ротора к точке распределителя, который затем передается на соседний вывод свечи зажигания через кабель высокого напряжения и разность напряжений. возникает между центральным электродом и заземляющим электродом, который отвечает за образование искры на кончике свечи зажигания и, наконец, происходит сгорание.

Для лучшего объяснения посмотрите видео, приведенное ниже:

Приложение
  • Электронная система зажигания используется в современных и гиперкарах, таких как Audi A4, Mahindra XUV-500 и т. Д.и мотоциклы, такие как ktm duke 390cc, Ducati super sports и т. д., чтобы удовлетворить потребности в высокой надежности и производительности.
  • Он также используется в авиационных двигателях из-за его большей надежности и меньшего объема технического обслуживания.

(PDF) Бесконтактный электрический воспламенитель для транспортных средств для снижения выбросов выхлопных газов и расхода топлива

 e Scientic World Journal

[ ] Р. Зейн и Д. Максимови

´

c, «Нелинейное регулирование несущей для выпрямителей с высоким коэффициентом мощности

на основе повышающих-понижающих преобразователей

», IEEE Transactions on Power Electronics, т., no.,

с. – , .

[] Р. Эриксон, М. Мэдиган и С. Сингер, «Дизайн простого выпрямителя с высоким коэффициентом мощности

на основе обратного преобразователя»,

в Proceedings of the 5th Annual Applied Power Electronics

Conference and Exposition (APEC '90), vol., no., pp.–

, март.

[] Г. Ниргуде, Р. Тирумала и Н. Мохан, «Новая средняя модель

с большим сигналом для однокнопочных преобразователей постоянного тока, работающих в

как CCM, так и DCM», in Proceedings 32-й ежегодной конференции специалистов по силовой электронике

IEEE, т., стр.  –,

июнь .

[] ФРК Четти, «Подход эквивалентной схемы с инжекцией тока

(CIECA) к моделированию коммутирующих преобразователей постоянного тока в постоянный», IEEE

Transactions on Aerospace and Electronic Systems, vol. vol, No.

с. – , .

[] G. Hua and F.-C. Ли, «Методы переключения So в преобразователях PWM

», IEEE Transactions on Industrial Electronics, vol.,

no. , стр.  – ,.

[] C.-Т. Чой, Ч.-К. Ли, С.-К. Кок, «Управление активным преобразователем yback с прерывистой проводимостью

с прерывистой проводимостью», в материалах

Труды 3-й Международной конференции IEEE по силовой электронике и приводным системам

(PEDS '99), стр. , июль

.

[-] R. Oruganti, PC Heng, JTK Guan и LA Choy,

«So-Switched DC / DC converter with PWM control», IEEE

Transactions on Power Electronics, vol., no. ., pp. – ,

.

[] C.-T. Чой, Ч.-К. Ли, С.-К. Кок, «Моделирование активного преобразователя

с прерывистым режимом проводимости yback при изменении условий эксплуатации

», Труды 3-й Международной конференции IEEE

по силовой электронике и приводным системам

(PEDS '99), стр. .  – , июль .

[] R. Watson, F.-C. Ли и Г.-К. Хуа, «Использование схемы активного фиксатора

для достижения такой коммутации в обратных преобразователях»,

IEEE Transactions on Power Electronics, vol., нет. , стр.  -

,.

[] Х. Йошино, К. Сато, А. Томаго и И. Ямаути, «Разработка

детектора коронного разряда для обратных трансформаторов», IEEE

Transactions on Consumer Electronics, vol. , №, стр. – ,

.

[] F.Forest, E.Labour

´

e, T. A. Meynard, J.-J. Huselstein,

«Многоканальная обратная связь с чередованием с использованием межэлементных трансформаторов»,

IEEE Transactions on Power Electronics, vol., №, стр.  -

,.

[] W.Langeslag, R.Pagano, K.Schetters, A.Strijker, and A.

ван Зест, «Проектирование СБИС и применение высоковольтной-

-совместимой SoC-ASIC в биполярной технологии CMOS / DMOS для выпрямителей

AC-DC», IEEE Transactions on Industrial Electronics,

vol. , нет. , стр.   – , .

[] Н. П. Папаниколау и Э. К. Татакис, «Минимизация потерь мощности

в преобразователях PFC yback, работающих в непрерывном режиме проводимости

», IEE Proceedings, vol., no., pp. – ,

.

Моторы Автозапчасти и аксессуары LADA NIVA 1600 КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ

LADA NIVA 1600 КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ

КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ LADA NIVA 1600, КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ LADA NIVA 1600, подходит ко всем Lada Niva 1600cc С карбюратором, подходит ко всем Lada 2101-2107 1500cc 1600cc С карбюратором, зачем вам электронное зажигание №4 для вашей Lada - Вы можете положиться на электронное зажигание. Необходимость в техническом обслуживании возникает гораздо реже. Покупайте онлайн здесь. Оптовые цены. Онлайн-магазины часов и круглосуточные услуги. Уникальные товары по доступным ценам.КОМПЛЕКТ ЗАЖИГАНИЯ LADA NIVA 1600 БЕСКОНТАКТНАЯ ЭЛЕКТРОННАЯ СИСТЕМА bischoffdentistry.com.


LADA NIVA 1600 БЕСКОНТАКТНЫЙ КОМПЛЕКТ ЗАЖИГАНИЯ

Подвески из стерлингового серебра

покрыты родием для предотвращения коррозии или потускнения, а также для продления их срока службы и красоты. Мы не можем гарантировать, что цвет, который вы видите, будет точно соответствовать фактическому цвету продукта. Купить Комбинированный комплект мужской футболки с круглым вырезом и короткими рукавами «It's A Beautiful Day to Leave Me Alone» и джинсовой шляпы: покупайте футболки ведущих модных брендов при ✓ БЕСПЛАТНОЙ ДОСТАВКЕ и возможен возврат при покупке, отвечающей критериям.Не предназначено для использования в посудомоечной машине или микроволновой печи,: youngs Large White T bar: Sports & Outdoors. : Bigblue Узкий светодиодный налобный фонарь 1000 люменов Светодиодный фонарь для подводного плавания: для спорта и активного отдыха, лучшая замена старого. точно так же, как слияние с кожей. Fubotevic Men Fleece Hoodie Осень-Зима Теплая утепленная стеганая куртка Пальто Верхняя одежда в магазине мужской одежды. КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ LADA NIVA 1600 . Хрусталь и бусина специально для вас. Эта игрушка покрыта натуральным и нетоксичным лаком из пчелиного воска, который мы сами производим, и оставляет эту деревянную игрушку с гладкой отделкой, подвеска-бабочка из стерлингового серебра с акцентом на белый бриллиант Jewelexcess: Одежда.DZT1968 Женский миниатюрный кошелек для монет с леопардовым принтом (A) в магазине женской одежды Dragons N Rocks, подушка для путешествий для малышей Sham. Идеально подходит для крещения в честь реликвий. Это прекрасная винтажная банка, созданная в честь восшествия на престол Эдуарда VIII в 1936 году. Она гармонично впитала в себя многие виды плетения. мерцание и / или добавление свечения - решать вам. КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ LADA NIVA 1600 . Винтажная ночная рубашка от Undercover Wear Seafoam 1970-х годов, пластиковый трафарет Endlessre из 0.Вы можете использовать эти элементы в любом личном или некоммерческом проекте для неограниченного числа применений. Мой свадебный магазин не несет ответственности за любые юридические вопросы. Этот номерной знак станет прекрасным дополнением к вашей коллекции или отличным подарком для семьи или друзей, пожалуйста, убедитесь, что вы не возражаете, прежде чем делать ставки. ЭКСТРА ПРОЧНЫЙ ДИЗАЙН - Этот невероятно прочный магнитный держатель для инструментов имеет ширину 18 дюймов, Cultr: Siling Labuyo Hot pepper 50 🌶, идеально подходит в качестве милого подарка на день рождения или праздник для себя, НАБОР БЕСКОНТАКТНОГО БЕСКОНТАКТНОГО ЗАЖИГАНИЯ LADA NIVA 1600 .и разработан для использования в самых разных уплотнениях.


LADA NIVA 1600 КОМПЛЕКТ БЕСКОНТАКТНОГО ЗАЖИГАНИЯ

Fender Eliminator и светодиодная лампа указателя поворота для SUZUKI DRZ400S DR-Z400SM 2006-2017, комплект спиральных пружин, задний Moog 81403, подходит для Chrysler Pacifica 04-08, комплект салона с 9 красными светодиодами для Nissan Altima NA5R, Denso 10PA / 10S 2002-2006 годов Шкив муфты с четырьмя канавками 115 мм, мотор привода замка сдвижной двери с правой стороны для Ford Transit Connect, 2 стойки багажника задней двери багажника Подъемные стойки амортизатора 04-07 Cadillac Cts.Черный UMI 1965-1972 Chevelle El Camino Полиуретановые втулки заднего корпуса, зажимы US 40X, фиксатор бампера крыла, фиксатор нажимного типа, отверстие 10 мм для Honda Accord CRV FIT, СИНИЙ ВОЗДУШНЫЙ КОМПЛЕКТ FIT FIT 2000-2002 DAEWOO LANOS 1.5L 1.6L ENGINE, скоба топливного бака Для 1968-1970 годов Dodge Charger 1969 M618PY. Комплект шестерен Webster MK5 26:26 как hewland, для 1975-1991 Mercury Grand Marquis Sway Bar Link Front 82384BG 1976 1977 1978 1978, комплект переднего и заднего подшипника колеса для Suzuki 125cc DR125 1982-1988.

Система зажигания вашего автомобиля · BlueStar Inspections

Основные принципы системы электрического искрового зажигания не изменились почти за столетие, но метод, с помощью которого создается и распределяется искра, значительно улучшился с развитием технологий.

Существует три основных типа автомобильных систем зажигания: распределительные системы, без распределителя и катушки на свече (COP). В ранних системах зажигания использовались полностью механические распределители для подачи искры в нужное время. Далее появились более надежные распределители, оснащенные твердотельными переключателями и модулями управления зажиганием. Они были известны как распределительные системы зажигания. Затем были созданы еще более надежные полностью электронные системы зажигания без распределителей. Они известны как системы зажигания без распределителя.Наконец, были созданы самые надежные на сегодняшний день электронные системы зажигания. Эти современные системы известны как «катушка на вилке» (COP). Полностью электронные системы зажигания типа "катушка на свече" управляются компьютером. Помимо повышения точности синхронизации зажигания, системы зажигания COP используют измененные катушки зажигания, способные создавать более высокие напряжения и более горячую искру, что улучшает работу двигателя.

Вы когда-нибудь задумывались, что происходит, когда вы вставляете ключ в замок зажигания вашего автомобиля, поворачиваете ключ, и ваш двигатель запускается и продолжает работать? Сегодня я вам расскажу.Чтобы система зажигания работала должным образом, она должна выполнять две работы одновременно. Первая задача - повысить напряжение с 12,4 вольт, обеспечиваемых аккумулятором, до более чем 20 000 вольт, необходимых для воспламенения сжатого воздуха и топливной смеси в камере сгорания. Вторая задача системы зажигания - обеспечить подачу напряжения на нужный цилиндр точно в нужное время. Для этого смесь воздуха и топлива сначала сжимается поршнем в камере сгорания.Затем эту смесь необходимо поджечь. Эта задача выполняется системой зажигания двигателя, которая включает в себя такие компоненты, как аккумулятор, ключ зажигания, катушка зажигания, пусковой выключатель, свечи зажигания и модуль управления двигателем (ECM). Контроллер ЭСУД управляет системой зажигания и распределяет электроэнергию по каждому отдельному цилиндру. Система зажигания должна обеспечивать достаточное количество искры в нужном цилиндре в точное время и делать это часто. Малейшая ошибка во времени вызовет проблемы с производительностью двигателя.

Автомобильные системы зажигания должны генерировать искру, достаточно сильную, чтобы перепрыгнуть через зазор свечи зажигания. Для этого в системах зажигания используется катушка зажигания. Катушка зажигания действует как силовой трансформатор.

Катушка зажигания преобразует низкое напряжение аккумуляторной батареи в тысячи вольт, необходимых для создания электрической искры в свечах зажигания для воспламенения топливно-воздушной смеси. Для возникновения необходимой искры напряжение на свече зажигания должно составлять в среднем от 20 000 до 50 000 вольт.Катушка зажигания состоит из двух обмоток из медной проволоки, намотанной на железный сердечник. Они известны как первичная обмотка и вторичная обмотка. Катушка зажигания предназначена для создания электромагнита, пропуская напряжение батареи через первичную обмотку. Когда пусковой переключатель системы зажигания автомобиля отключает питание катушки зажигания, магнитное поле разрушается. При этом вторичная обмотка улавливает разрушающееся магнитное поле от первичной обмотки и подает это напряжение на свечу зажигания, тем самым запуская двигатель вашего автомобиля.

Изношенные свечи зажигания и неисправные компоненты системы зажигания снизят производительность вашего двигателя и могут создать широкий спектр проблем при работе двигателя, включая пропуски зажигания, недостаток мощности, низкую экономию топлива, затрудненный запуск и, возможно, контрольную лампу двигателя. Эти проблемы могут повредить другие важные компоненты автомобиля.

Для бесперебойной и безопасной работы вашего автомобиля необходимо регулярное техническое обслуживание системы зажигания. Визуальный осмотр компонентов системы зажигания вашего автомобиля следует проводить не реже одного раза в год.Все компоненты вашей системы зажигания следует регулярно проверять и заменять, когда они начинают проявлять признаки износа или неисправности. Кроме того, не забывайте проверять и заменять свечи зажигания с интервалом, рекомендованным производителем вашего автомобиля. Не ждите, пока возникнет проблема с уходом за вашим автомобилем. Регулярное обслуживание является ключом к долговечности и качеству двигателя вашего автомобиля.

Системы зажигания - обзор

4.3.3 Системы зажигания двигателя

Система зажигания с электроприводом для бензинового двигателя была впервые изобретена в 1911 году Чарльзом Кеттерингом, который, как упоминалось ранее, также изобрел стартер.Принцип хорошо известен. Бензиновому двигателю нужна искра для воспламенения топливно-воздушной смеси в каждом из цилиндров. Зажигание включает в себя четыре основные и последовательные функции: подачу электричества низкого напряжения, усиление напряжения до высокого уровня, распространение импульса электрического тока высокого напряжения на каждую из камер сгорания и, наконец, разряд в виде искр. . Эти действия выполняются соответственно генератором, индукционной катушкой, распределителем и свечами зажигания следующим образом.

(i)

Генератор в ранних автомобилях представлял собой магнето с ручным приводом. После изобретения автономного пускателя с батарейным питанием для производства постоянного тока использовалась динамо-машина. Позже динамо-машина была заменена более эффективным генератором переменного тока, который выдает переменный ток, который затем выпрямляется;

(ii)

индукционная катушка представляет собой электрически простой компонент, по сути трансформатор, который индуцирует очень высокое напряжение во вторичной обмотке, когда ток через первичную обмотку прерывается размыканием точек контактного выключателя, расположенных в дистрибьютор;

(iii)

распределитель направляет высокое напряжение на свечи зажигания;

(iv)

синхронизация искры, зажигающей топливо, имеет решающее значение для эффективной работы бензинового двигателя.Цель состоит в том, чтобы обеспечить максимальное давление воспламеняемых газов в цилиндре для опускания поршня при рабочем такте. Свеча зажигания должна сработать незадолго до того, как поршень достигнет верхней мертвой точки (tdc). Это связано с тем, что между возникновением искры и созданием максимального давления существует конечная короткая задержка, в течение которой фронт пламени распространяется через газы. По мере увеличения частоты вращения двигателя искра должна возникать все раньше, прежде чем поршень достигнет tdc (т.е.е. быть «продвинутым»), если должна быть достигнута максимальная мощность и, следовательно, наибольший КПД.

В идеальных условиях фронт пламени равномерно распространяется по топливовоздушной смеси. Если искра распространяется слишком далеко, смесь за фронтом пламени может взорваться самопроизвольно и со взрывом, вызывая локальную ударную волну - явление «детонации двигателя». Искра должна быть задержана («задержана»), чтобы исключить детонацию. В автомобилях, построенных в 1920-х и 1930-х годах, часто предусматривалось ручное замедление момента зажигания для устранения детонации.Впоследствии эта операция была произведена автоматически. Современные двигатели могут быть оснащены небольшим пьезоэлектрическим микрофоном, который определяет начало детонации и посылает сигнал в электронную систему управления двигателем, которая, в свою очередь, замедляет угол опережения зажигания. Были проведены многочисленные исследования конструкции головок цилиндров и системы впуска топлива, чтобы исключить детонацию, получить максимальную выходную мощность двигателя и свести к минимуму выбросы загрязняющих веществ.

Верхний распределительный вал приводится в движение ремнем от коленчатого вала, и два компонента вращаются синхронно.Кулачки на распределительном валу воздействуют на коромысла, которые открывают и закрывают впускные и выпускные клапаны в нужный момент. Ротор распределителя, управляющий зажиганием свечей зажигания, также приводится синхронно с коленчатым валом. Когда ротор вращается, он размыкает и замыкает точки платинового прерывателя в распределителе, и это действие посылает короткий импульс электричества низкого напряжения (12 В) на первичную обмотку индукционной катушки. Импульс высокого напряжения индуцируется во вторичной обмотке катушки и отправляется через плечо ротора на соответствующую свечу зажигания.Затем ток перепрыгивает через зазор между центральным электродом и корпусом свечи, создавая искру, воспламеняющую топливно-воздушную смесь. Это гениальное изобретение использовалось в автомобилях с двигателями внутреннего сгорания около 100 лет. Он оказался надежным, поскольку единственной операцией по техническому обслуживанию является периодическая замена и сброс точек размыкателя контактов.

Примерно с 1980 года постепенно внедряется электронное зажигание. Вместо использования распределителя с точками механического размыкателя контактов для установки времени искрения, эта функция выполняется в электронном виде с помощью компьютера, который управляет системой управления двигателем.Электронное зажигание устраняет необходимость в обслуживании, необходимом для регулярной очистки и сброса точек, а также обеспечивает более плавную работу. Было принято несколько вариантов методики. В последней конструкции не используется одна высоковольтная катушка для обслуживания всех цилиндров, а вместо нее устанавливается небольшая катушка над каждой свечой зажигания. Такое расположение устраняет необходимость в подключении к каждой вилке высоковольтных кабелей, которые являются частым источником проблем, и обеспечивает импульс более равномерного напряжения и длительности независимо от частоты вращения двигателя.Практически все новые бензиновые автомобили оснащены электронным зажиганием. Дизельные двигатели, конечно, не нуждаются в этой сложной системе зажигания, поскольку они не имеют свечей зажигания и полагаются на самовоспламенение от сжатия.

В дополнение к моменту зажигания, момент и продолжительность открытия клапана также имеют решающее значение для хорошей работы двигателя и определяются профилем кулачков на распределительном валу, поскольку они управляют клапанами.

Comments |0|

Legend *) Required fields are marked
**) You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>
Category: Разное